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Abstract: Rotating electrical machines are electromechanical energy converters with a fundamental 

impact on the production and conversion of energy. Novelty and advancement in the control and 

high-performance design of these machines are of interest in energy management. Soft computing 

methods are known as the essential tools that significantly improve the performance of rotating 

electrical machines in both aspects of control and design. From this perspective, a wide range of 

energy conversion systems such as generators, high-performance electric engines, and electric 

vehicles, are highly reliant on the advancement of soft computing techniques used in rotating 

electrical machines. This article presents the-state-of-the-art of soft computing techniques and their 

applications, which have greatly influenced the progression of this significant realm of energy. 

Through a novel taxonomy of systems and applications, the most critical advancements in the field 

are reviewed for providing an insight into the future of control and design of rotating electrical 

machines. 

Keywords: soft computing; artificial intelligence; machine learning; rotating electrical machines; 

energy systems; deep learning; electric vehicles; big data; hybrid models; ensemble models; energy 

informatics; electrical engineering; computational intelligence; data science; energy management; 

control; electric motor drives 

 

1. Introduction 

In 1831, Michael Faraday invented the disk machine which can be considered as the earliest form 

of the DC machine. Until 1870 when Thomas Edison started the commercial development of the DC 

generator, electrical machines were applied and investigated only in laboratories. Edison's 

pioneering concept of electric power distribution from central generation stations allowed the 
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introduction of the electric grid infrastructure concept, which was the primary condition for 

widespread the application of electric motors [1]. The patent of the three-phase induction motor by 

Nikola Tesla in 1888 was an utmost important milestone in the history of the electric machines. After 

that, the construction of electrification began, which lasted until 1930 in the USA, and then conquered 

worldwide [2]. Nowadays, it is estimated that more than sixty-five percent of the energy demand of 

present-day industrialized countries used by electrical drives [3]. Constant or variable speed or servo-

motor drives are employed almost everywhere: in households, industry, electric traction, 

transportation, aerospace, military equipment, medical equipment, agriculture, etc. These sectors are 

mainly focused on an alternative source for the existing power transfer technologies, where major 

subsystems would also be controlled and driven electronically [4].  

Recently, electromechanical drives for position and speed control play a key role in process 

control, EVs, factory automation, robotics, autonomous vehicle, mobility and energy conservation 

[5–15]. Due to the introduction of vector control methods in the 1970s and low price and the high 

reliability of cage induction motors made induction motor as the most popular rotating electrical 

machine. The recent advancements of PM materials, solid-state devices and microelectronics have 

contributed to new energy efficient, high-performance electric drives which use modern PM 

brushless motors [16–19]. It is entirely possible that these permanent magnet brushless motor drives 

will become predominant in the next century [20]. Nevertheless, the control, design, and optimization 

of rotating electrical machines require advanced techniques and modern mathematical models to 

keep up with the ever-increasing demand for energy [21–25]. In fact, practical solutions to 

engineering problems involve model-integrated computing [26,27]. Model-based computing 

approaches or so-called soft computing (SC) provide a challenging way to replace the procedure with 

a knowledge-based method [28–33]. SC techniques denote a set of computational approaches that are 

used to approximate mathematical problems which are hard or unable to solve by the traditional 

time-consuming classical mathematical tools [34–36]. Figure 1 presents the principal SC algorithms 

widely used in engineering applications.  

Furthermore, combining SC, non-conventional and novel data representation techniques is a 

possible way to overcome this difficulty [37–40]. Over the last decades, the benefits of SC techniques 

have been widely recognized and have brought several new solutions in the design and control of 

electrical machines [41,42]. However, there is a gap in the effectiveness of the SC models [43,44]. Thus, 

identification and evaluation of the SC models would be a practical approach to evaluate the progress 

and provide an insight into the future application of SC methods [45,46]. Consequently, the intention 

of the current work is to give a comprehensive overview of the recent state-of-the-art solutions using 

soft computing techniques in the design and control of rotating electrical machines. The organization 

of the rest of this article is as follow. In Section 2, the research methodology of the review is presented. 

Section 3 presents a review of the SC models used in electrical rotating machines. Section 4 presents 

the discussion followed by Section 5 with a conclusion to the review.  

2. Methodology  

The primary goal of this survey is to present the state of the art of SC techniques in the design 

and control of rotating electrical machines. The purpose of the research methodology is to identify, 

classify, and review the notable peer-reviewed articles concerned in top-level subject fields. In our 

comprehensive review using the Thomson Reuters Web-of-Science and Elsevier Scopus for 

implementation of the search queries would assure that any paper in the database would meet the 

essential quality measures, originality, high impact, and high h-index.  

To identify the application of soft computing in design, control, and development of rotating 

electrical machines, the search queries were carefully chosen to build the initial database. The 

taxonomy of SC influenced the search queries. Figure 1 presents the principal SC tools and the 

subsections that we have identified by a slight modification of the classifications given in [27,28]. 

Accordingly, the keywords of the search queries to identify the SC tools were selected to be “fuzzy" 

or "neural network" or "evolutionary computation" or "genetic" or "meta-heuristics" or "ant colony" 
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or "particle swarm" or "tabu search" or "cuckoo search" or "simulated annealing" or "Bayesian 

network" or "Markov logic network" or "rough set". 

 

Figure 1. Taxonomy of soft computing methods used in making the initial database [47,48]. 

On the other hand, the search queries for the applications to rotating electrical machines may 

include various aspects of design and control, i.e., electric machine, rotating electrical machine, 

electric motor, electric generator, electromechanical generator, transformer and electrostatic, 

homopolar, permanent, brushed, magnet, reluctance and induction machines. Consequently, the 

entire search query is presented as: (TITLE-ABSTRACT-KEYWORDS ("electric machine" or "rotating 

electrical machine" or "electric motor" or "electric generator" or "electromechanical energy converter" 

or "generator" or "transformer" or "brushed machine" or "permanent magnet machine" or "induction 

machine") or TITLE-ABSTRACT-KEYWORDS  ("reluctance machine" or "electrostatic machine" or 

"homopolar machine") and TITLE-ABSTRACT-KEYWORDS  ("fuzzy" or "neural network" or 

"evolutionary computation" or "genetic" or "metaheuristics" or "ant colony" or "particle swarm" or 

"tabu search" or "cuckoo search" or "simulated annealing" or "Bayesian network" or "Markov logic 

network" or "rough set")) and PUBLICATION-YEAR > 1986 and PUBLICATION-YEAR < 2018. This 

query resulted in a total of 24,382 documents. It should be noted that each section contained a brief 

result and conclusion about the subject to help the authors and researchers make a sustainable and 

suitable decision about applications of soft-computing techniques.  

Furthermore, to present an in-depth review and understanding of each modeling technique and 

its progress, we aimed at having different categories for the SC models used i.e., simple fuzzy 

systems, adaptive neuro-fuzzy inference system (ANFIS): neuro-fuzzy, advanced ANFIS/neuro-

fuzzy: hybrids, neural computing: artificial neural network (ANN), evolutionary computation (EC) 

and metaheuristics, ant colony, tabu and cuckoo search, simulated annealing, probabilistic reasoning 

and Bayesian networks, and hybrid soft computing methods. Furthermore, the research 

methodology follows a comprehensive and structured workflow based on a systematic database 

search and cross-reference snowballing. The flowchart of the research methodology is presented in 

Figure 2. 

 

Figure 2. Methodology of research. 



Energies 2019, 12, 1049 4 of 29 

 

In the step 1 of the methodology, the initial database of the relevant articles was identified based 

on the search queries of SC models through exploring the Thomson Reuters Web-of-Science and 

Elsevier Scopus databases. In step 2 the database was created with the relevant literature. For every 

SC model, we applied a new search query to suit that search well. 

Nevertheless, some articles in the initial database might not be highly suitable for the review. 

For that matter, step 3 investigated an indent consideration of the literature to pass the irrelevant 

papers to step 4 to be excluded from the database. Note that the search queries will identify the 

relevant articles, yet the queries were uncertain as to whether the SC model belonged to a hybrid 

category. For instance, a hybrid model of SC may include single SC model. Therefore, step 5 is 

designed to reclassify the literature into one of the categories of SC models. 

3. State of the Art of Soft Computing Techniques and Applications 

Exploring the literature on rotating electrical machines shows continued progress on the design 

and advancement of rotating electrical machines. Almost half a million documents in this particular 

realm show the importance of this topic and the dependent technologies. Figure 3 shows the progress 

in some literature. It is also apparent that the use of SC models has been started from the late 80s and 

early 90s and boosted the design advancement.  

 

Figure 3. The number of published articles on rotating electrical machines from 1963–2017: 483,320 

document results. (Source: Scopus & Web of Science). 

Exploring the various SC models in wide applications to design and control the rotating 

electrical machines results in an extended database. The literature has been progressing since the 

early 1980s, with a fast-pace of involvement of SC methods in design and control purposes. Figure 4 

shows the increasing popularity of SC, especially during the past two decades. It is apparent that 

statistics on the number of articles in literature change when using soft computing for advancement. 

Furthermore, the primary analysis of the database of the search shows that some SC methods have 

been more popular than the others and the usage of many SC methods has been very limited and not 

worth mentioning in the review. The most popular SC methods can be classified into five categories 

of fuzzy systems, neural computing: ANN, EC and metaheuristics, probabilistic reasoning and 

Bayesian Networks, and further hybrid soft computing methods.  
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Figure 4. Analysis of the literature on soft computing in design, control, and development of rotating 

electrical machines from 1987–2017. Total of 30,382 document results. (Source: Scopus & Web of 

Science). 

The analysis of literature type shows a significant number of articles were original papers 

written on the advancement and development of rotating electrical machines and only a tiny fraction 

of literature was devoted to reviewing papers (see, Figures 2–5.). 

  

Figure 5. Analysis of the literature by based on countries (Source: Scopus & Web of Science). 

Analysis of the literature based on countries showed that China, USA, India, Iran, and the UK 

are among the top five active regions on the advancement of rotating electrical machines using SC 

methods (see, Figure 6). 
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Figure 6. Analysis of the literature based on publishing sources (Source: Scopus & Web of Science). 

The top five sources included: proceedings of the International Society for Optical Engineering 

(SPIE) (with 5841 papers), lecture notes in computer science, including subseries lecture notes in 

artificial intelligence and lecture notes in bioinformatics (with 4064 papers), Institute of Electrical and 

Electronics Engineers (IEEE) Transactions on Magnetics (with 3989 papers), and IEEE Transactions 

on Industry Applications (with 3306 papers), conference record Industry Applications Society IEEE 

Annual (with 2943 papers), for a total of 24,382 document results (see, Figure 6). 

 

 

Figure 7. Literature types on the on rotating electrical machines using soft computing, from 1987–

2017. (Source: Scopus & Web of Science). 

The analysis of literature type shows a significant number of articles are original papers written 

on the advancement and development of rotating electrical machine and only a tiny fracture of 

literature is devoted to reviewing papers (see, Figures 7 and 8).  
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Figure 8. The subject area of rotating electrical machines using soft computing, from 1987–2017. The 

math, computer science, and energy subject areas had a rise (Source: Scopus & Web of Science). 

3.1. Fuzzy Systems  

Fuzzy logic is widely used for modeling complex and ill-defined systems. The core concept relies 

on the application of linguistic variables which are transformed into graded membership functions. 

Therefore, fuzzy logic is an extension of classical Boolean logic where logical statements are not only 

true or false but can also range from almost certain to very unlikely. A large number of practical 

applications apply fuzzy logic due to its excellent approximation properties. 

3.1.1. Simple Fuzzy Systems  

Fuzzy logic is widely used in nonlinear controllers due to their easy applicability and high 

performance. These are capable of replacing the most common Lyapunov’s second method of 

nonlinear control, which is a complicated technique from a mathematical point of view and needs 

very skilled designers. The two most widely known systems are the Mamdani- and Sugeno-type 

inference systems. The main difference between them is that the latter allows functions as outputs 

instead of membership functions. Fuzzy logic serves as a useful tool for engineering practice; 

numerous examples found for the utilization of fuzzy logic in the control and design of electrical 

machines. Major works from the recent past collected in Table 1 illustrate that this trend is still 

unbroken.  

Table 1. Simple fuzzy systems in rotating the electrical machine. 

Reference Year SC method Application 

Aguilar et al. [49] 2017 Fuzzy logic Brake control 

Rao Amulya [50] 2016 Mamdani type inference Fault detection and vibration  

M.; Sakly Ben 

Smida, A. [51] 
2016 Fuzzy controller Power regulation 
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Z. Husain [52] 2018 Fuzzy expert system 

Condition monitoring of power 

transformers via dissolved gas 

analysis test 

S.; Sedraoui 

Kahla, el al. [53] 
2018 

Combination of standard on-

off strategy with fuzzy logic 

Maximize the power point tracking 

of wind energy 

Aguilar [49] used a simple fuzzy logic algorithm for the intelligent brake control of an electric 

motorcycles engine in order to recover the maximum energy in braking processes while maintaining 

the vehicle’s stability. The success of the employed method is very bold, such that the results of 

comparing the regenerative system with the ABS in a low adhesion condition have been presented 

in Figure 9 in terms of mean deceleration (a) and distance (b). Based on the results, the proposed 

systems could optimize the energy regeneration strategy.  

(a) (b) 

Figure 9. results of the study by Aguilar [49] in terms of (a) mean deceleration and (b) distance. 

In the paper by Amulya, in 2016 [50] a steam turbo-generator condition assessment problem was 

considered in which the condition is determined by fuzzy logic-based vibration analysis. 

Recommendations for improving the performance of the conventional pitch angle control strategy 

for power regulation in wind turbines are given in Ben Smida (2016) [51] in which the pitch angle is 

based on fuzzy logic. The study was developed using fuzzy logic and proportional integral derivative 

PID controllers. The comparison of the performance of the two systems was performed using mean 

absolute error (MAE) and mean percentage error (MPE). Such that, a fuzzy logic controller with low 

MAE (29.02%) and MPE (0.0088%) values provided a best-controlling ability compared that for PID 

controller which can make a smooth controlling process. 

Husain (2018) [52] applies a fuzzy expert system for fault diagnosis of power systems which 

incorporates the information obtained from dissolved gas analysis test. The proposed approach could 

successfully reduce the issues raised by the conventional fault diagnosis methods. Also, the proposed 

method by Arumugam 2017 improves dynamic response and the energy saving and by the fast 

detection ability and removes the errors raised by the dynamic voltage restorer (DVR) response. 

Kahla (2018) [53] introduces a fuzzy logic system in the on-off control strategy in case of wind 

energy conversion. The proposed method allows maximizing the power point tracking of wind 

energy and reducing the mechanical loads in comparison to the standard on-off control strategy.  

3.1.2. ANFIS: Neuro-Fuzzy 

Artificial neural systems represent systems acting as parallel distributed computing networks. 

Neural systems can find new associations, new functional dependencies and new patterns through 

learning. Therefore their primary advantage is their additivity. Consequently, combining neural 

networks with fuzzy logic techniques is evidently useful [54]. Thus, the excellent approximation 

properties are complemented with higher additivity and parallelism [40,55,56]. Such composed 

system is called fuzzy neural, neural fuzzy, neuro-fuzzy or fuzzy-neuro network, or ANFIS in which 
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for instance neural networks can be used to tune membership functions of fuzzy systems. A vast 

amount of published papers supports its applicability [57–59]. However, in electrical machine design 

issues, only a few examples are found (see Table 2).  

Table 2. Adaptive neuro-fuzzy systems in electrical machines. 

Reference Year  Method Application 

Arumugom [60] 2017  
ANFIS based MIC 

controller 

Dynamic Voltage Restorer 

Controller 

Aruna [61] 2016  

MWT and Accommodative 

ANFIS with ABC 

algorithmic rule. 

IPMSM control 

Bentouhami [62] 2016  
Neuro-fuzzy combined 

method 
Control of DSIM 

Haritha [63] 2017  Q learning and ANFIS 
Optimal relationship of rotor speed 

of the PMSG  

Thankachan and 

Singh [64] 
2016  Neuro-fuzzy 

Speed and torque control of IM 

drive 

An interesting application of neuro-fuzzy systems is described in Arumugom (2017) [60] where 

the authors attempt to design a DVR with energy conservation using a MIC and vibration energy 

harvester (VEH). Aruna [61] proposed in 2016 a hybrid method using ANFIS for the speed control of 

interior permanent magnet synchronous motor (IPMSM). Their results demonstrate that their 

solution enables better disturbance rejection compared to the classic PID controller. The settling, 

arising and overshooting times of the proposed controlling method has been compared with PID, 

MR-PID, and MWNN-particle swarm optimization (PSO) controlling algorithms. Figure 10 indicates 

the time values for each term. The related results indicate that the proposed controlling method is the 

best technique to eliminate the nonlinearity with high reliability, and sustainable performance 

compared with that for the other techniques. 

 

Figure 10. Comparing the time values for the study by Aruna (2016) [61]. 

Advanced method for the control of dual star induction machine (DSIM) supplied by Five-Level 

Inverter is shown by Bentouhami (2016) [62] who apply an ANFIS controller composed of an online 

learning algorithm with a neuro-fuzzy network. Haritha (2017) [63] introduced a neuro-fuzzy and Q 

learning-based technique for the maximum power point tracking control for improving learning 
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efficiency of permanent magnet synchronous generator (PMSG) wind energy conversion system 

(WECS).  

3.1.3. Advanced ANFIS/Neuro-Fuzzy: Hybrids  

Adaptive neuro-fuzzy inference systems can be supported or combined further mathematical 

tools if the problem requires. The resulted systems are called hybrid fuzzy-neuro systems. In 

advanced ANFIS systems, the capabilities of the neural network are higher due to better learning 

algorithms (e.g., trust region reflective), so they can learn various parameters. These techniques are 

especially useful in highly nonlinear control problems of electrical machines or condition assessment 

issues (see Table 3.).  

Table 3. Hybrid techniques applied in electrical machine design and control. 

Reference Year  Technique Application 

Li et al. (2005) [65] 2005  
Robust model reference 

fuzzy controller 
DC servo motor system 

Fatih Kececioglu 

[66] 
2017  NFC 

hybrid passive filter configuration 

proposed for PWM rectifiers  

Gnanaprakasam 

[67]  
2015  

S-transform algorithm 

& ANFIS 

detecting and classifying the 

vibration signal of IM 

Hossain [68] 2015  FLC, SNC & ANFIS 
Nonlinear controllers augment of a 

large-scale hybrid power system 

Dehghani et al. [40]   ANFIS and GW Hydropower generator performance 

A vast amount of literature on nonlinear control solutions have been publishing in recent years. 

For instance, Li et al. (2005) [65] propose a control technique using a robust model reference controller 

with the combination of the hybrid fuzzy controller. The core of the control strategy is based on the 

classical Lyapunov technique which is a complicated technique, but the control signal includes fuzzy, 

classic and robust terms. The fuzzy logic controller was compared with the hybrid-fuzzy controller 

using root mean squared error (RMSE) values in terms of output tracking for DC servo motor and 

inverted pendulum. The results have been presented in Figure 11. Based on results, the hybrid 

controlling method had the best performance in both terms.  

 

Figure 11. Results for the study by Li et al. (2005) [65]. 

In order to limit the current and voltage harmonics, and to improve total harmonic distortion 

and true power factor in Fatih Kececioglu, (2017) [66], a neuro-fuzzy controller is applied in a hybrid 
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passive filter for PWM rectifiers. Gnanaprakasam (2015) [67] proposed a hybrid approach for the 

detection and classification of the vibration signal of an induction motor in which the fault detection 

process including the extraction of significant features of vibration signals is carried out by using the 

S-transformation algorithm. After, the ANFIS classification technique was employed to classify the 

signal into its faulty or the normal state. S-transform-ANFIS, S-transform- radial basis function neural 

network (RBFNN), S-transform-FFNN, and DWT-RBFNN were compared in terms of accuracy, 

sensitivity and specificity for IR faulty condition, centered or fault, opposite or fault, orthogonal or 

fault, and BB fault conditions. The general results have been presented in Figure 12. In all conditions, 

S-transform-ANFIS has the highest accuracy, sensitivity, and specificity compared with those for the 

other methods.  

 

Figure 12. Results for the study by Gnanaprakasam (2015) [67]. 

In the paper by Hossain (2015) [68] three nonlinear control strategies are compared, namely the 

fuzzy logic controller, SNC, and ANFIS-based controller. Their results show that the proposed fuzzy 

logic controller-, SNC-, or ANFIS-based VR-FCL are effective in improving the transient stability of 

a large-scale hybrid power system consisting of a doubly-fed wind power generator (DFIG)-based 

wind farm, a PV plant, and SG. 

In general, in all cases mentioning fuzzy systems, the fuzzy controller has a robust and smooth 

controlling process, which improves the control process and causes less damage to the hardware used 

and reduces the cost of servicing and maintaining of the systems. On the other hand, this would have 

a direct impact on the energy consumption of the control system and would lead to more sustainable 

control in the control system. This conclusion has also been confirmed in a study by Ardabili et al. 

(2016) [69] to design a fuzzy control system in a mushroom growing hall. Also, the operator's 

dominance and focus also increase with the use of fuzzy systems. Hyphenation hybrid systems can 

also optimize the system with the benefits of both fuzzy and neural systems in parallel with the 

creation of a fuzzy control sustainable system. 

3.2. Neural Computing  

The concept of neural networks is usually employed in itself. As the literature review reveals 

(see, Table 4.) ANNs are a common tool of control tasks of electrical machines as other engineering 

applications [70,71]. However, it seems that the abilities of the nets have not yet been exploited in the 

field of machine design. 

Table 4. Artificial neural networks. 

Reference Year  Technique Application 
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Bouchiba [72] 2017  ANN-SMC 
Control of multi-motor system coupled 

induction motors 

Çelik et al. [73] 2017  
multi-layer 

feedforward ANN 

estimate the output power and efficiency 

of AFP SG 

Zammit et al. [74] 2016  ANN controller Direct torque control of DFIM 

Zouggar et al. [75] 2018  ANN 
Voltage and frequency control of a self-

excited induction generator 

Considering the ANNs–based solutions in the field of electrical machines the study of Bouchiba 

(2017) [72] provides a fresh example of the NN sliding mode controller for the control for multi-

machine web winding systems. The advantage of this technique is that it can significantly reduce the 

chattering phenomenon and improve the error performance. In this study, the simulation and 

evaluation processes were performed by employing MATLAB/SIMULINK software. Based on the 

results, ANN-SMC controller has ignored the effect of disturbance. On the other hand, it is clear that 

the application of a hybrid PI-SMC controller is easy, but the performance of ANN-SMC controller is 

better than that for the PI-SMC. Detailed results indicate that the net performance improvement and 

the robustness of ANN-SMC controller are also strong superiority points compared with PI 

controller. Çelik et al. (2017) [73] designed a feed-forward multilayer NN in order to predict the 

efficiency and output power of an axial flux permanent magnet SG. Their tests have shown that the 

NN is highly suitable for this purpose according to the obtained 3% and 4% error percentages. The 

efficiency and power of a magnet generator were estimated using a neural network method. Based 

on results, the best structure was 2–18–12–2 which generated a maximum error of 3.587% for power 

and –3.909 for efficiencies value. Also, NN controller could estimate the power values higher than 

that for the experimental limits, and it can be a suitable technique. Some modification and 

improvements proposed for the classical direct torque controller, e.g., Zemmit et al. (2016) [75] 

designed an ANN- Direct Torque Control in which the IP and switching table have been replaced by 

a new artificial neural network. This strategy can reduce the high torque and flux ripples. The paper 

of Zidani (2018) presents a voltage and frequency control technique of self-excited induction 

generators that applies a NN-based inverse dynamic model of the system. Results indicate that the 

proposed technique can significantly increase the performance and stabilize the terminal voltage. 

This can be an economical and efficient way for stabilizing the voltage, and also it can be used by 

field programmable gate arrays controller cards on a real-time benchmark system. 

In general, according to the results of the papers developed by NN techniques, it can be seen 

that this method has the most predictive effect on simulations and can, therefore, affect the 

performance of the system. Therefore, this system can be modeled from empirical data and based on 

the behavior of the predictive functional system, and the user's tastes can have the least interference, 

unlike the fuzzy system. Also, all studies have been conducted in order to improve existing 

conditions and offer the proposed system the best performance compared to previous systems. 

3.3. EC and Metaheuristics 

Metaheuristics are computational methods which optimize problems by iteratively making 

efforts to refine the function of a possible solution(s) to achieve a measurement value while 

guaranteeing polynomial time despite brute force optimization methods. The set of metaheuristics 

contain various algorithms, such as ant colony, evolutionary optimization, genetic algorithms, etc. 

EC is a subset of metaheuristics which involve algorithms or global optimization inspired by 

biological evolution. EC methods are stochastic optimization methods in which the initial set of 

candidate solutions are generated randomly. After, the new generations (new sets of possible 

solutions) are iteratively updated while mitigation the natural selection, mutation, etc. The fitting of 

a candidate solution is determined by a measure defined for the task under examination (see table 

5.). 
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Optimization problems, especially ill-posed or multi-objective optimization tasks are common 

in control and design problems in most of the engineering problems, including electrical machine 

and drive systems. Most of the applications found in the latest paper employ the evolutionary 

computing techniques in nonlinear control tasks. There is only a limited number discussing the 

application or novelty of EC in rotating electrical machine design. 

 

Table 5. Evolutionary computing and metaheuristics. 

Reference Year  Technique Application 

Mamede [76] 2018  GA and DE  Optimum design of SPSRM 

Tamilselvi [77] 2018  Adaptive DE with FE Design of PMMs for EV  

Vanchinathan [78] 2018  BA PID controller 

Virtic [79] 2016  
GA and analytical 

evaluation  

Axial flux permanent 

magnet design 

Design issues of electrical machines are usually raising complicated or multi-objective, ill-

defined optimization problems. The application of Evolutionary-based solution or stochastic 

optimization methods can handle these problems by reducing the computational costs and 

simultaneously providing near-optimal solutions. For instance, Mamede (2018) [76] presents the 

combination of genetic algorithm (GA) and differential evolution (DE) techniques that allows 

maximizing the average torque and torque density and minimizing copper loss of single-phase 

switched reluctance machine (SPSRM). S. B. Tamilselvi, S. (2018) [77] proposes an evolutionary 

optimization procedure for the design of two, namely the surface-mounted and interior mounted 

permanent-magnet motor (PMMs) configurations using DE algorithm. Optimization tasks are the 

core of most control problems also. The metaheuristic optimization methods are effective alternatives 

in such cases, especially in sensorless drives. Vanchinathan (2018) [78] introduce the bat algorithm 

(BA) in the parameter tuning issue of a fractional –order PID controller for speed control of sensorless 

control of brushless DC electric motors. Modified genetic algorithm (MGA), ABC, and BA methods 

were employed in FOPID controller in three loads (0, 50 and 100% of full load) and the simulation 

was performed using MATLAB/Simulink software. Based on results, the proposed BA method, have 

the lowest steady-state error (%), peak time (s), rise time (s) and settling time(s) compared with those 

for the other methods in each load, separately (Figure 13). It seems that BA method has the best 

performance at 100% in case of settling, rise and peak times but in case of steady-state error, the 

condition of 0% provides the best performance for BA technique. The detailed results have been 

presented in Figure 13. 

 

Figure 13. Results for the study by Vanchinathan (2018) [78]. 
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The finding of Virtic (2016) [79] also supports that the evolutionary optimization with the 

analytical evaluation of objective functions significantly shortens the computational time required for 

design optimization in comparison with the finite element methods (FEM).  

Considering the reasonable and suitable capabilities of the proposed method, it can be 

concluded that this method is considered as a process optimizer and according to its performance, it 

is suggested that the hybrid methods in this field can also be developed by researchers. 

3.3.1. Ant colony 

The ant colony system is a search metaheuristic which concept is based on the imitation of ants 

seeking nutrition. Ants can communicate with each other by a sophisticated way since they mark the 

different pathways from the anthill to the food sources and back by pheromone hormone 

respectively. The pheromone paths are perceived by another ant, and most likely followed. Pathways 

to foods can be very different, as well as obstacles between them. Ants tend to collect as much food 

as possible. The characteristics of some individuals are different, but the unity of the colony is very 

effective. Each ant moves in an isolated and random way, but recognizing its pathways marked with 

pheromone is also likely to follow them. Meanwhile, an increase in their pheromone concentration 

by pheromone emissions, thereby increases the concentration of the pheromone attractiveness. Thus, 

the frequencies of frequently used routes increase the pheromone's level while being neglected paths. 

The pheromone emitted by the ants continuously vaporizes, that is, confirmation on the given route 

(releasing a new pheromone dose) without decreasing the pheromone level (until contains 

pheromone). If there are two paths leading to food, the shorter route is more likely to turn the ants 

(as they arrive sooner and later back). Thus, they often reinforce the pheromone level, thereby 

providing higher "attractiveness" for the route. However, this will attract more ants to the shorter 

journey. After a while, the shorter way will be taken by most ants, while the longer path for 

pheromone levels will decrease to a minimum level. The ant colony metaheuristic shares the search 

task between the ant agents. These agents have very basic subtleties and, to a certain extent, simulate 

the behavior of true ants. "Artificial ants" (agents) build on solutions based on appropriate problem-

specific constructive heuristics. A pheromone matrix determines the order of the building blocks of 

the solution used to construct good solutions. The values stored in the pheromone matrix are taken 

into account by the other agents on a probability basis when constructing his solutions. The first ant 

colony algorithm was applied for the traveling salesman problem (TSP). Since then, it has been 

widespread in engineering practice. Table 6 includes application of ant colony in rotating electrical 

machines.  

Table 6. Application of ant colony in electrical machines. 

Reference Year  Technique Application 

Ameli et al. [80] 2017  Ant colony Simultaneous dynamic scheduling of feeder 

reconfiguration of DG units having uncertain 

and variant generations 

Batista et al. 

[81] 

2014  AS and ant colony 

algorithm on the 

graph 

Interior permanent magnet motor design 

Ameli (2017) [80] applies the ant colony algorithm in distribution systems. The purpose of their 

study is to minimize the total operational cost of the grid and to reduce the costs and losses. Based 

on Figure 14, the proposed method strongly reduces the network power losses for both total voltage 

profile index (TVPI) and total power loss index (TPLI) of the DG units. 
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Figure 14. Results for the study by Ameli (2017) [80]. 

Batista (2014) [81] gives a novel solution where the permanent interior magnet motor design 

domain is discretized into a suitable equivalent graph representation and an ant system (AS) 

algorithm is employed to achieve an efficient distribution of materials into this graph. Ant systems 

have successfully applied also to control problems. The proposed method provided sustainable 

torque and suitable shapes for designed problems. The results show that the mechanism of 

optimization of the multi-dimensional topology of electromagnetic devices was successfully 

performed by the proposed method. 

3.3.2. Tabu and Cuckoo Search 

The tabu search proposed by Glover (1986) [82] is based entirely on the methods described above 

and their direct development. In the immediate environment of our current solution, we are 

investigating new, better solutions. In the tabu search method we are always trying to keep moving, 

so we always look for the best solution in the environment, even if it is worse than the solution being 

tested. Since this method has a lot to explore, we have to keep in mind that we need to select the 

direction in which the search was going and in which direction it was not yet. This so-called taboo 

lists that are marked by taboo tabs. Limitations on taboo tabs helping to get through the roads already 

gone by, increasing the search effectiveness. The cuckoo method [83] is a similar optimization method 

inspired by the breeding behavior of cuckoo species. In this approach, the eggs represent the possible 

solutions and the search is performed by the quality of the eggs, which leads to finding the best 

solution. The main differences and advantages of the discussed approaches can be found in some of 

the most interesting publications collected in Table 7. 

Table 7. Tabu and cuckoo search techniques. 

Reference Year  Technique Application 

Chen et al. [84] 2017  
The best-guided cuckoo 

search algorithm 
Optimization of power systems 

Wang et al. [85] 2018  
Improved tabu search 

algorithm 

Optimize a hybrid excited 

generator 

Yang et al. [86] 2015  
Improved tabu search 

algorithm 

Performance evaluation of PM 

motors  

The gbest-guided cuckoo search algorithm with the feedback control strategy and constraint 

domination rule for the security and economic operation of the power system is discussed in Chen et 

al. (2017) [84]. Results of the proposed method were compared with the results of another method 
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developed by researchers in this field. The comparison results indicate that the proposed approach 

could provide high-quality, feasible solutions for different problems. 

The paper by Wang et al. (2018) [85] proposes a hybrid excited generator for variable-speed wind 

power generation systems. The excitation sources are PMs on the rotor and the field windings on the 

stator. The proposed generator can achieve constant voltage control and maximum power point 

tracking control by controlling the field current while the optimization is carried out by a modified 

tabu search method. In Yang et al. (2015) [86] a new topological design of PM motor is investigated 

via five different types of permanent magnet arrangements. An improved tabu search algorithm and 

finite element method are proposed for the evaluation of the performance of these motors. 

3.3.3. Simulated Annealing (SA) 

The simulated annealing (SA) method was proposed by Kirkpatrick, Gelatt, and Vecchi in 1983 

[87]. The SA searches for a new solution in the vicinity of a randomly chosen initial solution. 

However, if certain probability conditions are met, it also allows the solution to deteriorating. 

Therefore, it can escape from a local optimum that a gradient-based or a hill climbing type algorithm 

cannot. In the vertically improving methods, a series of random points is generated while in the target 

function improvement can be observed. To apply the SA strategy, it is necessary to define the 

following four main elements for each optimization problem; (a) solution space, (b) transition (i.e., 

how to generate a new random point), (c) fitness function, d) annealing schedule (i.e., determination 

of the number of iterations to be performed in the internal cycle and the method used to reduce the 

control parameter in the outer cycle). One of the advantages of the algorithm is that it can be easily 

implemented. Furthermore, the SA algorithm with proper parameterization does not stick in a local 

optimum (see table 8.) 

Table 8. Simulated annealing. 

Reference Year  Technique Application 

Chiu et al. [88] 2016  SA 
Optimization space-constrained base-vibration 

system excited with a specific frequency 

Farhani et al. [89] 2017  SA 
Real-time efficiency optimization of the direct 

vector-controlled induction motor drives 

Torrent–Fontbonne 

and López [90] 
2016  SA DGs 

SA is an efficient tool for various optimization problems. It is shown by Chiu et al. (2016) [88]; 

that SA can be applied in the optimization task of space-constrained base-vibration systems. Based 

on the results, in the case of increasing the base-vibrating frequency, the extracted electrical energy 

will increase. Consequently, based on the buckling and fatigue analysis, the employed approach for 

an optimal designed one-mass vibration-based electromagnetic energy harvester is quite efficient in 

maximizing the energy.  

Simulated annealing algorithm is used for finding a global optimal rotor flux while the 

suboptimal operating point is determined by a fast, analytical method using the induction machine’s 

model in work of Farhani et al. (2017) [89]. The paper by Torrent–Fontbona and López (2016) [90] 

reviews the problem and provides a new solution for supporting grid planning with an optimized 

number DGs. A particle swarm optimization method is found to be the tool for finding the optimal 

number of DGs which allows for maximizing the profit of the generators, minimizing the system 

losses, and improving the voltage profile. 

3.4. Probabilistic Reasoning and Bayesian Networks 

The core of the theory of Bayesian interpretation of probability is based on a concept that 

probability is a measure of a rational agent’s degree of belief in a proposition Ramsey (1926) [91], and 
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de Finetti (1937) [92]. Probabilistic reasoning with graphical models, known as Bayesian networks or 

belief networks, has become an active field of research and practice in artificial intelligence, 

operations research, and statistics in the last two decades. In order to reduce the computational needs, 

an asymptotic approximation could be applied, but it reduces the precision level. Therefore, 

Bayesian-type methods are mostly applied in power system and network analysis as can be seen from 

Table 9. Few examples can be found for diagnostics problems or parameter estimation problems of 

power systems using Bayesian techniques. 

Table 9. Application of probabilistic reasoning in the field of electrical machines and power 

systems. 

Reference Year  Technique Application 

Kari et al. [93] 2018  
ANFIS and Dempster–

Schafer 

Fault detection of power 

transformers  

Kazemdehdashti et al. 

[94] 
2018  

Density estimator based on 

generalized cross-entropy 

method 

Optimal power flow problem 

in networks containing renewable 

energy resources, nonstationary 

loads 

Torrent–Fontbona, F. 

and B. López [70] 
2017  

Probability theory methods 

and neuro-fuzzy modeling  

Networks containing renewable 

energy sources 

The dissolved gas analysis (DGA) approach is the basic tool for fault detection of power 

transformers. Kari (2018) [93] introduces an ANFIS system for these purposes. The outputs of the 

ANFIS model are evaluated by the Dempster–Schafer method which is originally developed for 

medical reasoning problems. The results of consistency, accuracy, and reliability have been presented 

in Figure 15. As is clear, the proposed method has the highest average consistency, accuracy, and 

reliability.  

 

Figure 15. Results for the study by Kari (2018) [93]. 

Kazemdehdashti (2018) [94] introduces a new density estimator for optimal power flow problem 

of networks containing renewable energy sources, etc., using generalized cross-entropy method. 

Figure 16 presents the results of the study in terms of RMSE (a) and time (b) for comparing the 

proposed method for 14-bus. As is it shown, the RMSE of the proposed method is lower than that for 

the other methods, but this has increased the processing time. The two-point estimation method 

(TPEM) has a lower processing time and lowers accuracy.  
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(a) (b) 

 

Figure 16. Results for the study by Kazemdehdashti (2018) [94] in terms of (a) root mean squared error 

(RMSE) and (b) time. 

Table 10. Application of Bayesian methods in the field of electrical machines and power systems. 

Reference Year  Technique Application 

Jiang et al. [95] 2015  Bayesian inference method 
Diagnostics of a CCGT 

power plant 

Lakehal et al. [96] 2017  
Bayesian network based on the 

Duval triangle method 

Transformer condition 

monitoring via Dissolved 

gas analysis 

Mansouri et al. [97] 2015  Bayesian methods 
State and parameter 

estimation of IMs  

The paper by Jiang et al. (2015) [95] presents an integrated Bayesian probabilistic method for 

precise power splitting and the degradation diagnostics of a single-shaft combined cycle plant, 

accounting for uncertainties in the measured data. Lakehal et al. (2017) [96] introduces a Bayesian 

network based on the Duval triangle method in the dissolved gas analysis which is the primary 

technique for identifying faults in transformers. The proposed model makes a quantitative estimation 

analysis of transformer faults, which supported the IEEE C57.104 standard (see Table 10.).  

Mansouri et al. (2015) [97] applies the Bayes method in a nonlinear time-varying state and 

parameter estimation task of induction machines (Ims). Based on results, the Bayes method has 

higher accuracy. Based on the results of the second comparative study, for all methods, estimation 

accuracy depends on estimating the model parameters as well as the convergence of the estimated 

parameters and states.  

3.5. Hybrid Soft Computing Methods 

Single SC techniques are found to be efficient due to their robustness and easy interpretability. 

At the same time, though their usage can be so advantageous, it is still limited by their exponentially 

increasing computational complexity. The combination of different techniques offers the synergy of 

their beneficial properties. Consequently, hybrid soft computing techniques have gained popularity 

(see table 11.).   

Table 11. Application of hybrid methods in the field of electrical machines and power systems. 

Reference Year  Technique Application 
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Dai et al. [98] 2016  Quantum-behaved PSO for 

parameter identification with 

SA 

Ensure the accuracy of the DFIG for 

control performance of the 

generator 

McDonald 

[99] 

2017  Hybrid GA and pattern search 

process  

Magnet SGs for offshore direct drive 

wind turbines 

Meo et al. 

[100] 

2016  Combining a multi-objective 

PWO and ANN  

Design optimization of a direct-

drive permanent magnet flux 

switching generators  

Dai et al (2016) [98] propose a new hybrid quantum-behaved particle swarm optimization-based 

solution for improving the precision of parameter identification (five parameters including stator 

resistance, stator inductance, rotor resistance, rotor inductance, and mutual inductance of stator and 

rotor) of the DFIG. Results indicated that the proposed algorithm accelerated the computing process 

by reducing the processing time. For the optimization of direct-drive permanent magnet synchronous 

generators, McDonald, (2017) [99] used a hybrid genetic algorithm and pattern search process and 

has found that the surface-mounted permanent magnet generator produces the lower cost of energy.  

With the purpose of reducing the costs and weight of the machine while maximizing the 

amplitude of the induced voltage as well as minimizing its total harmonic distortion Meo et al. (2016) 

[100] has presented a new hybrid approach for the design optimization of a direct-drive permanent 

magnet flux switching generators. Figure 17 presents the results of hybrid model, non-dominated 

sorting genetic algorithm (NSGA-II), abyss and proposed ANN-multi-objective particle swarm 

optimization (SMPSO) in terms of cost (a), total harmonic distortions of voltage (THD) (b), weight (c) 

and rated line voltage; em (d). As is clear from Figure 17, the proposed method reduces the cost ($) 

by about 23.85%, reduces the THD by about 17%, reduces the weight by about 44.73% and increases 

em by about 2.6%. These values claim that the proposed hybrid method improves the condition 

compared with that for the other techniques. 

(a) (b) 

(c) (d) 

Figure 17. Results for the study by Meo et al. (2016) [100] in terms of (a) cost; (b) THD; (c) weight and 

(d) em. 
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In general, it can be claimed that hybrid methods can be the most successful methods than single 

methods because these methods can take advantage of several methods simultaneously and reduce 

the defects in each method. With the advancement of artificial intelligence and soft computing 

methods, the trend towards hybrid methods increases for the reasons given. There are still many 

hybrid methods that have not been used, which suggests that exploration of these methods be 

increased which can clarify the dark points in this and increase the orientation and usage by the 

researchers. 

4. Discussions  

The trend of recent years suggests that the greatest flexibility of design may be ensured by soft 

computing tools. In this paper, we explore the latest techniques of intelligent algorithmic methods 

for design and control of electrical machines and investigate how the reviewed methods affect the 

solution. 

The great majority of automated control tasks needs the existence of the system model on some 

level. General practice of the simple feedback control applies the a priori knowledge, i.e., the system 

is regulated by the variation of the measured output. However, in practice, the system under control 

is highly nonlinear, only a few variables are measurable external disturbances degrade the 

performance, and also the technological processes generate further constraints in the desired control 

of the system dynamics [101]. Also, adaptive and advanced control methods usually apply the 

mathematically complicated Lyapunov method [102,103]. It is clear that the system modeling and 

mathematically easy manageability provided by advanced methods are the key factors in a successful 

control method design [23]. The choice of the proper control law in case of a specific electric machine 

and drive system raises many questions. Below we attempt to highlight how the replacement of 

conventional techniques with the various ”soft” approaches collected in this paper may allow the 

greatest benefits.  

The algorithmic approaches rely on the physical system equations of motion described by 

mathematical equations. Such techniques calculate analytically, for example, the controller's 

parameters. In such cases when information may be incomplete, or the system model is not fully 

available, fuzzy logic can be applied as a universal approximator due to the linguistic terms. It is 

suitable for modeling the system behavior, deducing the control law by fuzzy reasoning built on 

implications or tuning the parameters by applying the suitable membership functions. Furthermore, 

the various fuzzy operators allow the flexible fitting of the model behavior to the real scenario. 

Engineers usually face regression tasks during the control design process. The regression in practice 

is related to measured data. For each measurement, an error value should be assigned so that the 

classical regression cannot be handled in common models. Despite this, the fuzzy regression assigns 

the error values to the measurement error and if the regression line is within this error range that line 

is accepted. However, an infinite number of lines with such properties may exist within the error 

range. Therefore, by applying a fuzzy membership function which follows the error probability’s 

distribution and setting a rule basis could easily solve this problem without large computational 

burdens. 

A potential advantage of fuzzy logic-based approximation is that they allow us to optimize 

multiple variants and configurations and reduce complexity so that the problem may have limited to 

a smaller number of parameters. Furthermore, the linguistic variables ensure great flexibility context-

sensitive machine modeling. This will allow the system to learn by example. We can construct rules 

whose results are as close as possible for the expected results. 

Additionally, the classical control methods require the immediate response of the system in 

various situation depending on the environment’s reactions. Fuzzy control allows taking into account 

not just the physical properties but also the rules that cannot be exactly mathematically described. A 

real situation would require a large number of parameters that cannot be totally measured under the 

operation conditions, for instance, if we wish to teach an electric car how to behave in specific traffic 

situations. Such cases demand immediate responses, and we cannot wait minutes while the onboard 

computer solves complicated differential equations since the application of fuzzy logic and other soft 



Energies 2019, 12, 1049 21 of 29 

 

computing tools allow the system to learn from examples. After the proper rule system is set up, the 

system can give the nearly ideal responses. 

It is obvious when the only the approximate system model is available, heuristic or cognitive 

techniques can be applied which describe the context- or situation-dependent behavior of the system. 

The neural networks emerging from statistical methods are capable of approximating a regular 

function [104]. This property is highly advantageous in nonlinear control problems where 

analytically unknow nonlinear functions are required to be found using only a few (measurement) 

data. Today a significant number of the NN variants are known, therefore specific and highly 

nonlinear cases can be efficiently handled. We should emphasize that both NN and fuzzy methods 

can be adapted in most of the conventional control and system modeling techniques. 

The estimation of the physical parameters which characterize the model of the machine is also 

essential for the efficient control of electrical machines. Parameter estimation is particularly 

fundamental in condition monitoring tasks. Here, the parameter estimation techniques are similar to 

the methods applied in the control law synthetization and state observations. Such tasks mainly result 

in nonlinear programming problems where the previous knowledge may become crucial. Since the 

Bayesian statistic may enhance the estimation performance in contrast to classical probabilistic 

solutions, examples can be found, e.g., in [105] and in the publications mentioned in Section 3.4. 

Furthermore, an important step of the estimation is its convergence. Resulted optimization problems 

may have many constraints. At this point, the evolutionary computing techniques, for instance the 

heuristic search methods, are applicable, such as genetic algorithms, taboo search, cuckoo method, 

etc.  

Optimization issues arise in most engineering disciplines, and we encounter them in our 

everyday life. The optimization task aims to achieve the best possible solution according to some 

objective function by setting the appropriate values of the decision variables. Finding the optimal 

solution is typically a difficult task because, in practice, the target function is nonlinear, different 

constraints may occur, etc., and often the algorithm stuck into local extrema of the search space. In 

case of electrical machine design, although the general practice gives the main directions [4], all of 

the modeling assumptions are necessary to be satisfied from the beginning of the design process [106] 

since design optimization may dispute further questions. Constrained multivariate optimization 

problems usually arise during machine design issues from which it follows that the mathematical 

models become more complicated. 

The classical design practice can describe the problems only with complicated differential 

equations. Of course, the parameters must be known to solve the equations. Usually, it would take 

many parameters to describe a real system, or it would take a too long time to solve the problem. The 

parameters in most cases otherwise cannot be measured. It is, therefore, necessary to estimate them. 

Another solution is soft computing, especially fuzzy logic. 

The general feature of designing technical systems is that the same task can be solved in several 

ways [107]. Comparison of individual solutions is rather subjective, weighing the advantages and 

disadvantages relative to each other basically influences the assessment. The solution that is 

considered to be optimal can only be selected by a pre-formulated criteria system. The subjectivity of 

judgment is carried by the accepted criteria system. Since its adoption, the optimum system selection 

has become a specific task. We should be aware that one solution that is considered to be optimal by 

one of the criteria systems, using another set of criteria, is no longer optimal. Fuzzy logic is proven to 

be suitable in such assessments. The optimal solution may depend on the applied model parameters. 

Therefore, once the optimal model has been set up a post-optimality analysis should be performed, 

usually referred to as parametric study. The role of sensitivity analysis is revealing the sensitive 

parameters. Classical techniques of sensitivity analyses are observing the influence of the 

perturbation of the parameters. Soft computing tools could also support this step of the process by 

providing soft boundaries of the sets. 

We see that finding a single optimum solution can be a major challenge. However, finding 

several optimal solutions at once may result in a more complex task. The so-called multi-modal 

optimization (MMO) approach serves as a solution to these latter optimization problems [108] during 
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the machine design process. Multimodal optimization could benefit from the various evolutionary-

based methods, for instance in founding the basin of attraction of the optimum, or reducing the search 

domain. Also, the above chapters give insight into modern heuristics which may speed up the design 

process with a combination of classical optimization because they allow easy parallelization and 

system-level optimization. Similarly, the fulfillment of the various conditions of the model 

configurations at the same time is problematic and requires skillful designers. MMO performs the 

design process by optimizing multiple models having some shared variables. The multi-model 

optimization approach uses different representations, including coarser and more detailed models, 

and allows multiple configurations [108]. Therefore, in these cases, stochastic searching methods play 

a prominent role. Many studies suggest various evolutionary algorithms to multimodal problems 

(see, e.g. [109])  

However, the expected improvement depends on many conditions, of which the most 

prominent may be the performance. Most of the suggested algorithmic techniques are only partially 

effective or applicable to a specific class of problems without the capability of simultaneously 

satisfying all the different requirements. Further investigations are needed to achieve more reliable 

and general methods. The theory of fuzzy logic has been elaborated and well established by today, 

but its introduction into new areas is still ongoing. From the above presented general panorama of 

the literature, it is obvious that there are only a few results on the global optimization solutions of 

evolutionary techniques and there is still limited contribution for its fundamental theory. Altogether, 

these observations suggest that by transferring the approaches between intelligent computational 

methods in the direction of MMO approaches could be an excellent step toward new and effective 

algorithmic techniques and plausible theory. 

5. Conclusions 

Electrical machines and drive systems account for more than half of the global electricity used, 

and most of it is consumed by electric motors. Thus, there is a great demand for efficient designs to 

satisfy the competitive requirements. Furthermore, due to the trend of automation, demonstrated in 

the review, the control and drive systems of electrical rotating machines are expected to continue to 

grow. Having mentioned that, the control systems and design methodologies and techniques will be 

evolved to achieve higher performance.  

Several SC models reviewed that dramatically improved the efficiency of rotating electrical 

machines through improvement of parameters for finite element analysis, and nonlinear time-

domain finite element analysis. It was observed that most of the issues of each design and control 

steps are covered by advanced methods. A wide range of intelligent computational techniques serves 

for the designers, and all of them has advantages and disadvantages. Choosing the optimal method 

of SC shown to be not an easy task. Such a selection task requires the user to understand the 

differences among the computation algorithms. This brief literature survey indicates that the 

fundamental issue is finding the trade-off among model complexity, accuracy, and computing time. 

Designers could use a combination of various soft computing techniques as the optimal solution to 

obtain the required machine performances as hybrid techniques. 

Recent studies have provided, from a theoretical point of view, how modern heuristics and soft 

computing techniques may improve the efficiency of engineering practice in the field of electrical 

machine design and control. Due to the problem-specific nature of SC methods, new effective 

algorithmic techniques are necessary to be designed for implementing them in any stage of the 

process. Potential advantages of SC relying on the capabilities to deal with context-sensitivity, high 

flexibility despite classical methods based on sharp borders. Additionally, without complex 

mathematical operations, sorting can be automatically performed on alternatives. Also, the 

relationships between categories can be easily examined. 

At present, there is still no general theory or methodology for designing such heuristics, e.g., 

ANN, GA, etc. The primary intention of the designer should be the specification of the structure of 

the neural network or the fuzzy reasoning system, etc. After, the key parameters must be identified. 

Experimental results may help in training these systems. 
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Our review supports that the hybrid methods outperform the standard ones. Considerable 

progress in the field could be achieved by the synergetic utilization of the heuristic algorithmic and 

MMO methods. Our research could support designers in finding enhanced methods.  

 

Acronyms 

ABC Artificial bee colony 

AS Ant system 

ANFIS 
Adaptive neuro-fuzzy inference 

system 

ANN Artificial neural network 

ANN-

SMC 

Artificial neural networks - sliding 

mode control 

ANN-

SMPSO 

ANN-multi-objective particle swarm 

optimization 

BA Bat algorithm 

CCGT Combined cycle gas turbine  

DC Direct current  

DFIG Doubly fed induction generator 

DL Deep learning  

DGA Dissolved gas analysis 

DSIM Dual star induction machine  

DG Distributed generation 

DE Differential evolution  

EC Evolutionary computation 

FE Finite-element  

EV Electric vehicle 

FR Feeder reconfiguration 

IM Induction machine 

MLP Multi-layered perceptron 

SA Simulated annealing 

IM Induction machine  

SPSRM 

 

Single-phase switched reluctance 

machine 

PMSG 
Permanent magnet synchronous 

generator 

PMMs Permanent-magnet motors 

PID Proportional integral derivative 

TPLI Total power loss index 

NSGA-II 
Non-dominated sorting genetic 

algorithm 

PV Photovoltaic 

DFIM Double fed induction machine 
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GA Genetic algorithm 

NFC Neuro-fuzzy controller 

MAE Mean absolute error 

MPE Mean percentage error 

DWT Discrete wavelet transform 

SVM Support vector machine 

PM Permanent magnet 

MIC 
Multi-functional intelligent 

controller  

IPMSM 
Interior permanent magnet 

synchronous motor 

MMO 
Multi-model or multi-modal 

optimization 

MWT  Multi ripple remodel  

PSO Particle swarm optimization 

MGA Modified genetic algorithm 

SC Soft computing  

RBF Radial basis function 

TPEM Two-point estimation method 

ML Machine learning  

VEH Vibration energy harvester 

SG Synchronous generator 

RMSE Root mean squared error 

SNC Static nonlinear controller 

GRNN Generalized regression neural networks  

RBFNN Radial basis function neural network 

TVPI Total voltage profile index 

GW Grey wolf 

AFPMSG 
Axial flux permanent magnet 

synchronous generator 
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