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Abstract: Supercritical circulating fluidized bed (CFB) is one of the prominent clean coal technologies
owing to the advantages of high efficiency, fuel flexibility, and low cost of emission control. The fast
and flexible load-tracking performance of the supercritical CFB boiler-turbine unit presents a
promising prospect in facilitating the sustainability of the power systems. However, features such as
large inertia, strong nonlinearity, and multivariable coupling make it a challenging task to harmonize
the boiler’s slow dynamics with the turbine’s fast dynamics. To improve the operational flexibility
of the supercritical CFB unit, a burning carbon based decentralized active disturbance rejection
control is proposed. Since burning carbon in the furnace responds faster than throttle steam pressure
when the fuel flow rate changes, it is utilized to compensate the dynamics of the corresponding
loop. The parameters of the controllers are tuned by optimizing the weighted integrated absolute
error index of each loop via genetic algorithm. Simulations of the proposed method on a 600 MW
supercritical CFB unit verify the merits of load following and disturbance rejection in terms of less
settling time and overshoot.

Keywords: supercritical circulating fluidized bed; boiler-turbine unit; active disturbance rejection
control; burning carbon; genetic algorithm

1. Introduction

Circulating fluidized bed (CFB) technology has demonstrated its ability to efficiently utilize a
wide variety of fuels, including high sulfur coal to coal gangue and coal slurries [1]. Taking coal-water
slurries containing petrochemicals fuels for example, through experiments and calculations the
advantages are much lower anthropogenic emissions and ash residue, low cost of the components,
positive economic performance indicators of storage, transportation, and combustion, as well as higher
fire and explosion safety [2,3]. It is believed that a combination with supercritical steam cycle to
increase the efficiency of energy conversion is one of the futures of CFB combustion technology [4].
The first 600 MW supercritical CFB boiler demonstration project was put into commercial operation
in 2013 [5]. By the end of 2017, more than eighty-two supercritical CFB boilers were in operation or
under construction in China [6].

As Lyu pointed out [4], in the demonstration the control of the 600 MW supercritical CFB boiler
was the heart of the matter. Some factors attribute to the difficulties of the coordinated control
of the unit:
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1. Higher requirement for operational flexibility. With increasing intermittent renewable energy
integrated in the grid, thermal power plants are required to operate in a wider range [7].
Supercritical CFB boilers can regulate their load from 30% to 100%, which extends 20% more in
the low load region compared with pulverized coal-fired boilers [8]. However, the considerable
quantities of bed materials in furnace result in large inertia of the CFB boiler. In addition, dynamics
of the boiler vary at different operation conditions, leading to strong nonlinearity. Both of these
factors make it hard to design controllers of coordinated control system (CCS) to harmonize
the boiler’s slow dynamics with the turbine’s fast dynamics so as to follow the command from
grid promptly.

2. Capability to reject disturbance in fuel. Since the CFB boiler works with a variety of fuels, the
variability of fuel brings in disturbance for the unit operation. In addition, the amounts of fuel
that enter the boiler sometimes fluctuate due to mechanical reasons. Consequently, it is necessary
to design advanced controllers so as to suppress the influence of disturbance from fuel.

3. Complex dynamics of the supercritical CFB unit. Besides the thermal inertia, strong nonlinearity,
and time delay of supercritical CFB unit, multivariable coupling has a significant impact on
the controller design [9]. The adjustments of manipulated variables would cause changes in
all controlled variables. Furthermore, the unit would become more complicated when the bed
temperature of the CFB boiler is taken into consideration [10].

As can be anticipated, a well-designed control system of the supercritical CFB unit can yield
potential environmental and economic benefits.

Much of the literature has paid particular attention to this problem. Among them, investigation
of the dynamic characteristic and mechanism-based modeling for supercritical CFB boilers lays the
groundwork. Prior knowledge about subcritical CFB boilers is essential to the modeling research.
Majanne and Köykkä presented a dynamic model which consisted of the air-flue gas and the
water-steam systems [11]. The model was based on the first principles mass, energy, and momentum
balances and experimental correlations about reaction kinetics and heat transfer, and was finally tested
against measured process data. Furthermore, a mechanism-based control model in the form of transfer
functions for the CCS of the subcritical coal-fired 300 MW CFB unit was established based on the
dynamic characteristics in [12]. The research has been extended to the supercritical CFB unit. In [13] a
hybrid dynamic model was developed to characterize the main physical and chemical processes in a
supercritical CFB boiler. Steady-state verification was made to evaluate the accuracy of the model while
step responses of different manipulate variables were tested. Through some reasonable simplification,
a nonlinear control model of supercritical CFB unit was established in [14], and the parameters of the
system model were identified by steady-state derivation, function fitting, and optimization algorithm.
The correctness of the model structure and validity of the identification method were verified by
operation data of a 600 MW supercritical CFB unit in service.

Based on the derived dynamic model of CFB unit, a variety of control methods are adopted for
the coordinated control purpose. The proportional-integral-derivative (PID) control is the most widely
used control strategy in real control engineering. Hultgren and Hao et al. analyzed the relative gain
and designed a decentralized PID control structure for the CFB unit [15,16]. The controllers in [16]
were devised based on desired dynamic equation (DDE) while an heuristic algorithm was used to
optimize the PID controllers for the CFB unit in [17]. In [18], dynamic feedforward was employed to
improve the performance of PID controllers. on basis of decentralized PI control, two disturbance
observers (DOBs) were designed to estimate and compensate the effect of coupling in the CFB unit [19].
However, higher requirements are imposed for the supercritical CFB unit which the conventional
decentralized PID control can hardly satisfy. Some advanced control methods have been discussed,
such as fuzzy control [20–22], neural network based control [23,24], etc. Although good performances
were observed in simulations, these methods could seldom be used in the real CFB power plant due to
the restrictions in the distributed control system.
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Due to the ability to deal with uncertainty, active disturbance rejection control (ADRC) has
received increased attention across a number of disciplines in recent years, such as gasoline engines [25],
proton exchange membrane fuel cell [26], electromechanical actuator [27], pendulum cart system [28],
piezo-driven positioning stage [29], flight control [30], and so on. The basic principle of ADRC is
the estimation and actively compensation via extended state observer (ESO). The stability analysis
of ADRC and the convergence of ESO have been studied by many researchers [31,32]. ADRC has
also been employed for the process control of CFB unit, such as the superheated steam temperature
control [33], primary air control [34], secondary air control [35], combustion system control [36], and
control of boiler-turbine unit [37]. However, none of them have taken control problems of supercritical
CFB unit into consideration. The increase in inertia aggravates the difficulty of the supercritical CFB
unit. Recent studies show that combination of burning carbon in the furnace of CFB with heat signal
can improve the control performance [9]. To make use of the burning carbon, Gao et al. added the rate
of heat released in combustion of burning carbon as the feedforward signal on basis of decentralized
PI controllers. However, detailed analysis of the control structure should be undertaken.

The primary aim of this research is to provide reasonably consistent evidence of an association
between burning carbon and operation performance and to explore the enhancement of the operation
performance of the supercritical CFB unit, making the following contributions:

• Burning carbon is integrated into the control framework to accelerate the load following;
• The disturbance rejection performance is improved via the design of decentralized ADRC controllers;
• Genetic algorithm (GA) is employed to tune the parameters of the ADRC controllers.

The remaining part of the paper proceeds as follows: Section 2 introduces the 600 MW supercritical
CFB boiler-turbine unit and analyzes its dynamics. In Section 3, the decentralized ADRC framework is
proposed for the supercritical CFB unit, in which burning carbon information is utilized. In order to
achieve satisfying performance, GA is used to tune the controllers for both traditional decentralized
controllers and the proposed method in Section 4. In Section 5, simulation results are given to verify
the merits of the proposed method. Finally, some conclusions are drawn in Section 6.

2. Performance Analysis of Supercritical Circulating Fluidized Bed Boiler-Turbine Unit Model

Gao et al. investigated the dynamics of supercritical CFB unit and established the nonlinear model
for control purposes [14]. The model represented the behavior of the boiler-turbine unit in the 600 MW
supercritical CFB power plant located at Baima, China, and was validated by its operation data.

Simplified working process of the supercritical CFB boiler-turbine unit is illustrated in Figure 1.
The essential working principle of the boiler-turbine unit is energy conversion. The chemical energy
stored in coal is transformed into steam thermal energy by the boiler, then it is transformed into
rotational mechanical energy by the turbine, and finally it is transformed into electric energy by the
turbogenerator.

In the derived model, the manipulate variables are the fuel flow rate command uB (u1, kg/s),
feedwater flow rate D f w (u2, kg/s), and turbine throttle valve opening ut (u3, %); the controlled
variables are the throttle steam pressure Pst (y1, MPa), separator steam enthalpy hm (y2, kJ/kg),
and active electric power generated by the turbogenerator Ne (y3, MW), respectively. Some typical
operating conditions are shown in Table 1.

Table 1. Typical steady-state operation conditions of the supercritical circulating fluidized bed
(CFB) unit.

y1 (MPa) y2 (kJ/kg) y3 (MW) u1 (kg/s) u2 (kg/s) u3 (%)

High (100%) 23.93 2609.53 600 32.79 485.98 91.51
Medium (70%) 19.30 2669.29 420 24.54 335.60 79.40
Low (40%) 12.53 2804.35 240 15.28 184.10 69.91
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Figure 1. Simplified diagram of a supercritical circulating fluidized bed (CFB) boiler-turbine unit.

Since the purpose of modeling is to design and test advanced control algorithms suited for the
supercritical CFB boiler-turbine unit, many simplifications are made during the modeling, however,
for the most important variables of the unit, the model can capture both the steady-state and dynamic
properties of the unit well thus is very suited for controller design and test.

Large inertial, nonlinear, and strong multivariable coupling behavior of the unit can be clearly
indicated through step response tests. Taking uB for example, Figure 2 shows the step response at
typical operation conditions. The evidence from this test suggests that unit takes more than 4000 s to
reach steady-state when an increase in fuel command uB is occurred. Meanwhile, it is also of interest
to note uB has an effect on all the outputs. Multivariable coupling should be taken into consideration
when the control system is designed. Furthermore, the unit exhibits signs of nonlinearity since the
amplitudes and time constants at different operation conditions are quite different from each other.
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Figure 2. Outputs of a supercritical CFB unit when uB increases by 5%.

We also investigate the character of burning carbon when the unit changes its load, as shown in
Figure 3. Researchers have discussed the model of burning carbon in CFB unit [14,38]. Here we follow
the model proposed in [14] because it can reflect the change tendency and is simple enough to satisfy
the fast calculation requirement in real-time operation. Figure 3 indicates that burning carbon in the
furnace is strongly related to the operation condition of the unit. Once the fuel flow command changes,
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the burning carbon varies accordingly. The second major finding is that burning carbon will reach
the steady-state earlier than the throttle steam pressure when the fuel flow rate changes. This fact
motivates us to make use of the burning carbon information to design the control system for the unit.
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Figure 3. Performance of burning carbon in a supercritical CFB unit when uB increases by 5% at 1000 s
and decreases by 5% at 6000 s.

3. Burning Carbon Based Decentralized Active Disturbance Rejection Control of a Supercritical
CFB Unit

As mentioned previously, large inertial and unknown disturbances are the two main problems
in the operation of the supercritical CFB boiler-turbine unit, therefore we propose a burning carbon
based decentralized ADRC method to deal with both issues simultaneously.

3.1. Linear Active Disturbance Rejection Control

Without loss of generality, a class of nonlinear plant can be depicted by the following equation:

y(n) = bu + f
(

y(n−1), y(n−2), · · · , y
)
+ d (1)

where y is the measurable system output, u is the measurable control input, d is the unknown external
disturbance, f (·) is the unknown internal (state-dependent and potentially nonlinear) dynamics of the
process, and b is the unknown input scaling factor.

In order to design the input signal to make the output track the desired reference regardless of
the unmodeled/unknown disturbance, the above system can be firstly augmented using a virtually
extended state: {

y(n) = b0u + σ

σ̇ = h
(2)

where b0 is the approximation of b, σ represents the lumped disturbance including the unmodeled
dynamics and external disturbance [32]:

σ = f (·) + d + (b− b0) u (3)

It is assumed that σ is differentiable.
If the lumped disturbance is regarded as one dimensional state, we can define x =

[x1, · · · , xn, xn+1]
T =

[
y, y(1), · · · , y(n), σ

]T
. So plant (2) can be described in the state space

representation as {
ẋ = Ax + Bu + Eσ

y = Cx
(4)
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where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


(n+1)×(n+1)

B =


0
...
0
b0

0


(n+1)×1

, E =


0
...
0
0
1


(n+1)×1

C =
[

1 0 · · · 0
]

1×(n+1)

For the extended system model (4), (n + 1)-th order extended state observer (ESO) is designed to
estimate the unknown lumped disturbance σ [39]:{

ż = Az + Bu + L(y− ŷ)

ŷ = Cz
(5)

where z = [z1, · · · , zn, zn+1]
T = [x̂1, · · · , x̂n, σ̂]T is the estimate of state x, L = [β1, · · · , βn+1]

T is
the observer gain. If the gains β1, · · · , βn+1 are chosen properly, the lumped disturbance σ can be
estimated as well as the states x.

Then, the control law is designed as

u =
−zn+1 + u0

b0
(6)

where u0 is to be determined to meet the specific type of application. Since the estimate of the extended
state zn+1 approximates the lumped disturbance σ, i.e., zn+1 ≈σ, when combining control law (6) with
the plant (4) we get

y(n) ≈ u0 (7)

which reduces the uncertain plant (4) to a cascade form of integrators. The canonical form of cascade
of integrators makes the system trivial to govern due to inherent robustness against any perturbation
in the system [40,41]. One should notice that the plant is still under the influence of uncertainties,
however, the impact on output is removed [40].

The derived model (7) can be effectively controlled by state feedback law [42]:

u0 = k1(r− z1) + k2(ṙ− z2) + · · ·+ kn(r(n−1) − zn) (8)

where r is the desired reference.
For convenience in industrial applications, the 1st and 2nd order linear ADRC are commonly

used [33]. Taking the 1st order ADRC for example, it can be reduced from the general form (5), (6),
and (8) to the following: {

ż1 = z2 + b0u + β1(y− z1)

ż2 = β2(y− z1)
(9)

u =
u0 − z2

b0
(10)

u0 = kp(r− y) (11)
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Thus, for the 1st order ADRC we have four parameters to be determined, namely kp, b0, β1, and
β2. Once the ADRC is well tuned, the system output can track the reference while overcoming the
uncertainties. The structure of the 1st order ADRC is illustrated by Figure 4, where Gp denotes the
transfer function of the controlled plant.

kp

r u0
1/b0

u

d

Gp

y

ESO

+

1st order ADRC

  z2z1

Figure 4. Structure of 1st order active disturbance rejection control.

3.2. Burning Carbon Based Decentralized ADRC for Supercritical CFB Boiler-Turbine Unit

Decentralized control is widely used in the industry process due to its simplicity. Instead of
decentralized PID control, we propose the decentralized ADRC control for the supercritical CFB unit
to improve the capability to follow load command in large-scale and enhance the capacity to unknown
fuel variation. Figure 5 shows the designed control structure.

Supercritical 

CFB Unit

uB

uT

Dfw

PT

hm

Ne

Load 

Command

Main Steam 

Pressure Reference

Separator Steam 

Enthalpy Reference

Load Reference ADRC 3

ADRC 2

ADRC 1

Fuel 

Feedforward

B

Load-Burning 

Carbon Signal
Kc

+

+

+

Figure 5. Structure of the burning carbon based decentralized active disturbance rejection control
(ADRC) for a supercritical CFB unit.

In the proposed control structure, three ADRC controllers are devised for the individual loops.
The ADRC controllers can not only alleviate the coupling of different loops, but also enhance the
disturbance rejection performance. Fuel feedforward is included in this structure so that the output
power can track the load command promptly. It is noted that we design the dynamic compensation for
the fuel-main steam pressure loop based on the load-burning carbon signal. In the following, control
of fuel-main steam pressure loop is analyzed. Its structure is shown in Figure 6.
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Figure 6. Control structure of fuel-main steam pressure loop based on load-burning carbon signal.

To illustrate the effectiveness of the dynamic compensation, the transfer function from coal to

burning carbon is identified and used for analysis. The identified model G1 =
K

Ts + 1
e−τs at 100% and

40% operation conditions are:

G1(100) =
6.0567

306.1587s + 1
e−28s

G1(40) =
29.6893

591.5113s + 1
e−28s

(12)

The dynamics of G1 varies considerably at different operation conditions, including the gain
coefficient and time constant. The large time constant in G1 indicates the huge inertial in CFB boiler,

especially when it is at low load operation condition. In addition, since
τ

T + τ
< 0.08 the effect of

time delay can be ignored when we analyze the control structure. The load-burning carbon signal is
precalculated based on past operation data.

The equivalent transfer function from ADRC’s output to burning carbon in (12) is

B′(s) ≈ K (KcK + 1)
Ts + KcK + 1

u (13)

Compared with the original transfer function from burning carbon to ADRC’s output,

B(s) =
K

Ts + 1
u (14)

The pole is shifted left from − 1
T

to −KcK + 1
T

when Kc > 0. Also, both (13) and (14) have the same
static gain K. Thus, the compensated burning carbon could be accelerated. Figure 7 shows the unit
step response of the compensated burning carbon and throttle steam pressure model at different loads,
in which Kc = 0.03. It can be found that dynamics at low load is more compensated.

0 1000 2000 3000 4000 5000
0

16

32

Output of burning carbon model at 100% load

Compensated output of burning carbon model at 100% load

Output of burning carbon model at 40% load

Compensated output of burning carbon model at 40% load

(a) Unit step response of the compensated burning carbon

Figure 7. Cont.
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Figure 7. Unit step response of the compensated burning carbon and throttle steam pressure model at
different loads.

The load-burning carbon signal is constructed according to the steady-state values of burning
carbon at different operation conditions in advance. Based on the compensated fuel-main steam
pressure loop, we design the decentralized ADRC controllers for the multi-input-multi-output (MIMO)
supercritical CFB unit.

4. Tuning of ADRC Controllers

The performance of the ADRC controller is greatly affected by parameters b0 in (10), kp in (11),
and β1, β2 in (9). Therefore, there are overall twelve parameters for the decentralized controllers
to be optimized.

Genetic algorithm is a global search method that mimics the process of natural selection. It is
one of the most well-known heuristic optimization methods, and has been used in various research
areas [43]. In this research, the parameters in the decentralized ADRC controllers are optimized by GA.

To evaluate the control performance, the integrated absolute error (IAE) index is used,

IAE =
∫ T

0
|e(t)|dt (15)

where e(t) is the tracking error of the controlled variable. IAE tends to produce responses with less
sustained oscillation. For the MIMO CFB unit, there are three controllers to be optimized. To obtain
the trade-off between different loops, the fitness function for GA is defined as the weighted sum of
each IAE,

J =
3

∑
i=1

ωi · IAEi (16)

where i denotes the i-th loop in CFB unit.
The optimization flowchart can be depicted as Figure 8.
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Figure 8. Flowchart of genetic algorithm based ADRC controller.

5. Simulations

In this section, the proposed burning carbon based decentralized ADRC is employed to control the
supercritical CFB unit. Simulations under different scenarios, i.e., load tracking at different operation
conditions and disturbance rejection, are performed to test the proposed method.

The simulation configuration of the burning carbon based decentralized ADRC of supercritical
CFB unit is shown in Figure 5. The nonlinear dynamic model developed in [14] functions as the
real plant since its dynamics has been tested by operation data. The fuel feedforward plays an
important role in the boiler-turbine unit control. We design this feedforward signal based on the history
steady-state data of the supercritical CFB unit so that it corresponds to the target load. The load-burning
carbon signal is constructed based on the steady-state values of burning carbon at different operation
conditions. The compensated gain Kc equals 0.03. As analyzed in Section 3.2, the introduced burning
carbon can compensate the dynamics of the fuel-main steam pressure loop. The distributed ADRC
controllers has been devised according to Equations (9) to (11). The parameters of the ADRC controllers
are tuned by GA, the procedures of which are depicted in Section 4. The settings of GA are such that
population size is chosen as 100, generation is 50, crossover fraction is 0.6, and individuals that are
guaranteed to survive to the next generation are 10.

The proposed method is compared with two others, namely decentralized PI [16] and
decentralized ADRC [37]. Both of them have the same fuel feedforward used in the proposed method.
In addition, the controllers in these two methods are separately tuned by GA with the same settings.
The differences in performance are expected to be found among the above three methods.

5.1. Load Tracking

The first case is designed to test the wide range load following performance of the controllers.
The unit is assumed to decrease and increase at the rate of 2%/MCR/min at high (100%)/medium
(70%)/low (40%) operation conditions, respectively. The results are shown in Figures 9 and 10.
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Figure 9. Load following performance of supercritical CFB unit at typical conditions (load decrease).
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Figure 10. Load following performance of supercritical CFB unit at typical conditions (load increase).

The simulation results indicate that all three decentralized control methods can regulate the
supercritical CFB unit and make the unit follow the command from grid. When the controllers are well
tuned, both the output power Ne and separator steam enthalpy hm can closely track the references.
The major difference is the control performance in throttle steam pressure Pst, and the transient
response criteria are listed in Tables 2 and 3.
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Table 2. Transient response criteria of throttle steam pressure for the supercritical CFB unit at typical
conditions (load decrease).

Decentralized PI Decentralized ADRC Burning Carbon Based
Decentralized ADRC

High Medium Low High Medium Low High Medium Low

Overshoot (%) 1.20 2.30 4.02 0.23 0.55 1.14 0.28 0.84 0.62
Settling time (s) 793.4 798.8 829.0 487.4 492.6 508.7 397.1 397.1 405.3

Table 3. Transient response criteria of throttle steam pressure for the supercritical CFB unit at typical
conditions (load increase).

Decentralized PI Decentralized ADRC Burning Carbon Based
Decentralized ADRC

High Medium Low High Medium Low High Medium Low

Overshoot (%) 1.16 2.15 3.62 0.20 0.49 0.98 0.25 0.80 0.50
Settling time (s) 789.3 794.7 823.8 484.1 488.7 504.6 398.9 396.0 404.3

Decentralized PI control [16] with fuel feedforward is widely used in the real power plant.
However, it takes the longest time for the throttle steam pressure to reach the steady-state. On the
contrary, decentralized ADRC control [37] with fuel feedforward provides notable improvement. Since
the coupling between the loops is regarded as disturbance and compensated by ADRC, its settling
time is shortened while the overshoot is reduced.

The settling time of throttle steam pressure can be further improved under the proposed burning
carbon based decentralized ADRC. As analyzed in Section 3.2, the burning carbon based compensated
method ameliorates the dynamics of fuel-main steam pressure loop. The devised ADRC controller
can result in a faster tracking performance. According to Tables 2 and 3, the settling time is about 50%
less than that of decentralized PI method [16], and about 19% less than that of decentralized ADRC
method [37]. In addition, it can be observed that the improvements of settling time at low load region
is larger than that at high/medium load region. This is due to the fact that dynamics at low load are
more compensated, as shown in Figure 7.

5.2. Disturbance Rejection

To further verity the disturbance rejection performance, a significant unknown step-type
disturbance in fuel is considered in this case. This disturbance is common in coal-fired power plants
because of the variability of coal. The unit is assumed to operate at 100% condition, and at t = 500 s the
step-type disturbance d = 3 kg/s is acted on uB, at t = 2000 s the step-type disturbance d = −3 kg/s
is acted on uB. The controllers are the same with those optimized in last case. The results are shown in
Figure 11.

The results show that all these methods can remove the impact of the fuel disturbance, especially
on the throttle steam pressure. However, decentralized PI [16] provides the slowest response because
the integral action works on the bias between the output and the reference. Both decentralized
ADRC [37] and the proposed burning carbon based decentralized ADRC method use the ESO to
estimate the lumped disturbance and reject it according the principle of ADRC. Thus, the disturbance
rejection is prompt and effective. The proposed burning carbon based decentralized ADRC is lightly
better in terms of less settling time and overshoot.
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Figure 11. Disturbance rejection of the supercritical CFB unit under unknown fuel variation.
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6. Conclusions

To achieve a sustainable future for renewable energy and integrate more renewable energy into
the power grid, increasing the operational flexibility of supercritical power plants plays a crucial role
in power systems.

The coordinated control system of the supercritical CFB unit is designed to harmonize the boiler’s
slow dynamics with the turbine’s fast dynamics so as to meet the power grid’s demand and maintain
the parameters of the unit within the safe range. Since the burning carbon circulates in the boiler
and releases the energy gradually, it can affect the change of the heat provided by the boiler and the
impact of fuel variation on unit load. To this end, we make use of the burning carbon information to
compensate the dynamics of the fuel-throttle pressure loop and reduce the regulating time.

In this research, we propose the burning carbon based decentralized ADRC for the operation
of the supercritical CFB unit. The dynamics of the supercritical CFB unit, including the controlled
variables and burning carbon in furnace, are analyzed on the basis of step response. One interesting
finding is that burning carbon responds faster than the throttle steam pressure when the fuel flow
rate changes. We utilize the burning carbon information to design the decentralized ADRC to reduce
the influence of the large inertia of the supercritical CFB unit. A genetic algorithm is employed to
optimize the controllers of the multivariable unit using a weighted integrated absolute error index.
Through simulations of the supercritical CFB unit, it is demonstrated that the proposed method can
notably reduce the settling time and maintain the disturbance rejection capability. These advantages
benefit from the capacity of the well-tuned active disturbance rejection controllers and the utilization of
burning carbon information. Consequently, a particular attention should be paid to the fast calculation
of the burning carbon, as well as the steady-state values.

Applying the proposed method to the realistic supercritical CFB unit will be our future interest.
Some practical issues should be taken into consideration, e.g., the implementation of the proposed
method in the distributed control system of the power plant, and the tracing and undisturbed switching
logic between controllers.
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