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Abstract: Current energy policy-driven targets have led to increasing deployment of renewable
energy sources in electrical grids. However, due to the limited flexibility of current power systems,
the rapidly growing number of installations of renewable energy systems has resulted in rising
levels of generation curtailments. This paper probes the benefits of simultaneously coordinating
aggregated hydro-reservoir storage with residential demand response (DR) for mitigating both
load and generation curtailments in highly renewable generation power systems. DR services
are provided by electric water heaters, thermal storages, electric vehicles, and heating, ventilation
and air-conditioning (HVAC) loads. Accordingly, an optimization model is presented to minimize
the mismatch between demand and supply in the Finnish power system. The model considers
proportions of base-load generation comprising nuclear, and combined heat and power (CHP) plants
(both CHP-city and CHP-industry), as well as future penetration scenarios of solar and wind power
that are constructed, reflecting the present generation structure in Finland. The findings show that
DR coordinated with hydropower is an efficient curtailment mitigation tool given the uncertainty in
renewable generation. A comprehensive sensitivity analysis is also carried out to depict how higher
penetration can reduce carbon emissions from electricity co-generation in the near future.

Keywords: demand response; optimization; uncertainty

1. Introduction

Recently, the European Union (EU) issued energy efficiency directives to effectively address
and eradicate the worst effects of climate change. In this respect, the EU-2030 climate and energy
framework has set key targets that include a 40% reduction in greenhouse gas (GHG) emissions relative
to 1990 levels, a 27% reduction in total energy consumption, and a minimum 27% share of renewable
energy sources (RESs) in the entire EU by 2030 [1]. Similarly, more ambitious goals concerning GHG
emission reductions have been set for the EU-2050 energy roadmap.

Hence, such environmental and energy policies have substantially increased the share of RESs,
particularly wind and solar generation, in the total generation mix worldwide. The central objective
of these policies is to achieve a carbon neutral system by replacing fossil fuel based conventional
generation with renewables, as these are emission free. However, integration of RESs poses a challenge
to the current grid owing to the un-dispatch-able nature of many RESs. Due to the intermittency of
RESs and their lack of flexibility, maintaining power system balance becomes challenging and often
results in curtailment events. For instance, 1166 GWh of wind generation was curtailed in Spain
in 2013 [2]. Such events imply that the power system could not realize the potential benefits of the
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investment in RESs and failed to reduce GHG emissions. Moreover, the cost of such curtailments is
borne by the system in the form of increased tariffs.

Solutions to integrate RESs include storage technologies, market price strategies, support schemes,
and demand response (DR). The merits and de-merits of these options have been widely discussed
in the literature. Storage technologies, such as pumped hydro storage or compressed air storage,
need huge investment cost [3]. Moreover, for the time being, the price volatility in Nord-Pool is not
favorable for storages to cover the marginal cost of charge and discharge through price arbitrage [3].
Similarly, markets introduce negative pricing during events of high generation, thus paying consumers
to consume the excess output of RESs. Depending on the magnitude of surplus production, the high
negative price may not be enough to balance the market by price only [2]. Support schemes
e.g., priority dispatch for RESs, work counter to open market conditions, conflict heavily with EU
market liberalization policy. Due to such limitations, DR is considered the most economical and
potential tool compared to other options. It has a tendency to act as a power resource or power sink
depending on the generation profile.

In this context, several studies have focused on the flexibility offered by various DR loads.
For instance, Reference [4] studied the distributed control of DR offered by heating, ventilation
and air-conditioning (HVAC), and electric water heater (EWH) loads in smart grids. The work in
Reference [5] demonstrated the benefits of HVAC DR coordinated with thermal storage for wind
generation balancing. Similarly, the temporal matching of local loads with on-site photovoltaic
generation was maximized with the aid of flexible loads in [6]. A framework to jointly optimize
the scheduling of HVAC loads and electric vehicles (EVs) was proposed in [7]. The benefits offered
by DR in distribution systems was reported in [8]. In Reference [9], the potential benefits of HVAC
DR coordinated with thermal masses were studied in a Micro-grid participating in a two-stage
electricity market.

Moreover, numerous studies have been performed to integrate high wind power into the system
while utilizing the flexibility offered by responsive loads. In Reference [10], the flexibility of HVAC
loads coordinated with building thermal masses were studied to mitigate the curtailments in islanded
networks. The power sink capabilities of HVAC and EV loads under variable wind generation
penetrations were analyzed in [11]. In Reference [12], a framework was proposed to jointly minimize
energy cost and wind generation curtailment using aggregated DR services in a distribution system.
The authors in Reference [13] quantified the system-wide storage size required for renewable generation
curtailment mitigation in the Finnish power system. The system’s storage was aided by residential
DR through electric storage space heaters. Although the study targeted future grids, it neglected to
consider hydro-generation and load curtailment issue. Similarly, DR potential of electric storage space
heaters was analyzed in [14] to address wind generation curtailment under different penetrations,
but the crucial details of base-load generation were not considered. The work in Reference [15] devised
a methodology to utilize the flexibility of combined heat and power (CHP) production to integrate
wind power in the grid. A major drawback was that the wind integration was accomplished at the
expense of increased carbon emissions. Researchers in [16] followed a model-based approach to
quantify the upper limit of wind curtailments for the future power system of Ireland. The approach
in [16] neither considered details of system demand nor generation mix.

In order to integrate RESs into power systems, both load and generation curtailments need to
be addressed in the problem. Existing studies in this field do not realize all the aspects and details of
the load and generation mix which are required to analyze the emission reduction in a power system.
The scope of this work is to investigate the power system balance under high penetrations of solar and
wind generation over and above the mix of base-load generation in Finland. The base-load generation
comprises nuclear and CHP co-generation. The objective is to simultaneously minimize load and
RES curtailments system-wide, and investigate the options of mitigating such RES curtailments in
case high RES penetration is required for emission-free power system in Finland. To achieve this,
the flexibility of aggregated hydro-storage was utilized while probing the DR services offered by the
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residential sector, which constitutes about 25% of the total electricity consumption in Finland. A smart
grid communication environment is assumed where the system operator is authorized for direct load
control of residential consumers through the home energy management system (HEMS).

For DR, we considered HVAC, EWH, thermal storage, and EV charging loads. The reason
for selecting these loads is their chief contribution to annual residential demand. For instance,
space heating load alone represents about 70% of the residential demand, and is mainly due to the
long winter season in Finland. The central idea underlying HVAC DR is that users can tolerate a small
deviation from set point temperatures. The HVAC load can be scheduled to follow an intermittent
RES profile by preheating or pre-cooling the buildings. Building thermal masses, due to high thermal
time constant, enable effective management of the HVAC response. Moreover, the domestic storage
space heater (space heater equipped with a thermal storage) is another DR example. Similarly, EWH is
an essential component for domestic hot water (DHW) consumption. The DHW storage for EWH
may be integrated into thermal storage of space heaters, which is ubiquitous in Finland, but here both
are studied apart. EV charging can be flexibly scheduled as long as the demand is satisfied for the
next journey.

The remainder of the paper is structured as follows. Section 2 discusses the generation and load
models followed in this study. Section 3 details the mathematical formulation. Section 4 discusses the
simulation results while the paper is concluded in Section 5.

2. Modeling Methodology

2.1. Base-Load Generation Modeling

In Finland, base-load generation comprises nuclear, as well as CHP plants. CHP plants serve both
the city and industry. Nuclear power plants offer almost a constant aggregated generation level with
a few maintenance breaks for different units during summer season. CHP-industry also operates on
a constant level and is integrated in the pulping process thus being largely based on bio-fuels. CHP-city
electricity production follows the trend of seasonal heat demand of Finnish building stock. It serves the
building stock via district heating networks whereas the electricity co-generation is sold to the market
or grid. In winter, the electricity production is high as heat demand is high and in summer, vice versa.
Knowing the aggregated annual electrical production of CHP-city plants, power to heat ratios and the
total building stock, the electrical generation profile can be simulated with a good accuracy using data
available at [17,18].

2.2. Hydro-Generation Modeling

We model the hydro-generation using equivalent energy values of aggregated hydro-reservoir
capacity, daily water inflows, and minimum and maximum dispatch levels of hydro-generation.
In terms of electrical energy, the total hydro storage capacity across Finland is 5530 GWh. The daily
energy inflow to the reservoirs in Finland for the year 2017 is available at Nord-pool spot [19] as
illustrated in Figure 1. Nord-Pool is a multinational power exchange for electricity trade in the Nordic
region. All cross border trade takes place in Nord-Pool. It originated as a power exchange for Norway
and eventually Sweden, Finland, Denmark, Estonia, and other Baltic countries also integrated in it.
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Figure 1. Daily average inflow to aggregated hydro storage in Finland in 2017.

The source of inflows mainly includes the melting of snow and rainfalls, which is notable in
the Figure. The highest peak occurs when the snow melts in May, while the smaller peak is in the
rainy season. The minimum dispatch level of hydro generation has to be maintained to allow the
use of water for agricultural purposes, while the maximum dispatch level is constrained by the
installed hydro-generation capacity in Finland. The minimum and maximum dispatch levels for hydro
generation are 422 MW and 2550 MW, respectively.

2.3. Renewable Generation Modeling

This work requires realistic wind and photovoltaic (PV) generation time series for future
penetration scenarios in Finland. Wind generation can be modeled using a statistical approach that
combines probability integral transformation and simulated wind speed time series for new generation
locations without any measurement data as proposed in [20]. On the other hand, PV generation can
be modeled with similar methodology aimed to produce power time series for new PV locations
without measurement data as presented in [21]. A joint modeling of both wind and PV is utilized
here as followed in [13]. The obtained aggregated generation series is well suitable for long-term
future studies.

The approach for wind generation considers the actual geography and installed wind power
generation structures of Finland in the beginning of 2016. The existing wind farms were expanded
proportionally to include new turbines with latest technology available at that time. The upscaling
factor was determined according to the aggregated electricity generation in Finland during 2015,
including net imports. For PV generation, 12 locations, with equal installed capacity were considered,
distributed in southern Finland. The average capacity factor for aggregated wind and PV generation
was 28% and 11.8%, respectively.

Using the methodology, 100 runs were simulated for a one-year period. Of these scenarios, a well
above average scenario within the 95th percentile was selected for this work. A sensitivity analysis
was also carried out due to the uncertainty in intermittent generation.

2.4. Two-Capacity Building Model for HVAC Loads

To estimate the heating or cooling requirements in a detached house, we utilized a two-capacity
model from our previous works [6,13,22]. This thermal model studies the indoor temperature variation
with respect to the external temperature. As the name suggests, it requires two heat capacitances.
One capacitance is allocated to the building mass, Cm, whereas the other is distributed to the indoor air,
Ca. While Ca is much smaller than Cm, it plays an inevitable role in assessing the indoor air dynamics.
This model has two unknown temperature variables, namely, the indoor temperature, θa, and the
building mass temperature, θm. Figure 2 illustrates this model.
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Figure 2. Two-capacity building thermal model.

It is assumed that the HVAC unit, responsible for the ventilation air flows, is set to operate at
a constant temperature, θx. The generated air is of convective type and is allocated to the indoor air
node. For heat flows, the ground temperature, θg, must be considered. The windows installed in the
building have a small thermal mass compared to the building envelope. The different node points
and the HVAC unit are connected through heat conductance, or whenever there is heat flow, they are
connected by heat capacity. The building mass node is located at a vague depth inside the building
and hence represents the average temperature of the building mass. It is assumed that the internal
heat transfer by electric appliances and occupants is negligible.

Unknown building parameters were identified by comparing the step response of the IDA (IDA
is a simulation tool to study the indoor environment and energy consumption of a building) model
and two-capacity model. The HVAC power was followed by a six-hour interruption resulting in
an exponential decay of θa. The parameters were determined by minimizing the difference between
the response from IDA and two-capacity model.

2.5. Electric Vehicle

The driving behavior and trip lengths of an EV are rather random and require Monte Carlo
simulation. This travel information can be transmitted by EV drivers to the aggregator before the
scheduling day, thanks to the smart grid communication. For this study, we employed the Finnish
National Travel Survey (NTS) [23] that offers starting time probabilities of journeys related to different
age groups and their trip lengths corresponding to different week-days. This data can be combined
and used to generate different EV profiles in Finland similar to the approach in [24]. Using travel
efficiency and battery capacity of an EV available with the manufacturer, this driving routine can be
converted into electricity charging demand accordingly. For the sake of simplicity here, a weekday
is considered given that people drive to working and public locations. It is assumed that charging
facilities are available only at homes. For the business as usual case, the EV is plugged-in for charging
as soon as it reaches its parking destination at home. If DR is enabled, charging can be deferred or
shifted as long as the battery has enough storage to cover the demand for the next journey. Only grid
to vehicle (G2V) mode is studied in this work.

3. Mathematical Formulation

This section presents the mathematical modeling for the proposed framework. The objective is to
minimize both the load and RES curtailments based on the flexibility offered by hydro storage and
flexible residential loads, as stated in Equation (1):

Minimize ∑
t

∣∣∣(PNuclear
t + PCHP−city

t + PCHP−ind
t + Phydro

t + PREN
t

)
−

(
DCritical

t + DFlex
t

)∣∣∣ ∆t, ∀t ∈ T (1)
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The first term in Equation (1) represents the total generation and the last term represents the total
load to be satisfied. The above objective is subject to some constraints discussed hereafter.

DFlex
t = DHVAC

t + DEWH
t + DEV

t , ∀t ∈ T (2)

θa
t,n =

θa
t−1,n +

∆t
Ca

(
Hm θm

t−1,n + He θe
t,n + Hg θ

g
t,n + Hx θx

t,n + Qhvac
t,n

)
1 + ∆t

Ca (Hm + He + Hg + Hx)
, ∀t ∈ T, ∀n ∈ N (3)

θm
t,n =

θm
t−1,n +

∆t
Cm

(
Hm θa

t−1,n + Hy θe
t
)

1 + ∆t
Cm (Hm + Hy)

, ∀t ∈ T, ∀n ∈ N (4)

∣∣∣Qhvac
t,n

∣∣∣ ≤ Qhvac
max,n , ∀t ∈ T, ∀n ∈ N (5)

θdhw
t,n =

θdhw
t−1,n

(
Vtan k

n −Vuse
t,n ∆t

)
Vtan k

n
+

θin Vuse
t,n ∆t

Vtan k
n

+
Pewh

t,n

cwVtan k
n

.
∆t

60 min/h
, ∀t ∈ T, ∀n ∈ N (6)

0 ≤ Pewh
t,n ≤ Pewh

max,n, ∀t ∈ T, ∀n ∈ N (7)

θa
min,n ≤ θa

t,n ≤ θa
max,n, ∀t ∈ T, ∀n ∈ N (8)

θdhw
min,n ≤ θdhw

t,n ≤ θdhw
max,n, ∀t ∈ T, ∀n ∈ N (9)

SOCTS
t,n = SOCTS

t−1,n + PTSch
t,n ∆t−

∣∣∣Qhvac
t,n

∣∣∣∆t− µt,n, ∀t ∈ T, ∀n ∈ N (10)

SOCTS
min,n ≤ SOCTS

t,n ≤ SOCTS
max,n, ∀t ∈ T, ∀n ∈ N (11)

0 ≤ PTSch
t,n ≤ PTSch

max,n ∀t ∈ T, ∀n ∈ N (12)

SOCEV
t,m = SOCEV

t−1,m + ηcPEV
t,m∆t, ∀t ∈ T i f t /∈ [t1m, t2m), ∀m ∈ M (13)

SOCEV
t,m = SOCEV

t−1,m − dt,mηev∆t, ∀t ∈ T i f t ∈ [t1m, t2m), ∀m ∈ M (14)

SOCEV
min,m ≤ SOCEV

t,m ≤ SOCEV
max,m, ∀t ∈ T, ∀m ∈ M (15)

0 ≤ PEV
t,m ≤ PEV

max,m ∀t ∈ T, ∀m ∈ M (16)

SOChydro
t = SOChydro

t−1 + In f lowhydro
t ∆t− Phydro

t ∆t, ∀t ∈ T (17)

SOChydro
min ≤ SOChydro

t ≤ SOChydro
max , ∀t ∈ T (18)

Phydro
min ≤ Phydro

t ≤ Phydro
max , ∀t ∈ T (19)

∑
t∈T

(
PTSch

t,n

)
∆t =Ψn , ∀n ∈ N (20)

∑
t∈T

(
Pewh

t,n

)
∆t = φn , ∀n ∈ N (21)

∑
t∈T

(
PEV

t,m

)
∆t = βm , ∀m ∈ M (22)

∑
n∈N

(
PTSch

t,n

)
= DHVAC

t , ∀t ∈ T (23)

∑
n∈N

(
Pewh

t,n

)
= DEWH

t , ∀t ∈ T (24)

∑
m∈M

(
PEV

t,m

)
= DEV

t , ∀t ∈ T (25)
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The constraint in Equation (2) determines the total flexible demand in each time slot. Equations (3)
and (4) represent discrete forms of the two-capacity building model that collectively assess space
heating or cooling demands inside each detached house while the power consumption of HVAC unit
is capped in Equation (5). HVAC unit can operate on any continuous power level between zero and
maximum rating. The absolute value function in Equation (5) occurs due to the fact that HVAC power
level in Equation (3) is positive for heating in winter season while it becomes negative for cooling
in the summer season. Since, the power consumption is always considered positive, an absolute
value function has been introduced. This absolute function can be easily reformulated into linear
expression [6] using positive auxiliary variables. Constraint (6) captures the dynamics of EWH [6],
while the constraint in Equation (7) restricts its power consumption beyond the maximum level, similar
to Equation (5). The model in Equation (6) uses temperature as the state of charge (SOC) for DHW.
If there is no usage of DHW, no power is consumed by EWH and the temperature of water remains the
same as in previous time slots. The DHW usage triggers the operation of EWH in order to maintain
the temperature. Thermal losses are not considered in EWH. The thermal comfort for HVAC and EWH
is bounded in Equations (8) and (9), respectively. The evolution of thermal storage is presented in (10)
with a simple linear expression. The constraint Equation (11) defines the bounds for the allowable
thermal storage capacity. The charging power of thermal storage is restricted as in Equation (12).
The charging and discharging of EVs are controlled in Equations (13) and (14), respectively where
t1m is the time step when EV m leaves the home and t2m is the time interval when it arrives home in
each day over the study period. Equation (15) enables the EV storage to mutate between specified
levels only, while Equation (16) bounds the EV charging power. The hydro storage management is
modeled in Equations (17) and (18). The constraint Equation (19) specifies that hydro generation is
always committed between minimum and maximum levels. Constraints Equations (20)–(22) preserve
the total demand of each flexible load for each household over the study period i.e., yearly individual
flexible demand for each household remains constant. Equations (23)–(25) determine the total DR of
different flexible loads in each time slot.

Please note that Equations (3), (4), and (6) in our work do not constitute an original contribution
but are mentioned for clarity. However, the unknown parameters in Equations (3) and (4) have been
determined according to the Finnish conditions and the method has been explained in Section 2.4.
Constraints (3) and (4) are related to the objective Function (1) through the constraints (5), (8), (10)–(12),
and (20). In constraint (10), the absolute value of Qhvac

t,n means discharging of the thermal storage
while PTSch

t,n denotes the charging. PTSch
t,n for each household determines the total HVAC DR in

constraint (20). Similarly, constraints (6), (7), and (9) collectively determine DR of EWH. For simplicity,
the hydro-storage in Equations (17)–(19) is modeled as a single reservoir and the ramping capability is
ignored due to large number of hydro-power plants in Finland. The DR incentive program and the
price mechanism between the households and the system operator are beyond the scope of this work.
It is further assumed that there is no transmission congestion within Finland.

4. Case Study

4.1. Input Data

In this study, we used the historical generation and demand data of Finland for the year 2017.
The total annual electrical generation was recorded as 85.5 TWh including net imports, whereas the
total demand was 83.4 TWh [17]. The shares of CHP-city and CHP-industry in annual generation
were 14% and 10.7%, respectively [17]. In this study, CHP-industry profile was assumed constant
keeping in view its share. To generate a system wide CHP-city electrical generation profile while
realizing its contribution in aggregated generation, a large population of Finnish building stock was
selected accordingly and simulated using two-capacity building models (3) and (4). The district heat
consumption profile thus obtained was transformed to an electrical power generation profile of CHP
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considering electricity to heat ratio of 0.31, which was quantified using statistics available in [18].
The resultant segregated base-load generation profile is illustrated in Figure 3.

Figure 3. Hourly base-load generation profile.

The renewable generation profile (70% wind and 30% solar) was simulated as discussed in
Section 2. One above-average scenario in terms of hourly average of annual generation with different
penetrations as used in our simulations is demonstrated in Figure 4. The aggregated renewable
generation (with 100% penetration) was approximately 87 TWh.

Figure 4. Renewable energy sources (RESs) penetrations (70% wind and 30% solar).

The demand profile obtained from Fingrid [17] was first segregated according to critical and
flexible loads. The flexible loads only consist of HVAC and EWH loads of detached houses in
the obtained profile while all other loads are considered critical. It is assumed that there are
700,000 detached houses present in Finland that are heated electrically and half of them are equipped
with thermal storage (the thermal losses are ignored for simplicity). The space heating or cooling load
population is simulated with a two-capacity model, i.e., Equations (3) and (4) considering diversity in
house areas and HVAC ratings. The external temperature profile for year 2017 was obtained from [18].
The average indoor ambient temperature was assumed to be 21 ◦C. The building thermal parameters
were derived from our previous work [6]. Similarly, diversified EWH loads were simulated considering
typical DHW consumption in Finnish households, with the assumption that DHW usage is the same
on a daily basis [6]. The DHW set point for each household was assumed to be 60 ◦C. Furthermore,
we considered 0.5 Million EVs in the system. The EV load was modeled using MC simulation. Each EV
was assumed to have storage capacity of 20 kWh with charging capability between 3 and 4 kW.
Since this study is aimed for future grid, the simulated EV load profile was then added on top of the
existing demand profile such that the total demand became 85.2 TWh. The modeled classified load is
depicted in Figure 5. Note that critical load cannot be altered.
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Figure 5. Hourly dis-aggregated demand profile.

As mentioned in Section 1 the residential electricity demand constitutes about 25% of the total
electricity demand. The demonstrated profile in Figure 5 represents aggregated hourly (critical +
flexible) residential, commercial, and industrial loads. The residential sector constitutes detached
houses and apartment buildings. Please note that apartment buildings are usually served by district
heating networks to satisfy both heating and DHW demand. Only the flexible portion of the residential
loads, i.e., HVAC and EWH loads of detached houses, have been dis-aggregated in Figure 5, which is
indeed less than 25% of the total demand. The major portion of the flexible load is occupied by HVAC.
The EWH load is small due to limited DHW usage. Similarly, EV loads are also small as there were
only 500,000 EVs in the system.

We simulated the following two case studies.

Case I The hydro storage was optimized to accommodate for RESs variability without activating
DR through residential flexible loads of detached houses. The charging of EV was
also uncontrolled.

Case II The hydro storage was optimized while coordinating with DR through direct control of HVAC,
EWH, and EV charging loads. DR enrollment was assumed 100%.

The base-load generation was the same as in Figure 3 while RESs penetration was 35% unless
stated otherwise. The households and operators can interact efficiently due to the smart grid
infrastructure. The initial SOC of hydro storage was assumed to be 50% of the maximum capacity and
the final level was required to be within ±5% of the initial level. For DR, thermal storage capacity
was 65 kWh (equal to daily heat demand for average winter day) with charging capability of 8 kW.
The resolution of the study was hourly and the simulation period was one year. The problem is linear
and solved via Matlab-GAMS platform using CPLEX. The simulation time of CPLEX solver was about
30 min.

4.2. Simulation Results

The simulated total load and stacked generation profile for Case I are illustrated in Figure 6.
Total annual generation was approximately 87 TWh comprising 50% base-load generation, 15% hydro
generation, and 35% RESs. This framework resulted in 4.13 TWh of load curtailments and 5.84 TWh
of generation curtailments as demonstrated in Figure 7, where positive and negative residual loads
implied load curtailment and generation curtailment, respectively. The opposite signs in Figure 7
are used just to differentiate between the two curtailments. Load curtailment represented 4.85%
of the total demand, while generation curtailment was 18.89% corresponding to RESs’ penetration.
Load curtailment in our simulation implied that this amount of energy had to be met employing
conventional power plants that would cause GHG emissions or had to be imported from neighboring
countries. Generation curtailment is the amount of RES generation that has to be down regulated
in the case there is no demand. The hydro storage operation was very demanding in winter and
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spring seasons due to high heating demands. The control of hydro-generation alone does not bring
substantial benefit to the system.

Figure 6. Load and generation profile for Case I.

Figure 7. Residual load and hydro-storage dynamics for Case I.

The load and stacked generation profile, in addition to the residual load balance in Case II are
shown in Figures 8 and 9, respectively. The proposed framework showcased a superior performance in
Case II, i.e., when residential DR was unleashed. Note that all other loads and generation parameters
(except hydro) were the same as in Case I. DR preserves the total flexible demand over the year,
i.e., total annual demand remains the same before and after activating DR. However, the hourly
demand changes according to the DR framework. When DR was activated, load curtailments were
reduced to 0.98 TWh (1.15% of demand), whereas generation curtailment decreased to 1.65 TWh (5.33%
of RESs). Compared to Case I, the improvement was 76.2% and 71.7%, respectively. Figure 8 shows
how the demand profile tried to match with the RESs closely in Case II, while Figure 9 captures the
unserved load and hydro storage variation around the year. The high oscillations in total demand can
be seen in Figure 8, which illustrates the effectiveness of the model. Notably, due to high shares of
HVAC load in the residential sector, the building thermal inertia and domestic thermal storage together
significantly contributed to balance the variations in RESs. The total amount of hydro generation
remained almost unchanged but the distribution of the resources around the year was significantly
modified and noticeable by comparing Figures 6 and 8.
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Figure 8. Load and generation profile for Case II.

Figure 9. Residual load and hydro-storage dynamics for Case II.

The simulation results discussed so for are summarized in Table 1 below.

Table 1. Results considering one scenario of renewable energy sources (RESs).

Case Study Load Curtailment (TWh) RES Curtailment (TWh)

Case I 4.13 5.84

Case II 0.98 1.65

4.3. Sensitivity Analyses

The simulation results presented so far were obtained using one possible scenario (see Figure 4)
out of 100 simulated power series of RESs. It was therefore necessary to validate our results against
the uncertainty and inherent variability associated with RESs. To do so, the proposed framework was
simulated for 100 possible scenarios of RESs. The results thus obtained were analyzed and compared
using statistical measures. The purpose was to determine the 95% confidence interval for load and
RES curtailments. The summary of the obtained results is given under Table 2. The curtailments in
Table 1 are comparatively higher than the mean values obtained in Table 2 since the former results
were based on a single RESs scenario with a good hourly average.

Table 2. Statistics of Results with RESs’ Uncertainty.

Case Study Curtailment Mean Value
(TWh)

Standard Deviation
(TWh)

Lower 95%
Confidence Bound

(TWh)

Upper 95%
Confidence Bound

(TWh)

Case I
Load 3.748 0.267 3.695 3.8

Generation 5.168 0.277 5.113 5.222

Case II
Load 0.653 0.19 0.6078 0.698

Generation 1.112 0.274 1.047 1.177
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The effect of varying DR through domestic thermal storage capacity on the decision variables was
assessed and the results are illustrated in Figure 10. The Figure clearly shows the affirmative impact of
considering thermal storage with 50% of the detached households. Load curtailments were reduced
from 1.55% to 1.15% when a storage capacity equal to the heat demand of one day was introduced
into the model. The curtailments further dropped to about 1% of total demand when storage capacity
increased to two days. Similar behavior was visible for RES curtailment. RES curtailment decreased
drastically when thermal storage of one-day capacity was integrated. The improvement was significant
only until storage capacity of 2 days, after which, the benefit was marginal.

Figure 10. Effect of varying thermal storage capacity.

Lastly, the impact of increasing RES penetration on curtailment levels was analyzed and the
results are listed in Table 3. Please note that base-load generation was in the same place. Evidently,
the higher penetrations reduced load curtailments but on the contrary, increased RES curtailments due
to excessive generation in the system. The effect of coordinating DR with hydro-storage, i.e., Case II,
on curtailments was visible from the results at all penetration levels. From Load curtailment reduction
perspective, the benefit in case II increased with higher penetrations compared to Case I. The relative
benefit was 76.2% at 35% RES penetration, which increased to 92% at 70% RES penetration. However,
the results for RES curtailments were the opposite as the relative benefit in Case II decreased to 12.5%
at 70% penetration level. This was due to the thermal and load constraints aimed to preserve the
comfort levels and total demand of households over the year. DR was subdued by such constraints.

Table 3. Effect of Increasing RES Penetration.

RES Penetration (%) Aggregated Generation
as % of Total Demand

Case I Case II

Load Curtailment
(TWh)

RES Curtailment
(TWh)

Load Curtailment
(TWh)

RES Curtailment
(TWh)

35 102.1 4.130 5.84 0.982 1.65

40 107.23 3.215 9.339 0.484 4.921

45 112.41 2.586 13.128 0.320 8.456

50 117.6 2.248 17.207 0.227 12.538

55 122.8 1.974 21.351 0.176 16.790

60 127.98 1.752 25.546 0.143 21.082

65 133.15 1.566 29.777 0.117 25.419

70 138.34 1.409 34.038 0.095 29.781

Excess RESs production at higher penetration levels summarized in Table 3 should be utilized
effectively to prevent down regulation. One possible solution is aimed to partially replace heat and
electricity production of CHP-city with surplus RESs, since CHP-city contributes to carbon emissions.
For instance, using the electricity to heat ratio, 1.31 MW of surplus RESs would imply 0.31 MW
reduction in electrical output, while 1 MW reduction in heat generation of CHP-city. This way,
a considerable number of district heated buildings in Finland can shift to electrical loads, e.g., ground
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source heat pump or direct electrical heating. The proposed option was simulated for Case II and the
decline in CHP-city production (heat + electrical), after being replaced with surplus RES, is analyzed
in Table 4. It was assumed as direct electrical heat in this case. Note that the initial total CHP
annual production was 50.6 TWh, i.e., 11.97 TWh (14% of total) electricity and 38.6 TWh heat. At 35%
penetration, 89.45% of surplus RESs in Case II were utilized compared to the results in Table 3.
The utilization advantage remains prominent even at higher penetrations and this effectively brings
down the emissions of CHP-city. The difference between the results is illustrated in Figure 11 for 70%
RES penetration. It is to be noted that this solution did not result in considerable amount of curtailment
reductions during the summer season. The reason is that RES (both wind and solar) production was
extremely higher, and residential demand was less. CHP production was also smaller as it mainly
followed the external temperature variation. Furthermore, the proposed solution would require high
ramp-up and ramp-down rates, which is definitely possible for CHP-city.

Table 4. Effect of Replacing CHP-city Production with Surplus RESs in Case II.

RES
Penetration

(%)

RES
Curtailment

(TWh)

Reduction in
Curtailment

(%)

CHP-city Electricity
Production (TWh)

CHP-city Heating
Production (TWh)

CHP-city Total
Production

(TWh)

35 0.174 89.45 11.628 37.51 49.14

40 0.67 86.38 10.970 35.39 46.36

45 1.424 83.16 10.313 33.27 43.58

50 2.510 79.98 9.603 30.98 40.58

55 3.885 76.86 8.923 28.785 37.71

60 5.617 73.35 8.318 26.832 35.15

65 7.445 70.71 7.724 24.916 32.64

70 9.644 67.62 7.212 23.265 30.48

Figure 11. CHP–city replaced with surplus RESs (70% penetration) for Case II: (a) CHP production;
(b) RESs curtailments.

5. Conclusions

Curtailment events are usually inevitable when RESs are deployed at a large scale. Such events are
discouraging for system stakeholders. This paper proposes a mathematical framework to demonstrate
how aggregated hydro-storage in conjunction with residential DR loads can provide balancing
services in a highly renewable generation based power system. Adequate modeling for each system
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component was considered in our study. The proposed framework was applied to a Finnish case
study with different RES penetrations. Results prove that unleashing DR by system operators can
effectively mitigate the curtailments that would be translated into the operating cost of power systems.
The presented study showed the possible option of mitigating the load and RES curtailments against
very high RES penetration that is needed for carbon free energy systems in Finland. RES spillage at very
high penetrations can be avoided by replacing the CHP-city production in proportion to the electricity
to heat ratio. High RES penetration would contribute to GHG emission reduction significantly while
resulting into economical benefits such as reduction in electricity spot price. The supply curve in spot
market is based on the marginal prices of each generating unit. The generation bids are arranged in the
ascending order with respect to the offered price. The cheapest generation is dispatched first. In this
way, RES generators will clear the market most of the time.

Author Contributions: A.A.B. formulated the optimization model and performed the simulations; and M.L.
proposed the main idea and supervised the work.

Funding: This research was funded by Aalto University as part of the ‘Renewable Finland’ project supported by
Academy of Finland.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Indices and sets
t, T Index and set of time slot
t1m, t2m Time step when EV m leaves and arrives home respectively on daily basis
∆t Difference between two time slots
n, N Index and set of household
m, M Index and set of Electric Vehicle
Parameters
cw Specific heat capacity of water (J/kg/K)
Ca Indoor air heat capacity (J/◦C)
Cm Building fabric capacity (J/◦C)
dt,m Distance travelled by EV m at time t (mile)
DCritical

t Total critical demand in the system at time t (Wh)
He Heat conductance between external air and indoor air node points (W/◦C)
Hg Heat conductance between indoor air and ground node points (W/◦C)
Hm Heat conductance between indoor air and building mass node points (W/◦C)
Hy Heat conductance between external air and building mass node points (W/◦C)
Hx Heat conductance between HVAC air and indoor air node points (W/◦C)

In f lowhydro
t Hydro-inflows at time t (Wh)

PNuclear
t Nuclear power production at time t (W)

PCHP−city
t CHP-city power production at time t (W)

PCHP−ind
t CHP-industry power production at time t (W)

PREN
t RES production at time t (W)

Phydro
max , Phydro

min Maximum and minimum limits for hydro-power generation (W)
PEV

max,m Rated maximum charging power of EV m (W)
Pewh

max,n Rated maximum power of EWH of household n (W)
PTSch

max,n Rated maximum charging power of thermal storage of household n (W)
Qhvac

max,n Rated maximum power of HVAC unit of household n (W)

SOChydro
max , SOChydro

min Maximum and minimum limits for SOC of aggregated hydro storage (Wh)
SOCTS

max,n, SOCTS
min,n Maximum and minimum limits for SOC of thermal storage of household n(Wh)

SOCEV
max,m, SOCEV

min,m Maximum and minimum limits for SOC of EV m (Wh)
θa

max,n , θa
min,n Maximum and minimum limits for ambient temperature of household n (◦C)

θe
t External temperature at time t (◦C)
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θx
t,n Temperature of the ventilation air of household n at time t(◦C)

θin Temperature of inlet cold water in the hot water tank (◦C)
θ

g
t,n Ground node temperature of household n at time t (◦C)

θdhw
max,n, θdhw

min,n Maximum and minimum limits for DHW temperature of household n (◦C)
Vtan k

n Volume of hot water tank of household n (L)
Vuse

t,n Volume of hot water used by household n at time t (L)
ηc Charging efficiency of EV storage
ηev Travel efficiency of EV (Wh/mile)
Ψn Total thermal charging demand of household n over the period T (Wh)
φn Total EWH demand of household n over the scheduling period T (Wh)
βm Total EV charging demand of EV m over the scheduling period T (Wh)
Variables
DFlex

t Total flexible demand at time t (W)
DHVAC

t Total HVAC demand at time t (W)
DEWH

t Total EWH demand at time t (W)
DEV

t Total EV charging demand at time t (W)

Phydro
t Hydro power production at time t (W)

Pewh
t,n EWH power of household n at time t (W)

PTSch
t,n Thermal storage charging power of household n at time t (W)

PEV
t,m Charging power of EV m at time t (W)

Qhvac
t,n HVAC power consumption of household n at time t (W)

SOCEV
t,m SOC of EV m at time t (Wh)

SOChydro
t SOC of aggregated hydro-storage at time t (Wh)

SOCTS
t,n SOC of thermal storage of household n at time t (Wh)

θa
t,n Ambient temperature of household n at time t (◦C)

θdhw
t,n DHW temperature of household n at time t (◦C)

θm
t,n Building mass temperature of household n at time t (◦C)

µt,n Thermal storage loss coefficient of household n at time t (Wh)
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