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Abstract: A waveform contains recognizable feature patterns. To extract the features of various
equipment disturbance conditions from a waveform, this paper presents a practical model to estimate
distribution line (DL) conditions by means of a multi-label extreme learning machine. The motivation
for the waveform learning is to develop device-embedded models which are capable of detecting
and classifying abnormal operations on the DLs. In waveform analysis, power quality waveform
modeling criteria are adopted for pattern classification. Typical disturbance waveforms are applied
as class models, and the formula-generated waveform features are compared with field-acquired
waveforms for disturbance classification. In particular, filtered symmetrical components of the
modified varying window scale are applied for feature extraction. The proposed model interacts
suitably with the parameter update method in classifying the waveforms in real network situations.
The classification result showed disturbance features on model with the real DL waveform data holds
a potential for determining additional DL conditions and improving its classification performance
through the update mechanism of the learning machine.

Keywords: condition monitoring; feature learning; power quality; waveform analytics;
disturbance detection

1. Introduction

Power system monitoring and control play an important role in real-time intelligent power
distribution networks. In particular, the monitored power signal contains direct operational
information and electrical features of the system. It could be further utilized to determine the cause
of disturbances in power devices. Power quality (PQ) information is one of the criteria that can be
used to measure and evaluate the condition of the distribution system regarding abnormal equipment
behaviors and fault conditions [1,2]. In modern distribution lines (DLs) distributed energy resources
and bi-directional power sources with grid-tie capabilities may lead to unprecedented operational
challenges, the PQ information is believed to be essential in ensuring the high power of networks and
preventive management [3–5]. In recent years, research in the field of power quality, power system
protection and equipment testing has indicated that useful information can be extracted from measured
power signal waveforms. An approach for the purpose of equipment health monitoring on DLs by
analyzing disturbance waveforms and extracting health status information from them has attracted
significant interest from industry and academia [6,7]. In another, waveform signatures and feature
extraction have been proposed by using a state prediction approach [8,9].

With respect to waveform data analytics, the primary goal is to extract, from the voltage and
current waveforms associated with devices and locations, the signatures of various equipment
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disturbances and abnormal conditions from which researchers can develop appropriate algorithms
to identify equipment abnormalities [10]. However, acquired data in itself is generally insufficient to
determine the exact nature of the equipment condition [11]. To extract features from waveform data,
disturbance has to be modeled first from the system operation perspective [2,12], and the model’s
interaction with the corresponding field device has to be preconceived.

Waveform modeling is used to generate training data for distribution condition classification.
In practice, applying the generalized waveform patterns, actual field measured waveforms are
compared with and consequently classified for distribution conditions. Some practical solutions
developed in recent years [13–15] store the waveform data until an PQ event occurs, at which time the
particular cycle and sample are detected and compared against the stored waveforms. These methods
are restrictively used to allocate diverse signal processing methods such as frequency transformed
data compression and sparse signal decomposition [16–18].

Application to real-time DL condition recognition and employing end-device condition classifiers
are of recent interest. A classifier embedded in feeder devices with improved labeling and waveform
modeling could acquire waveforms and recognize abnormal conditions [19,20]. In terms of waveform
signal processing, the focuses are on properly extracting waveform signals [21,22], and on waveform
signal filtering for exclusion of field waveform noises.

For extraction and classification techniques, the research focuses on an interactive modeling
approach to suitably classify the types of PQ disturbances and DL conditions. Also, the approach aims
to enable the proposed model to interact with the parameter updating mechanism of learning machines
to detect additional unusual waveform disturbance types. As for suggested end-device classification,
a modified extreme learning machine (ELM) is adopted and implemented. Several ELM applications
have been studied for disturbance waveform classification and fault anticipation [23] due mainly
to its superior learning speed and generalization performance which are most desirable for feeder
monitoring devices in a small size network [24]. For fixed or variable size networks, with sequential
learning and updating, the Online-Sequential ELM (OS-ELM) algorithm has proven generalization
performance in several studies and benchmarks involving regression, classification and time-series
predictions [25,26]. This study presents and aims to achieve: 1) overcoming the quantity limitation of
training waveform data by means of characterized waveform modeling and generation of waveform
data from the model; 2) extension to three-phase voltages and currents with digital binary signals from
the conventional single-phase classification; and 3) tuning of the model for specific feeder devices to
enhance recognition capability for DL condition classification.

2. Modeling the Power Signals and Acquisition Processes

As stated before, the basic structure of the suggested model is, first, to build waveform formula for
typical excursions and disturbances which have been frequently observed and, second, to generate the
typical waveforms from the formula and maintain a dataset. Then, PQ monitored data are compared
with recognized features in the dataset for disturbance identification and classification. Therefore,
the proposed learning model setup can be illustrated as in Figure 1, considering multiple data for
processing and learning. This section explains the details of each step of the model after a brief
description of field data monitoring and collection.
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2.1. Field-Measured Waveform Data Processing

As for waveform acquisition as depicted in Figure 1, the waveform types and several update
sequence techniques are considered specifically to apply mutual characteristics of the measured
signals such as voltage and current, as well as binary values [27]. As to the PQ monitoring, voltage
and current measurements in the field devices at monitoring locations are managed by control and
operation systems. For the actual network from which the waveforms are acquired, end-point
measuring units such as phasor measurement units (PMUs) or feeder remote terminal units (FRTUs),
as parts of distribution management systems (DMSs) or power quality management systems (PQMSs),
are typically installed, as depicted in Figure 2a,b, respectively.
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2.2. Modeling Disturbance Waveforms

There are several mathematical models of PQ waveform generation, see [7,17]. For added
generality, the waveform model uses essentially general standard criteria based on the PQ signals
and the representative disturbance waveforms referenced by the IEEE-1159-2009 PQ standard [1].
Through consistently modifying the parameters, common PQ disturbances are determined as
sag, swell, interruption, flicker, oscillation, notch or impulse transient, spike, and harmonics
fluctuations. In addition to these common types, a range-assigned waveform model is applied that is
complementarily applicable to abnormal DL condition-related sporadic phenomena. Therefore, the
model requires some parameters to be defined in regard to the actual field waveform characteristics;
however, the model deals with more comprehensive disturbance features than the conventional
PQ criteria.

2.3. Symmetrical Component Processing

Symmetrical components have been used to evaluate unbalanced condition phasors in power
system analysis. Their use in waveform analysis is to extract the unbalanced event signals as compared
with other phase currents and voltages [7]. Owing to the real-time measurement burdens on the
measuring devices, extracting a single phase of the symmetrical value is practiced to reduce the data
size. Simultaneity of the disturbance phase is derived as a disturbance trigger condition. Negative
sequence components v−d (t), i−d (t) are used for the disturbance phase d ∈ a, b, c. These components
represent the differences of each phase and return near zero values during steady state, by the
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implication of which the deviation can be extracted for disturbance recognition from the zero value.
The negative sequence component matrix is obtained as follows: as in the frequency domain, the angle
can be shifted in the time domain based on the time-dependent variables [28]. This domain change
process leads to 1/3 sampling rate for the digital measurement and to normalization once the DL
waveform is acquired. The normalization parameter σc is determined as:

σc =

{
1, modelled

(vr/λc
2)·λc

m, recorded
(1)

where vr represents the rating ratio value; λc
2 and λc

m are the secondary value ratio and channel
multiplier of Comtrade format waveforms [29], respectively, applied to the recorded DL waveforms.
In addition, the sum of negative sequence component vabc−

t = (va−
t + vb−

t + vc−
t )/3 is derived as the

magnitude of distortions of the saved event. The phase calculation is done with the phase-locked
loop (PLL) modulation with real-time phase shifts for the modeling waveforms, and each single
waveform will be generated for three phases. For the generation model, disturbance patterns are
applied with randomness among one or three phases, depending on the DL condition patterns
so that a range of phases is provided randomly to the learning model and the model selectively
discriminates the disturbance even though multiple disturbances occur. Despite the fact that the
sequence components could be obtained and decomposed, actual samples are usually inseparable
by exactly one-third, which causes sequence component noises. The noise is handled by applying an
additional filtering method.

2.4. Signal Filtering for Feature Extraction

The noise on measured waveforms has particular measurement errors that occur due to the
following causes: one kind is caused by precision errors from the installed field devices of potential
and current transformers, which have physical accuracy limitations related to sensor performance.
The other is calculation deviations. Even in increased samples for a given measurement cycle,
deviations between samples exist because sampling is typically performed in the 3.8 kHz–7.6 kHz
frequency range in field devices [29,30]. These errors are distinguishable by tracking the waveform
patterns because the majority of the overlapped data is not generally in the steady state. In the negative
sequence component, the frequencies are particularly different near the zero region and if the filter is
shrunk based on the statistical signal processing method as outlined below, the noise can be eliminated,
exposing the remaining waveform features. Noise smoothing has been achieved by generating the
cumulative filter using mean and Gaussian values of the negative sequence [31,32].

The negative sequence phase v−d (t) of v−a,b,c is regarded as the processing signal s(t) in which an
unbalance exists. As s(t) has a majority of zero values except for the disturbance, the zero values
are not required for the histogram analysis; hence, the signal can be rearranged as s0 such that
s0 = st{s(t) 6= 0} with length T0. The histogram bin width uses the square root rule b =

⌈√
T0
⌉

or
the Sturges method b = d1 + log2(T0)e, which assumes a normal distribution (where the bracket
indicates the ceiling function) [33]. From the histogram, the statistics can be modeled by the statistical
distribution p(s0) of a quantified frequency histogram h(s0) with s0 bin levels. The noise can be
processed by applying thresholds in which the number of h(s0) exceeds the expected distribution
p(s0). Gaussian fitting is applied because the signal indicates not only the filtered noise but also
the measurement error from the field measuring device. Based on the normal distribution criteria,
the upper and lower thresholds of δ

.
and

.
δ are applied as:

δ
.
= min[s0|h(s0) > ωh·p(s0)],

.
δ = max[s0|h(s0) > ωh·p(s0)].

(2)
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The method compares two parameters: one represents distribution values and the other numerical
counting values. In practical applications, when histogram h(s0) s frequencies exceed the probability
fitting value of p(s0) with the proper margin weight ωh, the thresholds are applied to the filtering
range, starting from the first value to the last exceeded point.

As illustrated in Figure 3, two points that intersect with h(s0) and p(s0) are the thresholds for the
filter. Consequently, the filtering conditions are sequentially replaced for the obtained waveform’s
symmetrical values, and the filtered signal sf(t) is obtained as follows:

sf(t)

{
s(t)·sst, δ

.
< s(t) <

.
δ

s(t), otherwise
(3)

where sst is the mean value over the cycle, and the values under the thresholds δ
.

and
.
δ are filtered as

the disturbance samples as indicated in (2). Therefore, as thresholds are determined from the histogram
value intersect with the waveform fitted value as described Figure 3 and a mean filter applied for
smoothing instead of reducing the values to zero as described for a filtered signal. Because reduction
of the sampling error produces better data features for performance and accuracy, this method softens
sudden changes in the filtered values. Subsequently, each sample is replaced with the mean value sst

of its neighboring cycles:

sst =
1

2·r
t+r

∑
t−r

s(t), ∀t ∈ T (4)

where, r is the sampling rate per measurement cycle.
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2.5. Waveform Representation with Variable Windows

For feature value recognition, fixed size data hardly explains the wavering trend of signal
occurrences. Therefore, the feature values are regarded as adjustable information for a progressive
data window. In fact, in contrast with the fixed time scale analysis, changing window size has been
suggested as a way to enhance disturbance data continuity [5]. Under this variable data window
approach, the processed signal sf(t) is represented as a single vector st = [s1, · · · , sT ], and the cycle
separated waveform matrix forms sc,q with sequence control functions as follows:

sc,q = [sc, (c−i0)·r+(q·i1)], ∀c ∈ C (5)



Energies 2019, 12, 1115 6 of 14

where c is the cycle number of the entire measurement cycle C; q is the sample sequence (q = 1, . . . , r);
i0 and i1 are the sequencers controlling the sampling number automatically regarding cycles to window
sizes, as defined below, respectively:

i0 =

⌊
ln(q)/ ln(

1
r
)

⌋
, i1 =

⌈
ln(

q
r
)/ ln(

1
r
)

⌉
(6)

To model the variable window, the sample window is set the sample window width w which
substitutes c cycle sequences for scalable cycles, and q = 1, . . . , rw. As the adjustable value
corresponding to the incrementally sliding window resets, the cycle change does reset shortly after
the disturbance is triggered. The extracted value (at the end of the disturbance) is accumulated as the
window changes its values. Therefore, the variable window shows both the sustained or momentary
waveform continuity signal characteristics that cause the window to expand or contract. With respect
to the disturbance duration, the waveform continuity affects the number of extracted cycles, implying
that there are fewer windows than normal cycles (W < C). Accordingly, sample signal indices are
changed to st = [s1, · · · , sw] and the generalized form becomes:

s w, s = [sw, (w−i0)·rw−1+q·i1 ], ∀w ∈W (7)

where rw is the updated sampling window. The variable window rw
∞ is determined as rw = r·gα,

where g and α denote the base window width and incremental parameter, respectively. As indicated
by the window reset condition, the incremental sequence α is derived as follows:

α =

{
0

α + 1, if, ∑rw
q=1 sw,q ≥ ρ

(8)

where ρ is the trigger value that is the upper limit constant of the filtered value |δ| or a pre-determined
constant value between 0 and 1. In the study case, 0.1 is applied for the initial trigger condition using
measured value averages. Thus, α increases if the cycle average value exceeds the value of ρ for ∀w.
For instance, for a signal with 40 cycles of sustained disturbances, the window numbers are shortened
to six window cycles (w = [1, 2, 4, 8, 16, 9]), from which the parameter b = 2 is selected. In contrast,
a temporary disturbance involves a reset term that is triggered after the disturbance occurs; hence,
the sequence is repeated and relatively a larger number of cycles are obtained. As a result, the sample
matrix of the variable width signal sw,q is obtained as:

sw,s =


s1,(1−i0)·rw−1+1·i1 s1,(1−i0)·rw−1+2·i1 · · · s1,(1−i0)·rw−1+rw ·i1
s2,(2−i0)·rw−1+1·i1 s2,(2−i0)·rw−1+2·i1 · · · s2,(2−i0)·rw−1+rw ·i1

...
...

. . .
...

sW,(W−i0)·rw−1+1·i1 sW,(W−i0)·rw−1+2·i1 · · · sW,(W−i0)·rw−1+rw ·i1

 (9)

2.6. Feature Modeling and Extraction

The sampled waveform is transformed to extract features and the extracted features are used
for DL condition classification [34]. Some of basic feature types are derived to measure the grouped
features as shown in Table 1 for pattern recognition processes. The features or models are defined as
Φn with n = [1, . . . , N], where the number of data N are for disturbance duration and frequency values.
The sustained or the momentary waveform features of the variable window values are selectively
calculated corresponding to the types of data in the extraction phase. For the purpose of normalizing
data, every feature has relative proportions within 0 and 1.
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Table 1. Feature list of categorized waveforms.

Types Models

Magnitude (1-norm) Φ1
n = ‖sc,q‖1, ∀c, q

Signal deviation Φ2
n = ∑W

w=1 ∑rw
q=1
(
sw,q − sw

)2

Disturbance duration Φ3
n = ∑T

t=1|st|/T
Zero crossing counts Φ4

n = ∑T
t=1|sign(st−1)− sign(st)|/C

Window average Φ5
n = ∑W

w=1|sw|
Window peak values Φ6

n = ∑W
w=1 max(sw)

Window differential Φ7
n = ∑W

w=1|diff[max(sw)]|
Cycle RMS a deviation Φ8

n = (srms,c −
¯
srms)

2

Peak to RMS Φ9
n = peaktorms(sc,q)

Amplitude of waveforms Φ10
n =

·
statelevel[(st)

T ]

− statelevel
·

[(st)
T ], st > 0

a Root mean square follows the standard one cycle calculation.

From Table 1, the norm value Φ1
n indicates the magnitude of the measured signal of sc,q. In the

deviation feature Φ2
n, sw is the mean value obtained from the designated variable window. The duration

feature Φ3
n is to extract the disturbance sample counts, where |·| is an absolute value. On the other

hand, the signal fluctuation count Φ4
n measures essential waveform variations. Additionally, for the

variable window values, Φ5
n, Φ6

n, and Φ7
n with their mean, maximum, and differential functions,

respectively, extract differences between adjacent samples, and are quantified for window width
changes, where “max” is the maximum of the window vector and “diff” is the differential value.
Furthermore, additional features are extracted in accordance with the IEEE transitional waveform
standard [33]. The modified forms of the features in Φ8

n, Φ9
n, and Φ10

n each having a processing function
depending on the waveform characteristics, represent the root mean square (RMS) deviation with
srms,c = ‖sc,s‖2/

√
r of Euclidian norm, the peak magnitude to RMS value, and the first and second

state levels, respectively. In the feature Φ10
n , the state level function which represents the pulse width

and jitter trigger as well as the amplitude of the signal suggested particularly in this paper, applies the
first and second values to the state level processed values.

3. Learning for Waveform Pattern Recognition

Waveform pattern learning is realized by on-line sequential (OS)-ELM, an improved learning
framework. As an extension of ELM, OS-ELM can learn data in consecutive order, block-by-block,
to acquire additional waveform data and renew the network [35,36]. For the classification model
update, the proposed process uses an empirical model which interacts with field device computing
modules on the distribution feeder so that the model can update its network. Flexible and expandability
for power distribution phenomena are characteristics of major classification models. Considering the
limited resource on the field devices, calculating time on computing unit operations, and updating
data size through given commutation environment, ELM is sufficiently capable in which the system
tries to use model updates and applications depending on distribution measurement devices.

3.1. Using OS-ELM with Condition Signals

As a real-time signal update, OS-ELM is applied for waveform signal learning and re-training.
The procedure involving OS-ELM firstly processes the initialization phase and consecutively updates
the network with additional blocks of data in the sequential learning phase. For training data
Dk = { (xn, tn)|xn ∈ Rn, tn ∈ Rm}N

n=1, where k is the number of sequences, the pre-determined initial
Do is constrained selectively; and the extracted features of the signal xn= Wn·Φm

n with the feature
weight Wn and tn are the labeled classes of disturbances. The initial data size implies the hidden node
has a certain condition requiring that the rank of the initial network be defined as N0 ≥ L, to retain the
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learning performance in batch ELM [36]. The hidden layer output matrix H0 with the determined L
layers in terms of features is modeled as:

H0 =

 G(a1, b1, x1) · · · G(aL, bL, x1)
...

. . .
...

G(a1, b1, xN0) · · · G(aL, bL, xN0)


N0×L

(10)

where G(al , bl , xn) denotes the output (activation) function of the l-th hidden node with respect to
the randomized network connecting the parameters of the input weights al= {an,l}N0, L

n=1,l=1 and bias
bl= {bl}L

l=1. The random projection of the hidden network will be unchanged when data in the xn

sequence is updated. From the generalized OS-ELM form, H0·β0 = T0, the output T(xn
∣∣al , bl ,βl,t)

of transpose T0 = [d1, . . . , dN0 ]
T
N0×L is obtained with regard to a selected output function and the

estimated initial output weight β0= {βl,t}T L
l=1,t=1. Therefore, the minimum function is defined as:

argmin
β0

‖H0·β0 − T0‖p (11)

where p-norm is selected suitably for the minimum function, and the estimated β0 values can be
obtained by the Moore−Penrose generalized inverse H†= (H T ·H)−1·HT as in [37,38]. Consequently,
the initial solution of β0 is:

β0 = P0·HT
0·T0 (12)

Dk+1 = {(xn, tn)}
∑k+1

j=0 Nj

n=(∑k
j=0 Nj)+1

(13)

where P0= (H T
0 ·T0)

−1. Following the initialization phase, the sequential learning phase processes
the blocks of data using Equation (13) for newly obtained features from the feeder device, with the
observation sequence k = 0 to k = k + 1 and the number of blocks Nk+1. Accordingly, the updated
partial sequence hidden layer output matrix Hk+1 is calculated as:

Hk+1 =


G(a1, b1, x(∑k

j=0 Nj)+1) · · · G(aL, bL, x(∑k
j=0 Nj)+1)

...
. . .

...
G(a1, b1, x∑k+1

j=0 Nj
) · · · G(aL, bL, x∑k+1

j=0 Nj
)


Nk+1×L

. (14)

The output target Tk+1 = [ d
(∑k+1

j=0 Nj)+1, · · · d∑k+1
j=0 Nj ]

T
is correspondingly achieved to be used

in the sequential output weight βk+1 which is defined as:

β(k+1) = β(k) + Pk+1·HT
k+1(Tk+1 −Hk+1·β

(k)) (15)

where Pk+1 = Pk + Pk·HT
k+1·(I + Hk+1Pk·HT

k+1)
−1·Hk+1·Pk is obtained by solving the Woodbury

matrix inversion formula [39], which avoids calculating the inverse in the recursive process. Because
the waveform disturbance trigger is event driven, the model requires a batch data process. In this
approach, the process takes the updated model into account and the system gathers the waveforms by
the block for OS-ELM.

As shown in Figure 4, after finishing a phase of sequential learning, the model is updated along
with its own network settings where training has already been performed. Thus, the renewed model
repetitively learns from newer data with the same basis as ELM. The classification model updates
its output weight βk+1 with the pre-determined model setting using the solved Pk+1 to improve
performance. In using the learned model, input-output weights and bias (ak, bk,βk) are the only
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required parameters for the feeder device model. Further, to update the model on the feeder devices,
the output weights βk+1 are the only parameters added to the model to be transferred to the devices.

Energies 2019, 12, x FOR PEER REVIEW 9 of 14 

 

performance. In using the learned model, input-output weights and bias ( ), ,k k ka b β  are the only 

required parameters for the feeder device model. Further, to update the model on the feeder devices, 

the output weights 
1k+β
 are the only parameters added to the model to be transferred to the devices. 

 

Figure 4. Learning process design for OS-ELM and its update procedure. 

3.2. Condition Classification Model Process 

Unlike the single purpose classification ELM, the classification model is regarded as an 

integrated model that processes multiple DL data including voltage, current, and condition 

information. It is a multi-labeled classification model that is capable of classifying the feeder 

measured data and estimating the DL condition. 

The process is done in two steps: first, the classification model learns from the modeled condition 

data and then classifies the field obtained waveforms of the voltages and currents with the condition 

by the label 
PQTk . In addition, waveforms from the updated model are provided to the sequential 

learning process after the generation parameters are revised. Second, the model assigns the state label 
stateTk  to the field obtained data. Thus, the PQTk  with the assigned stateTk  are combined. As shown in 

Figure 5, the initial input condition model-generated data have PQTk  only for training; however, the 

DL measured data and updated sequential model-generated data are then added to the model. When 

OS-ELM classifies PQTk  of the feeder measured waveforms through the label assignment, the output 

feature includes combined labels of PQTk  and stateTk . The resultant labels are delivered to the 

condition recognition model. 

 

Figure 5. Classification network diagram considering learning data sequences. 

4. Model Validation  

The studied model proposes the PQ feature extraction processes with regard to the waveform 

modeling and field obtained data. For evaluation purposes, waveforms of eight selected types of 

classes are modeled with the proposed randomized parameters. The voltage and current 

measurement undergoes the same process as for obtaining the waveform features and each is 

normalized by the measurement ratings and filters. Because the load change causes voltage distortion 

in the waveform, each pattern is obtained from the current variation at the same moment. 

Figure 4. Learning process design for OS-ELM and its update procedure.

3.2. Condition Classification Model Process

Unlike the single purpose classification ELM, the classification model is regarded as an integrated
model that processes multiple DL data including voltage, current, and condition information. It is a
multi-labeled classification model that is capable of classifying the feeder measured data and estimating
the DL condition.

The process is done in two steps: first, the classification model learns from the modeled condition
data and then classifies the field obtained waveforms of the voltages and currents with the condition
by the label TPQ

k . In addition, waveforms from the updated model are provided to the sequential
learning process after the generation parameters are revised. Second, the model assigns the state
label Tstate

k to the field obtained data. Thus, the TPQ
k with the assigned Tstate

k are combined. As shown
in Figure 5, the initial input condition model-generated data have TPQ

k only for training; however,
the DL measured data and updated sequential model-generated data are then added to the model.
When OS-ELM classifies TPQ

k of the feeder measured waveforms through the label assignment,
the output feature includes combined labels of TPQ

k and Tstate
k . The resultant labels are delivered

to the condition recognition model.
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4. Model Validation

The studied model proposes the PQ feature extraction processes with regard to the waveform
modeling and field obtained data. For evaluation purposes, waveforms of eight selected types of
classes are modeled with the proposed randomized parameters. The voltage and current measurement
undergoes the same process as for obtaining the waveform features and each is normalized by the
measurement ratings and filters. Because the load change causes voltage distortion in the waveform,
each pattern is obtained from the current variation at the same moment.
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The field measured waveform was underpinned by C37.111 IEEE Std. [29] so that the voltage and
current are properly scaled by the rating values vr

a and λc
2, which were 13.2 to 0.11 on the voltage and

600 to 5 on the current, respectively. The channel multiplier λc
m has a value of 0.00244144 on the FRTU

and PQMS measurement units. Symmetrical component s(t) and its filtered value sf(t) are applied
to the feature calculation and are depicted along with v−,+

abc (t), i−,+
abc (t) of the three-phase negative

sequence components.
For other classes of waveform patterns, the learning process involves over 200,000

model-generated waveforms for training, and each block of the sequential input consists of 1000
to 10,000 sets to provide sufficient data and data blocks for adequate learning and accuracy. The hard
limit and rectified linear unit (ReLU) activation functions are also selected by examining the model
performance iteratively and by applying the cross-validation method. In all validation cases, tuning of
L hidden layer nodes, and setting sequence data sets and blocks are determined by the iterative
examining process. Furthermore, selective features are analyzed, and if the data sets converged to a
certain accuracy level, then the model is deemed to be declared as acceptable.

The tuning process of the hidden nodes and extracted feature sets and trained accuracies as
illustrated in Figure 6 demonstrate the range of the adequacy of the model. The number of hidden
nodes examined is 200 to 500 as shown in Figure 6a, at the latter of which over 98% classification
accuracy is achieved. In terms of the waveform feature sets Φn, as shown Figure 6b, some features
noticeably contribute to the classification performance, and the features Φ1∼4

n improve average accuracy
to 80%. The result indicates that the magnitude features corresponding to the peak and RMS values
hold essential information for accurate waveform classification. On the other hand, some inferior
feature sets can be observed as the features degrade the performance: accuracy lowers when features
Φ5

n and Φ9∼10
n are added. To prevent performance degradation, adjustment may be made to the feature

weight Wn or the inferior features are removed from the sets.
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Figure 7 illustrates the feature regions that are sorted and divided into the classified types for
1000 waveform features. First, the features in Figure 7a, model-generated waveforms and their
labels (or classes), show the waveform types evenly with only slight differences and misalignment
in set magnitudes and locations between features and classes. On the other hand, classification by
field-obtained waveforms of voltage (as shown in Figure 7b and of current (in Figure 7c) has a few



Energies 2019, 12, 1115 11 of 14

erroneous labels (classes). The feature differences between the voltage and current waveform on
the same phenomena and their consequential labeling differences are clearly displayed. Therefore,
combination of the classifications by both the voltage and current waveforms are adopted for condition
recognition in the validation of the suggested model.
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(a) Model-generated waveforms; (b) Field obtained voltage waveforms and its classification; (c) Field
obtained current waveforms and its classification.

Following the example cases explained above, a classification experiment is carried out for the field
acquired voltage and current waveforms of the cases of voltage change, fault current, and abnormal
trigger. Table 2 displays the outcome of the classification assessment.

Table 2. Numbers of classified waveforms regarding acquisition types by FRTUs and PMUs.

Class 1 2 3 4 5 6 7 8

Types Steady Fluc. Swell Int. Flicker Osc. Notch Har. Total

Voltage
changes

V 57 620 221 30 164 456 316 115 1979
I 48 732 27 4 65 953 117 33 1979

Fault
currents

V 15 79 40 13 35 190 41 124 537
I 5 15 24 68 133 79 169 44 537

Abnormal
triggers

V 972 2450 140 26 50 548 96 111 4393
I 123 1658 36 11 125 2339 66 35 4393

Firstly, the voltage change waveforms are classified as fluctuation triggered by the voltage, and as
oscillation triggered by the current. The combination of the classification by voltage and current
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is shown to successfully classify the waveforms into the fluctuation class. Thus, a pair of classes
for a certain condition, when combined, provides a new label for recognizing the DL condition, as,
for example, the voltage change waveforms are triggered by current pattern variations caused by
load changes, sag-swells, and switching operations. Second, for the fault current waveforms cases,
the model has brought of three possible classes: oscillation (by voltage) and flicker or notch (by current).
Multiple complex faults, fault-clearing actions are of flicker and notch classes. Lastly, the abnormal
waveforms have interesting features with multiple triggering conditions capturing unusual patterns
compared with the steady state waveforms. Since most of fluctuations and oscillations are triggered by
the voltage and current waveforms as the voltage change type, incipient phenomena [40] with small
signal variation could be detected in the waveforms, which could be used for anticipating upcoming
faults. In summary, the model assessment results indicate a good potential of the developed model for
real-network waveform triggers and for embedded classifier for field devices.

5. Discussion and Conclusions

Our method developed a multi-label ELM model for abnormality detection in distribution
networks. The study on this discriminating approach has been mainly focused on the signal analytic
classification of a single phase or moment in time and no practical application work has been done with
complex signals on distribution field. The propose method proves the waveform analytic approach
and the machine learning application for the real-time DL state recognition which can help to improve
and expand this research area that the studies have not been widely conducted yet. For classifying
DL conditions of disturbances in real network, the proposed model is applied to 15,000 field-acquired
three-phase voltage and current waveforms, and it is found that the model is highly accurate in
classifying DL conditions. Further, the field signals could provide unique patterns for recognition
of abnormal operations and fault conditions in the learning mechanism of the classification model.
The learned model could necessarily replace the trigger and detection logic on field measuring devices.
This affirms the main goal of enabling the classification system to be updated by waveform modeling
and feature set reconfiguration using the learning process. The model also found that additional feature
sets are needed for furthering performance of the classification model. As applying the condition
learning process by patterning the classes form the classification model that proposed, conditional
and monitoring classification structures and configurations are significantly important to recognize
the DL condition in time-scale and physical connection-based interaction analysis. Even though
the model needs to be proved fault or disturbance causation relationships for preventive operation
for distribution systems, further studies will combine conventional data and exact labeling together
to generate an intelligent classification model for recognizing additional condition types such as
intermittently changing conditions.
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