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Abstract: This paper presents a novel idea based on the Port-Hamiltonian and cascade system to
control the electric vehicle-to-grid (V2G) system. Based on the proposed method, the relationship
between the converter plant gain and the moment of inertia of generator that has been established is
effective for decoupled control of the V2G system. It is well known that the existing methods apply
the H∞ control and PSO method to enumerate and choose the value of converter plant gain from
the region decided by the state of charge. Since an explicit form of converter plant gain is obtain in
this paper, the proposed method that is unnecessary to repeat the above existing details effectively
reduces the calculated amount of converter plant gain. Finally, the simulations demonstrate the
validity and advantage of the proposed method.

Keywords: decoupled control; plant gain design; vehicle-to-grid (V2G)

1. Introduction

Electric vehicles (EVs) that plug into power grids are considered as the mobile energy stored
equipments for the power systems. Therefore, a vehicle-to-grid (V2G) system that contains EVs and
power systems is studied by the researchers [1–3]. Noting a V2G system, its power systems that are
constructed by a single area or multi-area power system apply load frequency control (LFC) method to
finish frequency regulation and systemic stability [4–7]. Meanwhile, when EVs charge or discharge,
their batteries subjected to the state of charge (SOC) or not participate in frequency regulation of power
systems [8–11]. Due to the above facts, frequency regulation is useful to analyze and control a V2G
system. Moreover, a V2G system faces some practical operating conditions, e.g., the new energies [3,12]
and time delay [13–15]. Thus, the researchers consider the V2G system as a whole one and directly
design some control laws to stabilize it [12–17].

Though the above results [12–17] present some results for a V2G system, there are some flaws in
my outlooks. The first one is that the existing methods design control laws by feedback of area control
errors (ACE) [12–17], and the second one is that the existing results enumerate the gain of converter
plant from the region [0, 1] restricted by the SOC [12–17], at last, the existing results apply H∞ control
to design the control law for V2G and multi-area LFC system, respectively [12–17]. Noted a V2G
system, every single area LFC system connects with EVs. Consequently, EVs influence the frequency
incremental of themselves areas firstly, then, affect frequency incremental of other areas via power
flow lines. Unluckily, the existing results [12–17] that do not decouple the power flow contained by
ACE bring j areas’s frequency incremental to i area. This fact can be addressed as a decoupled problem
of power flows. Without EVs, a decoupled method for multi-area LFC system has been reported [7],
while the decoupled problem V2G system is not work out. For a V2G system, since the converter
plant gain can be designed via power electronics and control method [18–20], it is better to design a
useful expression of converter plant gain and to avoid enumerating its value from the above region.
Especially for the last defect, EVs that are considered as mobile energy stored equipments can be
considered as the disturbances for the LFC system. In control theory, since there are robust control
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laws for the LFC system [4–7], those methods that should also satisfy for V2G system are not necessary
to be designed again. However, the existing methods that implement H∞ and LFC control to compute
the control laws for a V2G system obviously enlarges the computing amount. Therefore, this paper
proposes some new control methods to work out the aforementioned flaws.

To achieve the above goals, a V2G system in this paper is designed without and with SOC. When
a V2G system is without SOC, it is considered as two cascaded subsystems, i.e., the governor of V2G
system is addressed as the first subsystem and the others of V2G system are the second subsystem.
Between the two subsystems, the interconnection channel is the output and input channel between
governor and turbine. According to the features of Port-Hamiltonian (PH) system [7,21], an converter
gain is designed in a fraction form, which denominator is the moment of inertia of generator and
numerator is the time constant of converter. Meanwhile, the input of turbine is designed by the PH
system, which assures that the second subsystem is asymptotical stability. Due to the cascaded channel
between the two above subsystems, the output of governor that is equal to input of turbine yields
a control law to asymptotically stabilize the first subsystem constructed by governor. Based on the
feature of cascaded systems [22], once two cascaded subsystems are asymptotically stable, the whole
system containing the two above subsystems is asymptotically stable. Namely, the V2G system not
subjected to SOC is asymptotically stable. When a V2G system subjects to SOC, the batteries of EVs
are restricted by power limitation, which is a saturation function with a region [0, 1]. Since an explicit
expression for plant gain is designed, it is necessary to check whether its value satisfies the above
region or not. In theory, the unit of moment of inertia of generator is often chosen as second (s) [4],
while the unit of time constant of converter is often chosen as millisecond (ms) [20]. According to the
expression of converter plant gain designed by proposed method and the two above units, its value
can belong to the region [0 , 1]. In application, the values of time constant of converter and moment of
inertia of generator are detectable. Thus, the value of converter plant gain designed by the proposed
method not only satisfies the above region, but also is realizable. As we all know, the V2G system not
restricted by SOC has a similar state equation as the state equation of V2G system restricted by SOC.
The latter system only needs to consider the value of plant gain belonging to the above region. Since
the value of converter plant gain satisfies that restriction, the proposed method is also effective for the
V2G system restricted by SOC.

Compared with the existing results, the proposed method has three advantages. The first that
is decoupling of power flow avoids the feedback of j area’s frequency incremental being used in the
i area, the second that is designing an useful expression of converter plant gain avoids to randomly
enumerating the value of the above gain from the region decided by SOC, and the last is the proposed
method satisfying for both of V2G and LFC system, while the existing methods should design the
control laws for V2G and LFC system, respectively. Thus, the proposed method effectively reduces the
computing amounts. At last, simulations show the validity and benefit of the proposed method.

2. Background

Here, a block control diagram of ith area of V2G system that is shown in the following Figure 1
can be casted into two parts, i.e., LFC and EVs.

For one part, there are transfer functions and controller of LFC [4]. In details, ∆ fi, ∆Pmi, ∆Pgi
and ∆PLi are the deviation of frequency, the generator mechanical output, valve position, and load
in the area i, respectively. Hi, Di, Tgi, Tti, Ri and βi denote the moment of inertia of the generator,
generator damping coefficient, time constant of the governor, time constant of the turbine, speed drop,
and frequency bias factor in the area i, respectively. ∆Pci is the control input. Once ∆ fi and ∆Ptie,i are
feedbacks to the area control error ACEi, there is ACEi = βi∆ fi + ∆Ptie,i with βi =

1
Ri

+ Di. For other

part, ∆PEi that are power of EVs in the area i is as follows ∆PEi = ∑N
k=1 λk∆PEi,k, where ∆PEi,k, λk and

N mean that the power of kth EV plugged to area i LFC system, status of kth EV and numbers of EVs,
respectively. For every LFC area, EVs are connected by converter, which is simplified as a first-order
transfer function KEi

1+sTEi
[18,19]. KEi and TEi are the plant gain and time constant of the converter,
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respectively. It is necessary to point out that the subscript i of KEi and TEi means the area i. Thus, there
are KEi = ∑N

k KEi,k.
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Figure 1. Block diagram of ith control area of vehicle-to-grid (V2G) system without state of charge (SOC).

Noting Figure 1, some fleets of EVs are plugged to every single area power system, while these
areas link with power flow lines. Once EVs plug into the LFC system with converters, they have a better
ramp feature than the generator.Meanwhile, the response time TEi of converter that is millisecond (ms)
is faster than response time of generator. In short, EVs have an ability of frequency regulation. Thus,
when EVs are plugged to the LFC system, it is better to utilize their ability of frequency regulation to
help the stability of whole V2G system.

To analyze the mentioned problem, let me consider the turbine of Figure 1 is non-reheated. Then,
the state equations of the above model shown in Figure 1 are as follows

∆Ṗgi =
1

Tgi
∆Pci −

1
RiTgi

∆ fi −
1

Tgi
∆Pgi (1)

∆Ṗmi =
1

Tti
∆Pgi −

1
Tti

∆Pmi (2)

∆ ḟi =
1

2Hi
∆Pmi −

1
2Hi

∆PLi −
Di

2Hi
∆ fi +

1
2Hi

∆PEi −
1

2Hi
∆Ptie,i (3)

∆ṖEi = −
KEi
TEi

∆ fi −
1

TEi
∆PEi (4)

∆Ṗtie,i = 2π
N

∑
j=1,j 6=i

Tij(∆ fi − ∆ f j) (5)

y = Cx(t) = ACEi = βi∆ fi + ∆Ptie,i (6)

When EVs plug to the LFC system, they participate in frequency regulation by the discharging
and charging conditions [8–11], During the above power exchanges, EVs firstly affect frequency
incremental of themselves area by converters, then, incremental frequencies of themselves area go
to other areas by the power flow lines. As a result, EVs influence the frequency regulation of V2G
system. Depending on the above procedure, the existing results that designed control laws are as
follows [12–16]
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u = −Ki(s)ACEi (7)

which directly applies the feedback of ACEi to construct the control law for a V2G system. Reviewing
the power exchanging procedure,

∫
∆ f jdt that exists in the control law (7) affects the area i.

Consequently, the aforementioned control law also influences the performance of EVs for the coupling
of power flows. Though the paper [7] had proposed a decoupled stability method for the multi-area
LFC system, it did not deal with V2G system. Inspired by paper [7], it is better to design a decoupled
control method for V2G system.

Moreover, to protect the batteries, their batteries that subject to SOC bring some restrictions to
plant gain KEi. Then, Figure 1 is changed into Figure 2, where the SOC block means that the value of
converter plant gain KEi is restricted by a region and the others are the same as in Figure 1.

Controller Turbine

ib 1
iR

1

1 gisT+

1

2 i iH s D+
ifD

LiPD

giPD miPD
+- -+

1

N

ij
j

j i

T
=

¹

å
-

ciPD

2
s

p

1

N

ij j
j

j i

T f
=

¹

Då

-

iACE

+

+

+

,tie iPD

1

1 EisT+ EiPD

-
KEi

SOC

Figure 2. Block diagram of ith control area of V2G system with SOC.

The details of SOC that are in many papers [2,12–17] are omitted here. Essentially and functionally
speaking, SOC that brings two limited boundaries to plant gain KEi works as a saturation, which often
chooses the lower and upper boundaries as 0 and 1, respectively [2,12–17]. Due to those phenomena,
this paper also restricts KEi into the region [0, 1]. As a result, the state equation of Figure 2 are similar to
Equations (1)–(6) except for KEi ∈ [0, 1]. Unfortunately, the existing methods for Figure 2 also have the
coupled problem [2,12–17], which influences the stable performance of V2G system. Meanwhile, the
existing results randomly enumerated the value of plant gain KEi from 0 to 1 [2,12–17]. For examples,
the paper [16] enumerates the value of KEi as 1, the paper [13] enumerates the values of KEi as 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4, the paper [14] enumerates the values of KEi belongs to the regions
[0.2, 1], [0.5, 1], [0.7, 1] and [0.9, 1], and the paper [17] just applies the PSO to obtain a value of
converter plant gain and not give out an explicit form of converter plant gain. In applications, it
is better to design the value of plant gain KEi via the parameters of V2G system, which avoids the
aimlessness caused by enumerating of KEi.

Furthermore, for a V2G system, EVs that are mobile energy stored equipments can be considered
as the mobile disturbances for the LFC system. Therefore, if there are robust control laws satisfy a
multi-area LFC system, they are also effective for a V2G system. Due to that idea, the computing
amounts of controller for the V2G system can be reduced. Motivated by the aforementioned flaws,
this paper that proposes some new control methods for the V2G systems shown in Figures 1 and 2
simultaneously works out the aforementioned defects.
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3. Main Results

To present the proposed methods, the V2G system not subjected to SOC is considered at the
beginning. Then, the state Equations (1)–(6) of Figure 1 are considered as Equation (1) and the
following equation 

 ∆Ṗmi
∆ ḟi

∆ṖEi

 = A

 ∆Pmi
∆ fi

∆PEi

+


1

Tti

0
0

 ∆Pgi

+

 0
− 1

2Hi

0

 (∆PLi + ∆Ptie,i)

y = βi∆ fi + ∆Ptie,i

(8)

where the structural matrix is A =

 −
1

Tti
0 0

1
2Hi

− Di
2Hi

1
2Hi

0 −KEi
TEi

− 1
TEi

 and the total tie-line power flow is ∆Ptie,i =

2π ∑N
j=1,j 6=i Tij

∫
(∆ fi − ∆ f j)dt. It is clear that Equations (1)–(6) are equal to Equations (1) and (8).

Therefore, the control problem of Equations (1)–(6) is equal to the control problem of Equations (1)
and (8). Reviewing Equation (8), it is partially similar to a Port-Hamiltonian (PH) system [7,21], which
has a Hamiltonian function as follows

H(x) =
∆ f 2

i
2

+
∆P2

Ei
2

+
∆P2

mi
2

(9)

while the structure matrix A is not skew symmetry. Attention to Equations (1) and (8), the two equations
has been considered as two cascaded subsystems. With the parameter transformations (the details of
transformations will be introduced in the coming section), Equations (1) and (8) will be similar to a
standard cascade system as follows {

ẋ = f (x, v)
v̇ = g(v)

(10)

where x ∈ Rn, v ∈ Rm, f (0, 0) = 0, g(0) = 0, and f (x, v), g(v) are locally Lipschitz on Rn× Rm. For the
system (10), it is asymptotically stable via the following Lemma 1 [22].

Lemma 1. Consider the system (10). Suppose the equilibrium x = 0 of ẋ = f (x, 0) is asymptotically stable
and the equilibrium v = 0 of v̇ = g(v) is asymptotically stable. Then, the equilibrium (x, v) = (0, 0) of (10) is
asymptotically stable.

Due to the Lemma 1, if Equations (1) and (8) are asymptotically stable, the V2G system shown
in Figure 1 is asymptotically stable. Thus, it is necessary to presented the details of the parameter
transformations, which are presented in the coming contents.

Firstly, noting Equation (8), its matrix A is not skew symmetry. To work out that, ∆Pg1 and KEi
are designed as follows

∆Pgi = ui1 = − Tti
2Hi

∆ fi + ui2 (11)

KEi =
TEi
2Hi

(12)

where ui2 will be designed to restrain the disturbance ∆PLi + ∆Ptie,i. Taking the expressions (11)
and (12) into Equation (8) yields the following
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∆Ṗmi
∆ ḟi

∆ṖEi

 =

−
1

Tti
− 1

2Hi
0

1
2Hi

− Di
2Hi

1
2Hi

0 − 1
2Hi

− 1
TEi


 ∆Pmi

∆ fi
∆PEi

+


1
Tti

0
0

ui2

+

 0
−∆PLi+∆Ptie,i

2Hi

0

 (13)

which structural matrix

−
1

Tti
− 1

2Hi
0

1
2Hi

− Di
2Hi

1
2Hi

0 − 1
2Hi

− 1
TEi

 is skew symmetry and Hamiltonian function is the

function (9). Thus, the system (13) can be considered as the PH system with a disturbance ∆PLi +∆Ptie,i.
As a result, define the following coordinate transformation

zi1 = 2HiKiIKT
iI

∫
∆ fidt + ∆Pmi

zi2 = ∆ fi

zi3 = ∆PEi

zi4 = KT
iI

∫
∂Hdzi
∂zi2

dt (14)

and

ui2 = −2HiKiIKT
iI

∫
∆ fidt (15)

where Hdzi =
z2

i1
2 +

z2
i2
2 +

z2
i3
2 is a desired Hamiltonian function presented in the z coordinate

and KiI = KT
iI > 0 is an assignment variable to be designed in the coming contents. Taking the

transformation (14) and ui2 in (15) into Equation (13) yields the following


żi1
żi2
żi3
żi4

=


− 1

Tti
− 1

2Hi
0 0

1
2Hi

− Di
2Hi

1
2Hi

−KiI

0 − 1
2Hi

− 1
TEi

0
0 KT

iI 0 0




∂Hdzi
∂zi1

∂Hdzi
∂zi2

∂Hdzi
∂zi3

∂Hdzi
∂zi4



+


0

−∆PLi+∆Ptie,i
2Hi

0
0

 (16)

Then, an explicit for m of (11) is as follows

∆Pgi = −
Tti

2Hi
∆ fi − 2HiKiIKT

iI

∫
∆ fidt (17)

To restrain ∆PLi + ∆Ptie,i, the following energy-storing function based on the z and w coordinates
is used

Hdwi(z, w) =
z2

i1
2

+
z2

i2
2

+
z2

i3
2

+
w2

2
(18)

where

w = KiIzi4 −
∆PLi + ∆Ptie,i

2Hi
(19)
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Depending on the function (18), the system (16) is changed as follows


żi1
żi2
żi3
ẇ

 =


− 1

Tti
− 1

2Hi
0 0

1
2Hi

− Di
2Hi

1
2Hi

−Kiw

0 − 1
2Hi

− 1
TEi

0
0 KT

iw 0 0




∂Hdwi
∂zi1

∂Hdwi
∂zi2

∂Hdwi
∂zi3

∂Hdwi
∂w

 (20)

where KT
iw = Kiw > 0 is an assignment variable. It is clear that Equation (20) is asymptotical stability

by the method of PH system [7,21], which means that Equation (13) is asymptotical stability. Solving
Equation (1) with the expression (17) yields the following control law

∆Pci = −(2HiKiIKT
iI Tgi −

1
Ri

+
Tti

2Hi
)∆ fi − 2HiKiIKT

iI

∫
∆ fidt−

TtiTgi

2Hi
∆ ḟi (21)

Applying the control law (21) to Equation (1) yields the following equation

∆Ṗgi = −
1

Tgi
∆Pgi −

Tti
2Hi

∆ ḟi − 2HiKiIKT
iI∆ fi −

Tti
2Hi

1
Tgi

∆ fi −
2HiKiIKT

iI
Tgi

∫
∆ fidt (22)

which asymptotical stability has been proven in the paper [7]. Similar to the decoupled method of the
paper [7], the expression of KiI is designed as follows

KiIKT
iI =

2π ∑N
j=1,j 6=i Tij

2Hi
(23)

which reduces the disturbance w of expression (19) into

w = −∆PLi
2Hi

+
2π ∑N

j=1,j 6=i Tij
∫

∆ f jdt

2Hi
(24)

It is clear that the disturbance (24) only contains the incremental frequency of other area j and
load in the area i. Applying the expression (23) to the expression (21) obtains a control law as follows

∆Pci = −(2π
N

∑
j=1,j 6=i

TijTgi −
1
Ri

+
Tti

2Hi
)∆ fi − 2π

N

∑
j=1,j 6=i

Tij

∫
∆ fidt−

TtiTgi

2Hi
∆ ḟi (25)

At last, the two cascading subsystems (1) and (8) are asymptotically stable. Due to the equivalency
between the two cascading subsystems (1) and (8) and Equations (1)–(6), Equations (1)–(6) are
asymptotically stable due to the Lemma 1. In short, the above design and proof procedures are
summarized in the following result.

Theorem 1. Consider a V2G system shown in Figure 1 as two cascaded subsystems (1) and (8). If there are
∆Pgi and KEi like the expressions (11) and (12), respectively, the V2G system is asymptotically stable at its
equilibrium via the control law (25).

To improve the systemic performance, an improved result based on the control law (25) is designed
as follows

∆Pci = −k(2π
N

∑
j=1,j 6=i

TijTgi −
1
Ri

+
Tti

2Hi
)∆ fi − l2π

N

∑
j=1,j 6=i

Tij

∫
∆ fidt−m

TtiTgi

2Hi
∆ ḟi (26)

where k > 0, l > 0 and m > 0. Then, the coming result is true.



Energies 2019, 12, 1062 8 of 16

Theorem 2. Consider a V2G system shown in Figure 1 as two cascaded subsystems (1) and (8). If there are
∆Pgi and KEi like the expressions (11) and (12), respectively, the above V2G system is asymptotically stable at
its equilibrium via the control law (26).

Proof. Due to expressions (11) and (12), Equation (8) changes into Equation (13). Due to the
control law (26), the two cascaded subsystems (13) and (1) are presented as Equation (20) and the
following equation

∆Ṗgi = −
1− k
RiTgi

∆ fi −
1

Tgi
∆Pgi −

mTti
2Hi

∆ ḟi − k2π
N

∑
j=1,j 6=i

Tij∆ fi

− Tti
2Hi

k
Tgi

∆ fi −
l

Tgi
2π

N

∑
j=1,j 6=i

Tij

∫
∆ fidt (27)

respectively.
For Equation (20), it is clear that the function (18) can be a Lyapunov function, which differential

along Equation (20) is Ḣdwi ≤ 0, which means that Equation (20) is stable at its equilibrium zero.
Meanwhile, Ḣdwi = 0 if and only if its states are equal to zero. Then, due to the La Saller’s
invariance principle [22], Equation (20) is asymptotically stable at its equilibrium. Since Equation (20)
is asymptotically stable, its state ∆ fi that is asymptotically stable at zero is considered as the variable v
of Lemma 1.

Once Equation (20) is asymptotical stability, there is ∆ fi = 0, which transfers Equation (27)
as follows

∆Ṗgi = −
1

Tgi
∆Pgi (28)

whose asymptotical stabilization can by assured be the Lyapunov function
∆P2

gi
2 . Since Equations (1)

and (8) are asymptotically stable, which implies that the V2G shown in Figure 1 is also asymptotically
stable via the Lemma 1.

Here, the proof of Theorem 2 is finished.

Remark 1. In the design procedure, the proposed method decouples the total tie-line power flow ∆Ptie,i to avoid
incremental frequencies of area i effected by the incremental frequencies of area j. Meanwhile, the proposed
method presents an effective way to design the plant gain KEi, which avoid enumerating the value of KEi from
the region [0 1] [2,12–16]. Though the paper [17] applies PSO to decide the value of converter plant gain, it
still not gives out an explicit form of KEi and cannot decouple the power flow. Here, it is necessary to point out
that the design of gain KEi is reasonable and realizable. Structurally speaking, the converter that affords port
to link EVs and LFC system has a transfer function as KEi

1+sTEi
. On the ideas of power electronics and control

theory, the gain KEi of converter can be designed [18–20]. Moreover, noting the expression (12), the parameters
TEi and 2Hi also can be detected. Besides that, when the batteries subject to the restriction of SOC, the value of
expression (12) should belong to the region [0, 1]. It is clear that the unit of 2Hi is second (s) [4] and unit of TEi
is millisecond (ms) [20]. As we all know, the series resistor and transient resistor that construct the converter are
usually small, which time constant is more less than the value of 2Hi. Therefore, the value of TEi

2Hi
must belong to

the above region [0, 1]. In a word, the expression (12) is reasonable and realizable, which implies that the control
laws (25) and (26) are effectively for V2G system subjected to SOC.

Similarly, when a V2G system subjects to SOC, the forthcoming result is true.

Theorem 3. Consider a V2G system subjected to SOC shown in Figure 2 as two cascaded subsystems (1)
and (8). If there are ∆Pgi and KEi like the expressions (11) and (12) (the value of KEi satisfies the region restricted
by SOC), respectively, the above V2G system is asymptotically stable at its equilibrium via the control law (26).
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Proof. The details of proof are similar to the proof of Theorem 2, which are omitted here.

Remark 2. Noting the control laws (25) and (26), they are the same as the control laws presented in the
paper [7]. In theory, since the plant gain KEi has been designed to satisfy a region [0, 1] and holds the structural
feature of PH system, EVs that plug into the multi-area power system are considered as the systemic disturbances
for the LFC system. In paper [7], it has pointed out that the control method based on PH and cascade system
has robustness and disturbance rejection abilities. Thus, the control laws (25) and (26) have an ability to
asymptotically stabilize the V2G system subjected to SOC or not. Namely, the proposed method that effectively
reduces the calculated amount of control law for the V2G system avoids implementing H∞ control and LMI
method presented by the existing results [12–17], which apply H∞ control and LMI method to compute twice to
obtain the control laws for V2G system and LFC system, respectively. However, the proposed method avoids
the above calculated amount for the proposed control laws are simultaneously useful for both of V2G and LFC
system. Besides that, a LFC system that is underdamping causes a underdamping V2G system. The proposed
method based on PH system has an ability to do damping injection [7,21], which is beneficial for improving
the convergent speed of V2G system. In simulations, examples will prove the benefits of above control laws
(25) and (26).

4. Examples and Their Simulations

In this section, examples and their simulations will be given to demonstrate the effectiveness and
advantage of the proposed method.

To prove the effect of proposed method, a V2G system that contains a two-area LFC system with
EVs is considered. For the two-area power system, they are interconnected by power flow line with
synchronizing coefficients T12 = T21 = 0.2 p.u. MW/Hz. Meanwhile, every area is connected with a
fleets of EVs, which power of single EV and numbers of EVs are 7 KW, 30,000 and 10,000, respectively.
Here, some parameters of the above system are given in the following Table 1 [7], the time constant TEi
is chosen as 0.05 s [13] and the plant gain is decided by the expression (12).

Table 1. Parameters of a two-area LFC system.

Area D (pu/Hz) 2H (pu s) R (Hz/pu MW) Tg (s) Tt (s)

1 0.015 0.1667 3 0.08 0.4
2 0.016 0.2017 2.73 0.06 0.44

Areas 1 and 2 are identical systems with non-reheated turbines. Firstly, the restriction of SOC is
not considered. Then, using the Theorem 2 designs two control laws as follows

∆Pc1=−1.6886∆ f1 −1.2560
∫

∆ f1dt−0.2879∆ ḟ1 (29)

and

∆Pc2=−1.3658∆ f2 −1.2560
∫

∆ f2dt−0.1963∆ ḟ2 (30)

which show the following results in Figures 3–5.
In Figures 3–5, when time t ≥ 1 s, there are the load demands ∆PL1 = ∆PL2 = 0.1 p.u. MW for

the two areas 1 and 2, respectively. Due to the control laws (29) and (30), ∆ f1 and ∆ f2 approach to zero.
Based on Equation (5), if ∆ f1 = ∆ f2 = 0 Hz, there must be ∆Ptie,i = 0 p.u. MW, which is shown in
Figure 4. In the same time, ∆PE1 and ∆PE2 also approach to zero quickly. Thus, the proposed method
is effective.
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Figure 3. Responding curves of V2G system without SOC.
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Figure 4. Power flow of V2G system not subjected to SOC.
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Figure 5. EVs’s responding curves of V2G system not subjected to SOC.
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When the above V2G system subjects to SOC, though the plant gain KEi is still designed by the
expression (12), its value must satisfy the region [0, 1] decided by the SOC. According to Table 1 and
expression (12), the plant gains KE1 and KE2 are 0.2999 and 0.2479, respectively, which obviously belong
to the region [0, 1]. In application, the SOC is usually limited between [0.2 , 0.9] to keep battery life.
Here, the designed values of convert plant gains KE1 and KE2 also satisfy the region [0.2 , 0.9]. Thus,
the above control laws (29) and (30) that are still useful yield the following Figures 6–8. When t > 1 s,
there are ∆PL1 = ∆PL2 = 0.1 p.u. MW for the two areas 1 and 2, respectively. It is clear that the
responding curves shown in Figures 6–8 prove the validity of Theorem 3.
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Figure 6. Responding curves of V2G system subjected to SOC.

×

Figure 7. Power flow of V2G system subjected to SOC.
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Figure 8. EVs’s responding curves of V2G system subjected to SOC.

Since the plant gains KEi can be computed by the system parameter, it effectively avoids
enumerating the values of KEi from region [0, 1] [2,12–17]. Moreover, the above control laws
(29) and (30) are not only effective for the V2G system is with or without SOC, but also are beneficial
for the multi-area LFC system without EVs(the corresponding simulation results by the control laws
(29) and (30) are in the paper [7]). The existing methods apply the H∞ control and LMI method to
compute the control laws for V2G system and multi-area LFC system without EVs, respectively, while
the proposed method reduces the calculated amount of those.

To test the robustness of the proposed method, both of the charging and discharging efficiencies
are chosen as 0.92 [13], and a V2G system containing two areas is simulated for different parameter
variations (PV, within±0.2). Every area connects with EVs, which batteries subject to SOC and systemic
parameters are shown in Table 1. As a result, implementing the control laws (29) and (30) to the
mentioned V2G system yields the following Figures 9–11. When t > 1 s, there are ∆PL1 = ∆PL2 = 0.1
p.u. MW for the two areas 1 and 2, respectively. Then, the responding curves shown in the Figures 9–11.
imply that the proposed method is robust.

Moreover, due to the parameters of LFC system shown in Table 1 and ∆PL1 = ∆PL2 = 0.1 p.u.
MW for t > 1, the proposed method is compared with the control law of the paper [10]. Then, the
compared results are shown in the following Figures 12–14, where the solid lines and dashed lines
belong to the proposed method and the control law of paper [10], respectively. It is clear that the
convergent speeds of solid lines are faster than the convergent speeds of dashed lines, which implies
the advantage of the proposed method.
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Figure 9. Responding curves of V2G system subjected to SOC(solid: 1.2 multiples, dashed: 0.8 multiples).
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Figure 10. Power flow of V2G system subjected to SOC(solid: 1.2 multiples, dashed: 0.8 multiples).
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Figure 11. The Compared responding curves of V2G system subjected to SOC(solid: proposed, dashed:
0.8 multiples).
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Figure 12. The Compared responding curves ∆ f1 of V2G system subjected to SOC(solid: proposed,
dashed: [10]).
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Figure 13. The Compared responding curves ∆ f2 of V2G system subjected to SOC(solid: proposed,
dashed: [10]).
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Figure 14. The Compared responding curves ∆Ptie,12 of V2G system subjected to SOC(solid: proposed,
dashed: [10]).

5. Conclusions

In this paper, two new control methods for the V2G system are proposed with two contributions,
i.e., the decouple of the total tie-line power flow ∆Ptie,i and design of the converter plant gain KEi. It
is necessary to point out that the converter plant gain are considered as a whole in this paper. In the
application, every single converter plant has its value. How to deicide the value of every single converter
plant and to research the relationships among the converter plants are still interesting problems.

Funding: This paper is supported partially by the National Nature Science Fund under Grant No.61603311 and
partially by the Fundamental Research Funds for the Central Universities of China under Grant No.2682017CX042.

Conflicts of Interest: The author declares no conflict of interest.



Energies 2019, 12, 1062 16 of 16

References

1. Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy
2009, 37, 4379–4390. [CrossRef]

2. Ota, Y.; Taniguchi, H.; Nakajima, T.; Liyanage, K.M.; Baba, J.; Yokoyama, A. Autonomous distributed V2G
(vehicle-to-grid) satisfying scheduled charging. IEEE Trans. Smart Grid 2012, 3, 559–564. [CrossRef]

3. Rana, R.; Singh, M.; Mishra, S. Design of Modified Droop Controller for Frequency Support in Microgrid
using Fleet of Electric Vehicles. IEEE Trans. Power Syst. 2017, 32, 3627–3636. [CrossRef]

4. Bevrani, H. Robust Power System Frequency Control; Springer: New York, NY, USA, 2009.
5. Kumar, I.P.; Kothari, D.P. Recent Philosophies of Automatic Generation Control Strategies in Power Systems.

IEEE Trans. Power Syst. 2009, 20, 346–357.
6. Pandey, S.K.; Mohanty, S.R.; Kishor, N. A Literature Survey on Load Frequency Control for Conventional

and Distribution Generation Power Systems. Renew. Sustain. Energy Rev. 2013, 25, 318–334. [CrossRef]
7. Cai, L.; He, Z.; Hu, H. A New Load Frequency Control Method of Multi-Area Power System via the

Viewpoints of Port-Hamiltonian System and Cascade System. IEEE Trans. Power Syst. 2017, 32, 1689–1700.
[CrossRef]

8. Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized Vehicle-to-Grid Control for Primary Frequency Regulation
Considering Charging Demands. IEEE Trans. Power Syst. 2013, 28, 3480–3489. [CrossRef]

9. Mu, Y.; Wu, J.; Ekanayake, J.; Jenkins, N.; Jia, H. Primary Frequency Response from Electric Vehicles in the
Great Britain Power System. IEEE Trans. Smart Grid 2013, 4, 1142–1150. [CrossRef]

10. Liu, H.; Hu, Z.; Song, Y.; Wang, J.; Xie, X. Vehicle-to-Grid Control for Supplementary Frequency Regulation
Considering Charging Demands. IEEE Trans. Power Syst. 2015, 30, 3100–3119. [CrossRef]

11. Pahasa, J.; Ngamroo, I. PHEVs bidirectional charging/discharging and SoC control for microgrid frequency
stabilization using multiple MPC. IEEE Trans. Smart Grid 2015, 6, 526–533. [CrossRef]

12. Vachirasricirikul, S.; Ngamroo, I. Robust LFC in a smart grid with wind power penetration by coordinated
V2G control and frequency controller. IEEE Trans. Smart Grid 2014, 5, 371–380. [CrossRef]

13. Fan, H.; Jiang, L.; Zhang, C.; Mao, C. Frequency regulation of multi-area power systems with plug-in electric
vehicles considering communication delays. IET Gener. Transm. Distrib. 2016, 10, 3481–3491. [CrossRef]

14. Pham, T.N.; Nahavandi, S.; Trinh, H.; Wong, K.P. Static Output Feedback Frequency Stabilization of
Time-Delay Power Systems with Coordinated Electric Vehicles State of Charge Control. IEEE Trans. Power Syst.
2017, 30, 3862–3874, [CrossRef]

15. Ko, K.; Sung, D. The Effect of EV Aggregators with Time-Varying Delays on the Stability of a Load Frequency
Control System. IEEE Trans. Power Syst. 2018, 33, 669–680. [CrossRef]

16. Pham, T.; Trinh, H.; Hien, L. Load Frequency Control of Power Systems With Electric Vehicles and Diverse
Transmission Links Using Distributed Functional Observers. IEEE Trans. Smart Grid 2016, 7, 1069–1080.
[CrossRef]

17. Yang, J.; Dong, H.; Huang, Y.; Cai, L.; Gou, F.; He, Z. Coordinated optimization of vehicle-to-grid control
and load frequency control by considering statistical properties of active power imbalance. Int. Trans. Electr.
Energy Syst. 2018. [CrossRef]

18. Kottick, D.; Blau, M.; Edelstein, D. Battery Energy Storage for Frequency Regulation in an Island Power
System. IEEE Trans. Energy Convers. 1993, 8, 455–459. [CrossRef]

19. Khayyer, P.; Özgüer, U. Decentralized Control of Large-Scale Storage-Based Renewable Energy Systems.
IEEE Trans. Smart Grid 2014, 5, 1300–1307. [CrossRef]

20. Singh, M.D.; Khanchandani, K.B. Power Electronics; Tsinghua University Press: Beijing, China, 2011.
21. Cai, L.; He, Y. Exponential Stability of Port-Hamiltonian Systems via Energy-Shaped Method. J. Frankl. Inst.

Eng. Appl. Math. 2017, 354, 2944–2958. [CrossRef]
22. Isidori, A. Nonlinear Control Systems II; Springer: London, UK, 1999.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enpol.2009.05.053
http://dx.doi.org/10.1109/TSG.2011.2167993
http://dx.doi.org/10.1109/TPWRS.2017.2651906
http://dx.doi.org/10.1016/j.rser.2013.04.029
http://dx.doi.org/10.1109/TPWRS.2016.2605007
http://dx.doi.org/10.1109/TPWRS.2013.2252029
http://dx.doi.org/10.1109/TSG.2012.2220867
http://dx.doi.org/10.1109/TPWRS.2014.2382979
http://dx.doi.org/10.1109/TSG.2014.2372038
http://dx.doi.org/10.1109/TSG.2013.2264921
http://dx.doi.org/10.1049/iet-gtd.2016.0108
http://dx.doi.org/10.1109/TPWRS.2016.2633540
http://dx.doi.org/10.1109/TPWRS.2017.2690915
http://dx.doi.org/10.1109/TSG.2015.2449877
http://dx.doi.org/10.1002/etep.2750
http://dx.doi.org/10.1109/60.257059
http://dx.doi.org/10.1109/TSG.2014.2311093
http://dx.doi.org/10.1016/j.jfranklin.2017.02.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Main Results
	Examples and Their Simulations
	Conclusions
	References

