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Abstract: Accurate probabilistic forecasts of renewable generation are drivers for operational and
management excellence in modern power systems and for the sustainable integration of green
energy. The combination of forecasts provided by different individual models may allow increasing
the accuracy of predictions; however, in contrast to point forecast combination, for which the
simple weighted averaging is often a plausible solution, combining probabilistic forecasts is a much
more challenging task. This paper aims at developing a new ensemble method for photovoltaic
(PV) power forecasting, which combines the outcomes of three underlying probabilistic models
(quantile k-nearest neighbors, quantile regression forests, and quantile regression) through a weighted
quantile combination. Due to the challenges in combining probabilistic forecasts, the paper presents
different combination strategies; the competing strategies are based on unconstrained, constrained,
and regularized optimization problems for estimating the weights. The competing strategies are
compared to individual forecasts and to several benchmarks, using the data published during the
Global Energy Forecasting Competition 2014. Numerical experiments were run in MATLAB and R
environments; the results suggest that unconstrained and Least Absolute Shrinkage and Selection
Operator (LASSO)-regularized strategies exhibit the best performances for the datasets under study,
outperforming the best competitors by 2.5 to 9% of the Pinball Score.

Keywords: forecast combination; photovoltaic power; probabilistic forecasting

1. Introduction

Load demand and non-controllable generation powers are the main sources of uncertainty in
modern electrical grids and forecasting of these issues is of the greatest interest during planning and
operation stages. In particular, disposing of accurate load and generation predictions is mandatory in
order to tackle and solve a large variety of power system tasks, such as market bidding, energy dispatch
in smart grids and microgrids, replacement reserve scheduling, virtual power plant aggregation,
and sizing of battery energy storage systems [1–7].

Relevant literature on load and generation forecasting is quite heterogeneous; this is highlighted
by the comparative dissertations in reviews and surveys [8,9], clearly showing that no method
outperforms the others in every aspect. Major efforts have been devoted to point prediction, for which
researchers and practitioners often individuate Artificial Neural Networks (ANN) [10,11], K-Nearest
Neighbors (KNN) [12], support vector regression [13], Random Forests (RF) [14], and multiple linear
regression models [15] as the best solutions.
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Historically, research efforts have often been dedicated to load forecasting, since the generation
has been mainly constituted by dispatchable fossil-fueled and hydroelectric plants. Today, instead,
the widespread penetration of renewable generation, and in particular of photovoltaic (PV) and
wind systems, makes forecasting renewable generation essential to cope with the new power system
tasks, addressing the uncertainty of the energy source. Moreover, due to the intrinsic randomness
of the physical phenomenon, probabilistic PV power forecasting is more adequate to deal with
the management and operation of electrical networks under uncertainties [16,17]; however, only a
minor part of the existing literature has dealt with PV power forecasting under a probabilistic
framework. Relevant existing approaches are based on Quantile K-Nearest Neighbors (QKNN) [18],
Quantile Regression Forests (QRFs) [19], Quantile Regression (QR) [20,21], and Gradient Boosting
Regression Trees [18]; these models proved their effectiveness also in recent energy forecasting
competitions [16,22], since the forecasting systems developed by the highest-ranking teams were
based on these nonparametric probabilistic models.

New trends in probabilistic PV power forecasting individuate the probabilistic combination of
individual forecasts as a suitable solution, in order to improve the accuracy of the results [9,20,23].
Probabilistic forecast combination is not as straightforward as it seems to be at first inspection.
In contrast to combining point forecasts, for which the simple weighted averaging is often a plausible
solution, combining probabilistic forecasts is a much more challenging task; the combined probabilistic
forecasts indeed must retain adequate properties in terms of reliability and sharpness [20,24], and the
main features of a probabilistic forecast (e.g., the ascending order of predictive quantiles) must be
retained also by the combined forecasts [23].

Relevant literature has addressed these aspects under different points of view [9]. Individual
probabilistic forecasts can be indeed merged: (i) by a combination of the predictive cumulative
distribution functions [20]; or (ii) by a combination of the predictive quantiles [23]. The first
combination type has already been applied to PV power forecasting, whereas the second combination
type has yet to be applied to PV power forecasting (it has been presented in [23] only for load
forecasting). Nevertheless, within these two types of approach, several strategies and architectures can
be developed to combine forecasts, so there is room for further investigation and improvement.

In this context, this paper aims to provide a further contribution on the probabilistic combination
of PV power forecasts. The paper develops and compares different forecast combination strategies
applied to three individual probabilistic models (QKNN [18], QRF [19], and QR [20,21]), which are
selected among the state-of-the-art nonparametric solutions for probabilistic forecasting. The outcomes
of these models are properly combined under a competitive ensemble framework, based on a weighted
combination of predictive quantiles.

Estimating the combination weights is a challenging task; several estimation strategies and
architectures are therefore analyzed in this paper, in order to check the effectiveness of the model
combination from different perspectives, and to allow picking the best solution for combining forecasts.
In particular, the competing strategies are based on unconstrained, constrained, and regularized
optimization problems for estimating the weights used to combine the predictive quantiles.

To guarantee the reproducibility of the experiments, the data published in the framework of the
Global Energy Forecasting Competition 2014 (GEFCOM2014) [16] are used in this paper. In order to
validate the proposal, the results are compared to relevant probabilistic benchmarks in actual scenarios.

Eventually, the main contributions of this paper are:

• the development of a new competitive ensemble method that combines the outcomes of three
probabilistic models, selected among the ones which have proved consistency in probabilistic PV
power forecasting;

• a critical analysis of different strategies and architectures to estimate the weights of the predictive
quantile combination;

• a comparison of the results of the numerical experiments, based on the data published in the
framework of the GEFCOM2014, with state-of-the-art probabilistic benchmarks.
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The paper is organized as it follows. Section 2 provides an overview of the competitive ensemble
method; Section 3 briefly describes the underlying probabilistic models; Section 4 presents the
combination architectures and strategies analyzed in this paper; Section 5 shows benchmarks used for
the comparison; Section 6 shows the results of the numerical experiments; and our conclusions are in
Section 7.

2. Overview of the Proposed Competitive Ensemble Method for Forecasting PV Power

The forecasts of the underlying probabilistic models are combined in this paper in a competitive
ensemble method, illustrated in Figure 1. Historical PV power and weather data, together with
calendar qualitative variables, are the inputs of the procedure. These inputs are used by the underlying
probabilistic models in order to build individual probabilistic forecasts of PV power, provided in terms
of predictive quantiles. Eventually, the predictive quantiles returned from the underlying models are
fed as inputs of the ensemble model, in order to be properly combined. In the forecast combination step,
calendar variables may or may not be used; this differentiates the parameter estimation, as will be
discussed in Section 4. The outputs of the procedure are probabilistic PV power forecasts, given in
terms of predictive quantiles.
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Figure 1. Overview of the proposed competitive ensemble method for forecasting photovoltaic
(PV) power.

3. Probabilistic Underlying Models

Three probabilistic underlying models are selected and used to build individual forecasts. They are
based on the QKNN, QRF, and QR techniques; all of these underlying models provide probabilistic
forecasts in terms of predictive quantiles.

A brief description of these models is provided hereinafter. For each model, we assume that
the same, following training data are available at the forecast origin t: (i) N historical values
Pt−(N−1), Pt−(N−2), . . . , Pt of PV power; (ii) N vectors zt−(N−1), zt−(N−2), . . . , zt of M predictors,
corresponding to each of the N historical values of PV power. In particular, the generic jth vector of
predictors is zj =

{
z1j , . . . , zMj

}
, for j = t− (N − 1), t− (N − 2), . . . , t.

3.1. Quantile K-Nearest Neighbors

K-Nearest Neighbors (KNN) models are widely used in regression problems, due to their
versatility and ease of use. Extending KNN to the probabilistic framework, thus formulating the
QKNN model, is quite straightforward.

QKNN models are based on similarity effects. Given the predictors zt+k (related to the forecast
time horizon t + k, but known at the forecast origin t), the KNN model individuates, among the N
predictor vectors, a subset Zt+k =

{
z∗1 , . . . , z∗K

}
made of the K predictor vectors that are closest to

the predictors zt+k. In this paper, the proximity relationship is mathematically expressed using the
Euclidean metric, defined as:

d(zt+k, zi) =

√
∑ M

m=1
(
zmt+k , zmi

)2. (1)
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The subset Pt+k =
{

p∗1 , . . . , p∗K
}

of measured PV powers, corresponding to the subset Zt+k,

is straightforwardly individuated. The QKNN forecast P̂ (QKNN)
t+k (qi) at level qi is then obtained as the

sample qi-quantile of the subset Pt+k.
The hyper-parameter K (i.e., the number of neighbors) is selected in this paper in a

cross-validation procedure.

3.2. Quantile Regression Forests

QRFs are groups of D decision trees, where individual trees are built by randomly selecting
bagged subsets from the available pool of predictor variables.

Given the predictors zt+k (related to the forecast time horizon t + k, but known at the forecast
origin t), one leaf of each tree is univocally individuated. In particular, for the generic dth tree,
it is denoted as Ld(zt+k). In QRF, all of the outcomes contained in the D leaves, which have been
individuated, concur to form the probabilistic forecast for the time horizon t + k.

The QRF predictive distribution is estimated as:

F̂(Pt+k ≤ P∗|zt+k) = ∑ N
n=1wn(zt+k)1

{
Pt−(n−1) ≤ P∗

}
, (2)

where 1{·} = 1 if the condition in the brackets is true, 1{·} = 0 if the condition is false, and a weight
coefficient wn(zt+k) is estimated for each of the N historical vectors of predictors, as:

wn(zt+k) =
1
D ∑ D

d=1

1
{

zt−(n−1) ∈ RLd(zt+k)

}
∑N

n=1 1
{

zt−(n−1) ∈ RLd(zt+k)

} , (3)

and RLd(zt+k)
is the rectangular subspace of RM in which the leaf Ld(zt+k) finds its values.

Obtaining the QRF forecast P (QRF)
t+k (qi) at level qi is straightforward from (2); it is:

P̂(QRF)
t+k (qi) = inf

{
P∗ : F̂(Pt+k ≤ P∗|zt+k) ≥ qi

}
. (4)

The hyper-parameter D (i.e., the number of trees in the forest) is selected in this paper in a
cross-validation procedure.

3.3. Quantile Regression

QR is a multiple linear regression model, the parameters of which are not estimated in a traditional
ordinary least square approach, but instead they are estimated by minimizing the Pinball Score
(PS) [16,25] in the training period. The PS is a proper score [25], which simultaneously accounts for
reliability and sharpness of the probabilistic forecasts; it is the most common index in evaluating
probabilistic forecasts, and is therefore used in all of the comparative analyses in this paper.

The analytic formulation of the QR model is:

Pt+k = zt+kβ(qi) + ε
(qi)
t+k, (5)

where β(qi) is the vector of parameters to be estimated, and ε
(qi)
t+k is the residual. Parameters are

estimated from:
β̂(qi) = argmin

β(qi)
∑ N

n=1ε
(qi)
t−(n−1)·(qi − 1{ε(qi)

t−(n−1) < 0}). (6)

The unconstrained nonlinear programming problem in (6) can be put in a constrained linear
programming problem [26]; this allows to increase the computational efficiency. It is represented as:
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β̂(qi), ε̂(qi)
+

, ε̂(qi)
−
= argmin

β(qi), ε(qi)
+

,ε(qi)
−

qi1[Nx1]ε
(qi)

+
+ (1− qi)1[Nx1]ε

(qi)
−

,

s.t. zt−(n−1)β
(qi) + ε

(qi)
+

t−(n−1) − ε
(qi)

−

t−(n−1), ∀n,

ε
(qi)

+

t−(n−1), ε
(qi)

−

t−(n−1) ≥ 0, ∀n,

(7)

where 1[Nx1] is a [Nx1] vector of ones, and:

ε
(qi)

+

t−(n−1) = ε
(qi)
t+k·1

{
ε
(qi)
t−(n−1) ≥ 0

}
, (8)

ε
(qi)

−

t−(n−1) = −ε
(qi)
t+k·1

{
ε
(qi)
t−(n−1) < 0

}
. (9)

The QR forecast P̂(QR)
t+k (qi) at level qi is then obtained as:

P̂(QR)
t+k (qi) = zt+k β̂(qi). (10)

4. The Competitive Ensemble Model for Forecast Combination

The competitive ensemble model is based on the Quantile Weighted Sum (QWS), which has
recently been applied to probabilistic load forecasting with interesting results [23]. Eight different
strategies are proposed and compared in this paper:

• the Pure Quantile Weighted Sum (PQWS);
• the Hourly Quantile Weighted Sum (HQWS);
• the Pure Constrained Quantile Weighted Sum (PCQWS);
• the Hourly Constrained Quantile Weighted Sum (HCQWS);
• the Pure Quantile Weighted Sum with Least Absolute Shrinkage and Selection Operator (LASSO)

Regularization (PQWSLR);
• the Hourly Quantile Weighted Sum with LASSO Regularization (HQWSLR);
• the Pure Quantile Weighted Sum with Ridge Regularization (PQWSRR);
• the Hourly Quantile Weighted Sum with Ridge Regularization (HQWSRR).

In the “pure” approaches, weights are estimated without any differentiation in terms of daily
periodicity, whereas in the “hourly” approaches weights are estimated using only same-hour
observations; thus the weights are differentiated by the hour of the day to account for the daily
periodicity of the PV power pattern. The last four approaches are extended in this paper starting
from the Least Absolute Shrinkage and Selection Operator (LASSO) quantile regression [27] and from
the Ridge quantile regression [28], respectively, which allow regularizing the weights by assigning a
penalty linked to the magnitude of the weights.

In the PQWS and HQWS strategies, the weights are estimated without any constraint or
regularization loss. Compared to the constrained or regularized strategies, the PQWS and HQWS
strategies return the smallest in-sample PS, since the minimization problem is unconstrained. However,
there is no assurance that these weights are the best picks for out-of-sample forecasts. This is a
common issue for regression applied to forecasting, in which overfitting the training data has negative
consequences when the model is used to forecast unknown data.

Therefore, in this paper, we compare the results of the unconstrained, non-regularized strategies
to constrained and regularized strategies, in order to check their performances and to pick the best
strategy to be used in practical applications.

The PCQWS and the HCQWS are the constrained strategies, in which weights are forced to sum
for the unity. This ensures that the predictive quantiles of the combined forecasts do not oddly deviate
from the average value of the three predictive quantiles of the individual predictors. The in-sample PS
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of the PCQWS (HCQWS) strategy is obviously greater than the corresponding in-sample PS of the
PQWS (HQWS) strategy, but the out-of-sample performances may be very different.

The PQWSLR, the HQWSLR, the PQWSRR, and the HQWSRR strategies were instead developed
in order to estimate weights having a regularized magnitude (in absolute value). Indeed, regularization
of the parameters is a well-known strategy in order to avoid overfitting by penalizing the returned
objective function (in this case, the PS), adding a loss term which directly depends on the magnitude
of the parameters. In this paper, both the LASSO and the Ridge regularization are tested,
in order to provide a comprehensive analysis. Note that, in these cases, the in-sample PSs of the
PQWSLR/PQWSRR (HQWSLR/HQWSRR) strategies are obviously greater than the corresponding
in-sample PS of the PQWS (HQWS) strategy, but the out-of-sample performances may be very different.

All of the strategies developed in this paper are presented in the following subsections.

4.1. Pure Quantile Weighted Sum

PQWS combination returns predictive quantiles at a given level qi, by summing the predictive
quantiles (at the same level qi) of the underlying models, multiplied for coefficients ω(qi) ={

ω
(qi)
1 , ω

(qi)
2 , ω

(qi)
3

}
that are estimated in the training step.

Starting from the PQWS approach, two strategies are separately analyzed in this paper:
a combination of all of the three individual forecasts (PQWS3) and a combination of the two best
individual forecasts (PQWS2). This differentiated analysis is run in order to check whether the addition
of a third individual forecast, which is clearly worse than the other two, may add useful information
when building the ensemble. In the following formulation, we will refer to the PQWS3 strategy, since
its extension to the PQWS2 is trivial. The model is:

P(PQWS3)
t+k (qi) = ω

(qi)
1 P̂(QKNN)

t+k (qi) + ω
(qi)
2 P̂(QRF)

t+k (qi) + ω
(qi)
3 P̂(QR)

t+k (qi). (11)

The weights are estimated from:

ω̂(qi) =
{

ω̂
(qi)
1 , ω̂

(qi)
2 , ω̂

(qi)
3

}
= argmin

ω(qi)

L

∑
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}) (12)

that is, by minimizing the PS in the training interval, which is made of L observed points.
The hyper-parameter L is the length of the dataset used to train the weights of the combination

models; it could be optimized by means of a model selection procedure (e.g., cross-validation).
However, no selection procedure was run in this paper to pick the optimal hyper-parameter L;
our purpose was instead to provide an exhaustive comparative analysis on the variation of the forecast
errors with respect to this hyper-parameter. Nevertheless, the results of the comparative analysis can
be used by the forecaster to build subsequent out-of-sample forecasts, picking the optimal result.

4.2. Hourly Quantile Weighted Sum

The daily seasonality of the PV power time series is taken into account in the HQWS approach.
For the same purposes enunciated beforehand, two strategies were developed from the HQWS
approach and separately analyzed: a combination of all of the three individual forecasts (HQWS3) and
a combination of the two best individual forecasts (HQWS2). We present the HQWS3 strategy, since
the extension to the HQWS2 case is trivial. The model is:

P(PQWS3)
t+k (qi) = ∑ 24

h=1

[
ω
(qi)
h1

P̂(QKNN)
t+k (qi) + ω

(qi)
h2

P̂(QRF)
t+k (qi) + ω

(qi)
h3

P̂(QR)
t+k (qi)

]
·hod(h)t+k, (13)

where hod(h)t+k = 1 if the forecast horizon t + k is the hth hour of the day, and hod(h)t+k = 0 otherwise.
The weights are estimated from:
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ω̂(qi) =
{

ω̂
(qi)
11

, ω̂
(qi)
12

, ω̂
(qi)
13

, . . . , ω̂
(qi)
241

, ω̂
(qi)
242

, ω̂
(qi)
243

}
=

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}).
(14)

The daily periodicity of the PV power pattern is therefore also accounted for in the forecast
combination; Equation (14) is a new formulation proposed in this paper to account for it in PV
power forecast combination. This new HQWS approach is indeed expected to improve the forecast
combination, by differentiating the weights not only for different quantiles but also for different hours
of the day.

4.3. Pure and Hourly Constrained Quantile Weighted Sum

The PCQWS and the HCQWS approaches are based on a constrained optimization formulation,
in which the sum of the weights is constrained to the unity. Also, for these approaches we differentiate
between a combination of all of the three individual forecasts (PCQWS3 and HCQWS3 strategies) and
a combination of the two best individual forecasts (PCQWS2 and HCQWS2 strategies).

For the PCQWS3 strategy, the model is analogous to Equation (11), but the weights are
estimated from:

ω̂(qi) =
{

ω̂
(qi)
1 , ω̂

(qi)
2 , ω̂

(qi)
3

}
= argmin

ω(qi)

L
∑

l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)})

s.t. ω
(qi)
1 + ω

(qi)
2 + ω

(qi)
3 = 1.

(15)

For the HCQWS3 strategy, the model is analogous to Equation (13), but the weights are
estimated from:

ω̂(qi) =
{

ω̂
(qi)
11

, ω̂
(qi)
12

, ω̂
(qi)
13

, . . . , ω̂
(qi)
241

, ω̂
(qi)
242

, ω̂
(qi)
243

}
=

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)})

s.t. ω
(qi)
11

+ ω
(qi)
12

+ ω
(qi)
13

= 1
...

ω
(qi)
241

+ ω
(qi)
242

+ ω
(qi)
243

= 1.

(16)

4.4. Quantile Weighted Sum with LASSO Regularization

The PQWSLR and the HQWSLR approaches are based on the regularization of the weights
through the LASSO [27]. In contrast to the constrained approaches, in which the sum of the weights is
assigned, the regularization of parameters in the PQWSLR and HQWSLR approaches is an output of
the model itself (which indeed requires no pre-assignment from the forecaster). Due to the intrinsic
capability of the LASSO in reducing the impact of uninformative predictors by assigning smaller
(or even zero) weights to them [16], these two approaches were developed and tested only for the
combination of all three of the individual forecasts, thus each of them straightforwardly identifies one
combination strategy.

For the PQWSLR strategy, the model is analogous to Equation (11), but the weights are
estimated from:

ω̂(qi) = {ω̂(qi)
1 , ω̂

(qi)
2 , ω̂

(qi)
3 } =

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}) + λL ∑3
j=1
∣∣ωj
∣∣. (17)
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For the HQWSLR strategy, the model is analogous to Equation (13), but the weights are
estimated from:

ω̂(qi) = {ω̂(qi)
11

, ω̂
(qi)
12

, ω̂
(qi)
13

, . . . , ω̂
(qi)
241

, ω̂
(qi)
242

, ω̂
(qi)
243
} =

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}) + λL ∑3
j=1 ∑24

u=1

∣∣∣ωuj

∣∣∣ (18)

The selection of the penalty coefficient λL (which is an important hyper-parameter in LASSO
regression) is performed in this paper in 5-fold cross-validation.

4.5. Quantile Weighted Sum with RIDGE Regularization

The PQWSRR and HQWSRR approaches are based on the Ridge regularization [28]. The models
are very similar to the LASSO-based ones, and also, in this case, the intrinsic capability in reducing the
impact of uninformative predictors by assigning smaller weights to them [28] lead us to develop and
test the PQWSRR and HQWSRR approaches only for the combination of all of the three individual
forecasts, developing one strategy for each approach.

For the PQWSRR strategy, the model is analogous to Equation (11), but the weights are
estimated from:

ω̂(qi) = {ω̂(qi)
1 , ω̂

(qi)
2 , ω̂

(qi)
3 } =

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}) + λR ∑3
j=1 ω2

j . (19)

For the HQWSRR strategy, the model is analogous to Equation (13), but the weights are
estimated from:

ω̂(qi) = {ω̂(qi)
11

, ω̂
(qi)
12

, ω̂
(qi)
13

, . . . , ω̂
(qi)
241

, ω̂
(qi)
242

, ω̂
(qi)
243
} =

= argmin
ω(qi)

∑L
l=1

[
Pl − P(PQWS3)

l (qi)
]
·(qi − 1{Pl < P(PQWS3)

l (qi)}) + λR ∑3
j=1 ∑24

u=1 ω2
uj

.
(20)

The selection of the penalty coefficient λR (which is an important hyper-parameter in Ridge
regression) is performed in this paper in 5-fold cross-validation.

5. Benchmarks

The ensemble combination of probabilistic individual forecasts was mainly assessed in terms of
relative improvement with respect to individual predictions. However, three relevant benchmarks
were also added for comparison. They are briefly recalled in the following subsections.

5.1. Naïve Benchmark

A Naïve Benchmark (NB), was provided by the GEFCOM2014 organizers [16]. It consists of point
forecasts which are repeated for the 99 predictive quantiles. This benchmark was added in this paper
in order to provide a direct comparison with outcomes of the GEFCOM2014.

5.2. Quantile Artificial Neural Network

An ANN-based probabilistic benchmark (QANN) is the second benchmark, which was added to
provide a comparison with an artificial intelligence technique. The QANN consists of a feedforward
neural network, which was trained upon the 70% of the available training data by minimizing the PS
using a particle-swarm optimization algorithm. The hyper-parameter optimization was performed on
the remaining 30% of the available training data, reserved for validation. A dedicated neural network
was trained for each predictive quantile level, in order to improve the performances. The QANN was
performed by the neural network toolbox in MATLAB.
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5.3. Gradient Boosting Regression Trees

A Gradient-Boosting Regression Tree (GBRT) benchmark, which was added due to the great
performances showed in the winner methods during the GEFCOM2014. Also, in this case a dedicated
model was trained for each quantile level. The GBRT was developed using the gbm package in R [29].

5.4. Bayesian Method

A Bayesian (BAY) benchmark was adapted from the methods presented in [20,30], in order to
suit the forecasting scheme of the GEFCOM2014. In particular, the underlying deterministic model
selected to forecast the expected values of the posterior predictive distributions consists of an average
of a GBRT model and of a RF model; exogenous time series approaches indeed performed quite poorly,
due to the monthly forecast horizons. The BAY benchmark is an hybrid parametric model, and it
was specifically added in the comparative analysis in order to also provide a parametric reference for
the results.

6. Numerical Application

The strategies for combining individual probabilistic forecasts are quantitatively assessed in this
Section, using actual PV power data provided in the context of an energy forecasting competition [16].
First, we present the data used for the numerical experiments and the accuracy of the results of
individual forecasts; later we assess the accuracy of the forecast combination strategies. The PS values
are used to quantitatively estimate the forecast performances [16,23].

6.1. Characteristics of the Data

The PV power data refers to three zones, which are geographically correlated; each time series
was collected in a time interval ranging from April 2012 to June 2014. For reproducibility, we follow
the same division kept by the organizers of the competition: the first year of data (April 2012–March
2013) was used only for training the underlying models; each of the remaining 15 months (April
2013–June 2014) constitutes a forecasting task. In order to improve the performances of the underlying
models and of the forecast combination, and to maintain consistency between the outcomes of different
forecast approaches, we selected a 1-year constant-length window for training underlying models at
each task; the window shifts towards the most recent task.

The forecast combination is trained upon different numbers of tasks (i.e., using a different
hyper-parameter L). Also in this case, once the hyper-parameter L is iteratively assigned,
the time window used for training the combination weights has a constant length, and it shifts
towards the most recent task. We reserve the last 5 tasks (February 2014–June 2014) to test the
out-of-sample performances.

Table 1 shows the main statistical properties (mean, median, and variance) of the three PV datasets
considered, as a whole. Note that all of the data provided by the competition organized are normalized.
More details can be found in [16].

Table 1. Statistical properties of the PV data considered.

Zone
Statistical Parameter [-]

Mean Median Standard Deviation

1 0.1693 0.0026 0.2588
2 0.1879 0.0022 0.2756
3 0.1939 0.0028 0.2821

6.2. Assessment of the Accuracy of Individual Forecasts

We investigated the accuracy of the individual forecasts in all of the 15 tasks. The results during
the last 5 tasks were also used as benchmarks, to compare the performances of the forecast combination



Energies 2019, 12, 1011 10 of 16

approaches in the test step. Figures 2–4 show the plots of the PSs obtained using the QKNN, the QRF,
and the QR, to the 15 considered tasks, for the zones 1, 2, and 3, respectively. The benchmark PS values
of the QANN, of the GBRT, of the BAY, and of the NB are also shown as a reference.
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Figures 2–4 clearly highlight the superior performances of QRF, QR, GBRT, and BAY models,
with respect to the other models. For zone 1, QRF and QR perform very similarly, whereas for
zones 2 and 3 the QR on average outperforms the QRF. The GBRT benchmark exhibits performances,
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on average, slightly worse than the QRF and QR; however, it outperforms the QANN and the QKNN
for all of the zones considered. The BAY benchmark is, on average, slightly worse than the QRF, QR,
and GBRT, whereas it outperforms QKNN, QANN, and NB.

Table 2 shows the PS values of the individual forecasts and of the NB forecasts, averaged over tasks
11–15 (i.e., the tasks reserved for comparing the out-of-sample combination results). The PS values in
Table 2 confirm the considerations made on the basis of the graphical inspection of Figures 2–4.

Table 2. Pinball Score values averaged over tasks 11–15.

Method
Pinball Score [-]

Zone 1 Zone 2 Zone 3

QKNN 0.0228 0.0220 0.0249
QRF 0.0136 0.0148 0.0152
QR 0.0136 0.0141 0.0139

QANN 0.0240 0.0243 0.0262
GBRT 0.0138 0.0149 0.0147
BAY 0.0153 0.0159 0.0169
NB 0.0349 0.0367 0.0376

6.3. Assessment of the Accuracy of Combined Forecasts

PQWS2, PQWS3, HQWS2, HQWS3, PCQWS2, PCQWS3, HCQWS2, HCQWS3, PQWSLR,
HQWSLR, PQWSRR, and HQWSRR forecasts are analyzed in this sub-Section. Different values
of hyper-parameter L (i.e., the length of the dataset used to train the weights of the combination
models) are considered separately; in particular, they cover the 1, 2, . . . , 10 most recent tasks.

Figures 5–7 show, for zones 1, 2, and 3, the PS values of the forecasts to the number of tasks
considered to form the individual forecast dataset. In particular, Figures 5, 6 and 7a illustrate the
PQWS2, PQWS3, HQWS2, HQWS3 results; Figures 5, 6 and 7b illustrate the PCQWS2, PCQWS3,
HCQWS2, HCQWS3 results; and Figures 5, 6 and 7c illustrate the PQWSLR, HQWSLR, PQWSRR,
HQWSRR results.

These figures clearly highlight that the PQWS3 outperforms the unconstrained, non-regularized
strategies for all of the tasks considered. For zone 1, the HCQWS3 outperforms the other constrained
strategies, whereas PCQWS3 performs better than the other constrained strategy for zone 3. Note,
however, that the constrained strategies, compared to the unconstrained and regularized strategies,
have quite similar results for zones 1 and 2, whereas the constrained strategies are definitely less
accurate than the unconstrained and the regularized strategies for zone 3.

The smallest error score among all of the options considered is obtained for the zones 1 and 2 by
using the HQWSLR with 7 tasks in the individual forecast dataset, whereas the best forecasts among
all of the options considered for zone 3 are obtained through the PQWS3 with 6 tasks in the individual
forecast dataset.

The trends of the PS of the combined forecasts are quite similar, as the performances significantly
increase by using more than four tasks to form the individual forecast dataset; this improvement is at
maximum around 6–8 tasks, and it slightly decreases with more tasks.

Altogether, the PQWS approaches outperform the HQWS ones, thus a more general model works
better than a model with too much differentiation in the unconstrained, non-regularized estimation.
Things change when the weight estimation is subject to constraints or to regularization; the hourly
differentiation improves the performances of the forecasting ensemble for zones 1 and 2.
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Figure 5. Pinball Score values of combined forecasts for the zone 1: (a) PQWS2, PQWS3, HQWS2,
and HQWS3 strategies; (b) PCQWS2, PCQWS3, HCQWS2, HCQWS3 strategies; (c) PQWSLR,
HQWSLR, PQWSRR, HQWSRR strategies.

We now analyze in detail the best competitors for the three zones: the HQWSLR for zone 1 and 2,
and the PQWS3 for zone 3. In particular, for both strategies we consider only the best-case scenario and
the worst-case scenario, in terms of number of tasks in the individual forecast dataset. For the PQWS3,
the optimal number of tasks selected to train upon the individual forecast datasets was 6, 8, and 6,
for zones 1, 2, and 3, respectively; the worst performances of the PQWS3 were instead obtained with 2,
1, and 2 tasks for zones 1, 2, and 3, respectively. For the HQWSLR, the optimal number of tasks selected
to train upon the individual forecast datasets was 7 for all of the zones; the worst performances of the
HQWSLR were instead obtained with 2, 1, and 1 tasks for zones 1, 2, and 3, respectively.

The comprehensive Table 3 compares the corresponding PS values of these best- and worst-case
scenarios to the ones obtained for the individual forecasts and for the benchmark (see Table 2). It is
evident from these results that the forecast combination, either through the PQWS3 or the HQWSLR,
always improves the skill of the forecasts.

We quantitatively assessed the results of the PQWS3 and of the HQWSLR by comparing them
to the most competitive benchmarks for each zone, which are the QRF for the zone 1, and the QR for
the zones 2 and 3. In the best-case scenario, the PS obtained through the PQWS3 is about 9%, 3.5%,
and 6.5% smaller than the corresponding PS of the most competitive benchmark for zones 1, 2, and 3,
respectively; in the worst-case scenario, the PS obtained through the PQWS3 is about 6.5%, 2%, and 5%
smaller the corresponding PS of the most competitive benchmark for zones 1, 2, and 3, respectively.
The improvement of the HQWSLR towards the most competitive benchmark for each zone is instead
about 9%, 4.5%, and 6.5% in the best-case scenario, and about 7.5%, 2.5%, and 4.5% in the worst-case
scenario, for zones 1, 2, and 3 respectively.
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Figure 6. Pinball Score values of combined forecasts for the zone 2: (a) the Pure Quantile Weighted
Sum (PQWS)2, PQWS3, Hourly Quantile Weighted Sum (HQWS)2, and HQWS3 strategies; (b) Pure
Constrained Quantile Weighted Sum (PCQWS)2, PCQWS3, Hourly Constrained Quantile Weighted
Sum (HCQWS)2, HCQWS3 strategies; (c) Pure Quantile Weighted Sum with Least Absolute Shrinkage
and Selection Operator (LASSO) Regularization (PQWSLR), Hourly Quantile Weighted Sum with
LASSO Regularization (HQWSLR), Pure Quantile Weighted Sum with Ridge Regularization (PQWSRR),
Hourly Quantile Weighted Sum with Ridge Regularization (HQWSRR) strategies.

Table 3. Pinball Score values averaged over the tasks 11–15. Bold values highlight the best results for
each zone.

Method
Pinball Score [-]

Zone 1 Zone 2 Zone 3

QKNN 0.0228 0.0220 0.0249
QRF 0.0136 0.0148 0.0152
QR 0.0136 0.0141 0.0139

QANN 0.0240 0.0243 0.0262
GBRT 0.0138 0.0149 0.0147
BAY 0.0153 0.0159 0.0169
NB 0.0349 0.0367 0.0376

Best PQWS3 0.0124 0.0136 0.0130
Worst PQWS3 0.0127 0.0138 0.0132
Best HQWSLR 0.0124 0.0135 0.0130

Worst HQWSLR 0.0126 0.0138 0.0133
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7. Conclusions

This paper discusses several strategies that have been developed to combine individual
probabilistic PV power forecasts, aimed at building combined forecasts which are more accurate
than individual predictions. Several types of combination strategies and architectures were developed
in a competitive ensemble framework; all of them are based on the weighted quantile combination.
The proposal was validated through numerical experiments based on PV power data published during
the GEFCOM2014; several benchmarks are also presented, in order to compare the results.

The comparison of different forecast strategies for three different generation zones suggests that:

• the weighted quantile combination was effective in improving the accuracy of forecasts; it is
able to outperform the accuracy of individual probabilistic forecasts, which is the main aim of
competitive ensemble methods.

• The forecast combination improved the skill of the forecasts in all of the scenarios considered,
with a reduction in terms of PS that is up to 9%.

• On average, the best results were obtained using the HQWSLR combination strategy for zones 1
and 2, and the PQWS3 combination strategy for the zone 3; the optimal length of the dataset used
to train the weights of the combination models always ranges between 6 and 8 tasks.

• Adding the forecasts of an individual model which has worse performances than the other
individual models appears to provide useful diversity in the ensemble approach; this appears to
be valid both for unconstrained, non-regularized strategies and for constrained strategies.
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• Adding too much dispersion to the forecast combination by estimating weights for each hour of
the day does not improve the quality of the results for unconstrained, non-regularized regression;
vice versa, constraints and/or regularization allow taking benefit from this hourly differentiation.
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