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Abstract: Floating offshore renewable energies (OREs), such as offshore floating wind turbines (wind
energy) or wave power (wave and wave energy), are increasingly in demand. Submarine cables
that transmit the energy produced from offshore farms all the way to onshore stations are critical
structures that must be able to work perfectly over 20 years without any maintenance. In order
to reduce the significant costs associated with electrical cables, it is important to optimize the
dimensioning of the components of these cables, or to develop structural monitoring techniques
that target zero and/or minimum maintenance over their lifespan. In this paper, we FEM of the
impact of damage mechanisms of the conductor part of a submarine power phase on its mechanical,
electrical, and thermal behavior. The main damage mechanisms are local plasticity and wire
failure. The first mechanical study made it possible to obtain the elasto-plastic behavior of the
conductor. The electrical study took into consideration the deformed geometry of the conductor in
the elasto-plastic domain, as well as the non-homogeneous distribution of the electrical conductivity
of the conductor. Their influence on the electrical resistance of the conductor was then analyzed.
Finally, we studied the impact of plasticity and conductor failure on the thermal behavior of the
phase. The temperature differences obtained in the numerical analysis of this work may be used
further to help preventive and curative maintenance of the cables, for example, by using an optical
fiber as sensor for structural health monitoring.

Keywords: finite element modelin (FEM); numerical modeling; mechanical behavior; electric
behavior; thermal behavior; multiphysics modeling; marine renewable energies (MREs); submarine
power cable

1. Introduction

Marine renewable energy (MRE) is one of the most promising sources of clean energy and is part
of the European energy strategy. The connection of MRE offshore farms to onshore stations requires
the use of reliable power dynamic and static cables for energy transport. Previous work and projects
have been devoted to this topic [1–3] and have concentrated solely on mechanical behavior or, else,
on thermal behavior and/or electrical behavior. However, the conductor part is a metal and it is crucial
to establish a multiphysical model that can link mechanical, thermal, and electrical behavior together.
A submarine cable is subject to severe mechanical stresses (tension, compression, flexion, and torsion)
during manufacture, handling, transportation, installation, and operation [4]. These stresses can affect
the overall mechanical and physical properties of the conductor. Indeed, the conductor wires are
subject to tensile and torsional forces, compressive forces, and tangential forces generated by the
friction between the wires. As the wires, in general, are made of copper—which is a weak metal—these
stresses gradually generate plasticity, and then result in failure (Figure 1). This plastic deformation is
due to the formation, multiplication, and displacement of moving linear defects in the crystal lattice of
the metal, called dislocations. Furthermore, additional post-plasticity defects in the crystal lattice of the
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metal progressively decrease both electrical and thermal transport [5]. The movement and creation of
dislocations, therefore, change the mechanical behavior of the metallic material, as well as its physical
properties (e.g., electrical, thermal, etc.) [6].
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Figure 1. Elasto-plastic behavior of a metallic material.

Due to the geometric complexity (e.g., mesh generation, calculation cost, etc.) of a submarine
power cable, most of the mechanical models available in the literature are based on analytical solutions.
Analytical models [7–9] were developed following the context of “material resistance” of linear beam
theory, and are based on slender beam models. These models are used to determine the axial behavior
of the cable and its bending behavior, and have the advantage of providing approximate estimates of
stiffness terms (traction, torsion, and bending) from a limited amount of input data: geometry of the
cable cross-section, material properties, and loads. However, their scope of validity remains limited.
In the literature [10], it has been shown that these analytical solutions remain valid for a strand lay
angle below 20◦. In addition, most of these models focus on longitudinal axial stress, thus neglecting
shear stresses. It is worthwhile to note that these analytical models, which were developed for steel
cables, can hardly be applied to copper due to its lack of mechanical performance.

In addition to analytical models, other work focused on finite element modeling (FEM) has been
carried out with a limited success and some issues raised. Indeed, meshing problems resulting from
geometric complexity, as well as non-linearity resulting from inter-wire contacts, were shown to be the
main issues facing implementation of numerical models. The resulting models used heavy calculation,
which is very time-consuming. To avoid extensive calculation, available numerical models only
simulate a short portion of the pitch length of the cable, particularly for single-layer cables (1 + 6) [2–5].

The aim of this paper was to use numerical modeling to study the impact of damage mechanisms
on the mechanical, electrical, and thermal properties of a submarine power phase. The models
were developed using COMSOL Multiphysics®. The originality of our work comprised modeling
a multilayer conductor (1 + 6 + 12) with a significant length of one meter and the elasto-plastic
behavior of copper, as well as the multiphysical aspect that includes electrical and thermal behaviors.
The performance of submarine high-voltage cables must be studied from a multiphysics point of
view, as not only do multiphysics parameters play a key role simultaneously, but also chemical and
environmental aspects (e.g., humidity, salt, corrosion-assisted fatigue, etc.). As will be seen later in this
work, our results are confirming the validity of this strategy.

This paper is organized as follows. In Section 2, the design of the cable used in the simulations is
briefly presented, as well as the description of the different physical models. Then, the mechanical
model to determine the plastic response of the conductor under tension is detailed. The deformed
geometry and non-homogeneous distribution of electrical conductivity due to strain hardening have
been used in the electrical model. The conductor was subjected to a potential difference in order to
calculate its electrical resistance. For thermal modeling, the two-dimensional thermal model described
the thermal behavior of the phase resulting from the plasticity of the conductor and the failure of the
strands. The results of our models, analysis, and comments are presented in Section 3.
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2. Multiphysical Power Phase Models

2.1. Cable Design and Characteristics

The cable targeted by these simulations was a power cable phase with synthetic insulation (XLPE,
36 kV). The conductor was made of copper with a cross-section of 120 mm2. The structure of the cable
cross-section is shown in Figure 2. The thermal and mechanical properties for each material used in
the cable design are presented in Table 1. These values were taken from the standard IEC 60287 [11].

Energies 2018, 11, x FOR PEER REVIEW  3 of 11 

 

2. Multiphysical Power Phase Models 

2.1. Cable Design and Characteristics 

The cable targeted by these simulations was a power cable phase with synthetic insulation 
(XLPE, 36 kV). The conductor was made of copper with a cross-section of 120 mm². The structure of 
the cable cross-section is shown in Figure 2. The thermal and mechanical properties for each material 
used in the cable design are presented in Table 1. These values were taken from the standard IEC 
60287 [11]. 

 
Figure 2. Structure of the cable phase (left); the photograph (right). Source: NEXANS. 

Table 1. Thermal and mechanical properties of cable components [8]. 

Component  Material  
Thermal 

Conductivity 
(W∙K−1∙m−1)  

Heath Capacity 
(MJ∙m−3 K−1) 

Young’s 
Modulus 

(GPa) 

Poisson’s 
Ratio 

Conductor Copper (Cu)  370.40 3.45 112 0.30 
Conductor Screen Semiconducting polymer 0.50 2.40 0.34 0.34 

Insulation  Crosslinked polyethylene (XLPE)  0.28 2.40 0.35 0.40 
Insulation Screen Semiconducting polymer 0.50 2.40 0.34 0.34 

Sheath Polyethylene (PE) 0.20 1.70 0.34 0.40 

2.2. Mechanical Model 

Firstly, at this stage, we built a mechanical model of a submarine power phase conductor (1 + 6 
+ 12) (Figure 3). The model comprised a three-layered straight strand made from a central straight 
wire and two outers layers—composed by 6 and 12 wires helically wrapped around the central wire, 
respectively. All wires had the same radius, and the overall length of the wire phase model was 1 m. A 
model was created using COMSOL Multiphysics®. 

The model simulated tensile behavior of a submarine power phase, which allowed us to 
compute the distribution of mechanical stresses and conductor deformation. To quantify the states of 
stress and strain in the conductor by FEA, it was necessary to describe the behavior of the material 
using a mechanical model. The equilibrium equations were based on Newton’s second law. In terms 
of stresses, it can be formulated as follows [12]: 𝑑𝑖𝑣(𝝈) = 𝒇 , (1) 

with 𝝈 being the stress tensor and 𝒇 representing all external forces. The material induced strains 
in the system are expressed as   𝜺𝒕𝒐𝒕 = 𝜺𝒆 + 𝜺𝒑 , (2) 

where the total strain  𝜺𝒕𝒐𝒕 is a combination of elastic 𝜺𝒆 and plastic 𝜺𝒑 strains. The elastic strain 
follows Hook’s law: 𝝈 = 𝐂: (𝜺𝒆)   . (3) 

Combining Equations (2) and (3), the stress–strain relationship for a material can be expressed 
as 

Figure 2. Structure of the cable phase (left); the photograph (right). Source: NEXANS.

Table 1. Thermal and mechanical properties of cable components [8].

Component Material
Thermal

Conductivity
(W·K−1·m−1)

Heath
Capacity

(MJ·m−3 K−1)

Young’s
Modulus

(GPa)

Poisson’s
Ratio

Conductor Copper (Cu) 370.40 3.45 112 0.30
Conductor Screen Semiconducting polymer 0.50 2.40 0.34 0.34

Insulation Crosslinked polyethylene (XLPE) 0.28 2.40 0.35 0.40
Insulation Screen Semiconducting polymer 0.50 2.40 0.34 0.34

Sheath Polyethylene (PE) 0.20 1.70 0.34 0.40

2.2. Mechanical Model

Firstly, at this stage, we built a mechanical model of a submarine power phase conductor
(1 + 6 + 12) (Figure 3). The model comprised a three-layered straight strand made from a central
straight wire and two outers layers—composed by 6 and 12 wires helically wrapped around the central
wire, respectively. All wires had the same radius, and the overall length of the wire phase model was
1 m. A model was created using COMSOL Multiphysics®.
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The model simulated tensile behavior of a submarine power phase, which allowed us to compute
the distribution of mechanical stresses and conductor deformation. To quantify the states of stress
and strain in the conductor by FEA, it was necessary to describe the behavior of the material using
a mechanical model. The equilibrium equations were based on Newton’s second law. In terms of
stresses, it can be formulated as follows [12]:

div(σ) = f , (1)
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with σ being the stress tensor and f representing all external forces. The material induced strains in
the system are expressed as

εtot = εe + εp , (2)

where the total strain εtot is a combination of elastic εe and plastic εp strains. The elastic strain follows
Hook’s law:

σ = C : (εe) . (3)

Combining Equations (2) and (3), the stress–strain relationship for a material can be expressed as

σ = C :
(

εtot − εp
)

. (4)

This model was completed by boundary conditions, such as imposed displacements and loading
(Figure 3). All degrees of freedom (translation and rotation) in the section (z = 0) were constrained.
At the other end (z = L) they were restrained so as not to rotate in all three directions and not to
displace in x and y directions, considering monotonous loading was applied in the z direction.

All wires were made of homogeneous and isotropic material copper. The cable was studied using
considered elasto-plastic material models with a linear isotropic hardening case. The elastic domain is
governed by Young’s modulus and Poisson’s ratio. The yield stress of copper was σe = 135 MPa and
the plastic domain was based on tensile experiment of a single conductor [2]. The results of the tensile
test are presented in Table 2.

Table 2. True stress and plastic strain.

True Stress (MPa) Plastic Strain (1)

135 0
144.49 0.01
159.94 0.019
179.43 0.036
200.38 0.06
213.5 0.07
230.5 0.01

243.36 0.11
256.98 0.13
266.41 0.15
279.25 0.16
285.01 0.18
306.45 0.21
316.75 0.24
328.69 0.28
340.76 0.29

Some articles show that contact hypotheses have a negligible influence on the overall tensile
behavior of the cable [13]. Therefore, the hypothesis of friction between the wires of the conductor was
not taken into account. In this model, tetrahedral meshes were used to subdivide the power cable and,
to improve the computing precision and obtain a better convergence, the uneven mesh generation was
adopted. Each node had three translational degrees of freedom in x, y, and z directions.

2.3. Electrical Model of the Conductor

DC electrical simulations were made using the electrical module of COMSOL software. The DC
electrical model was governed by Maxwell’s equations [14]:

div(J) = 0
J = σE + Je

E = −∇V
, (5)
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where J(A/m2) is the current density, E(v/m) is the electrical field intensity, V(v) is the electrical
potential, σ(S/m) is the electrical conductivity of the material, and Je is the externally generated
current density.

The model developed was based on exposure of the deformed structure—obtained by the
mechanical study—to an electrical potential difference between the two extreme surfaces of the
conductor. We also considered the impact of hardening on the electrical conductivity of the material.
Therefore, we introduced an experimental behavior law [5] obtained for a copper wire, coupling
electrical conductivity and mechanical stresses (Figure 4). This characteristic made it possible to
control the evolution of electrical conductivity according to the distribution of the stress resulting from
mechanical calculation.
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Computation of the current intensity (I) in the of conductor was obtained by making the cut plane
2D at the middle cross-section of the cable and using the surface integral over current density (Jz)
along the z-axis.

I =
x

Jzds (6)

The electrical resistance of the conductor can be calculated by Ohm’s law: R = ∆V
I .

2.4. Thermoelectric Model of the Phase

The main objective of thermal sizing of a cable was to transmit the maximum current without the
conductor temperature exceeding the degradation temperature of the XLPE insulation (90 ◦C). At this
stage, we built a thermal model to understand the impact of mechanical effects (plasticity) and strand
failure on the thermal behavior of the phase. For calculation cost considerations, only a 2D model
was developed.

The equation of heat transfer by steady state conduction, taking into account the thermoelectric
coupling [15], was defined as follows:

div(−K∇T) = σ.|∇V|2 (7)

where T is the temperature (K), K is the thermal conductivity (W·m−1·K−1), V is the electrical potential
(v), and σ(S/m) is the electrical conductivity of the material—which is given by the formula:

σ =
L

R.A
(8)

with R as the resistance of the conductor, A as the total surface area of the conductor strands, and L as
the length of the strand.



Energies 2019, 12, 1009 6 of 11

On the cable surface, natural convection and heat radiation were considered, and the
corresponding boundary conditions can be described as follows:

−∇(KT).n = h(Text − T) (9)

where h is the convective heat transfer coefficient, and Text the ambient temperature. The coefficient h
at the surface is given by the formula h = k.Nu

L where L is the diameter of the cable, k is the thermal
conductivity of the surrounding environment, and Nu is the Nusselt number. In natural convection,
and for a cable laid horizontally, the Nusselt number is given by the following formula [16]:

Nu =

0.6 +
0.387R1/6

a[
1 +

(
0.559

Pr

)9/16
]8/27


2

(10)

According to the Stefan–Boltzmann law, the heat radiation on the cable surface can be described as

−∇(KT).n = εν
(

T4
ext − T4

)
(11)

where ε is the emissivity of the material and is 0.9, and ν is the Stefan–Boltzmann constant.

3. Results and Discussion

3.1. Results of the Mechanical Model

Figure 5a shows the mesh used for the mechanical model of the conductor (1 + 6 + 12). The mesh
had 14,536 nodes for 54,252 elements. To analyze the results obtained, we calculated von Mises stress
(12) to position itself with respect to the yield strength σe. The distribution of von Mises stress is shown
in Figure 6. From this figure, we can see that the stresses were significant at the level of the central wire,
as well as at the contact areas between the central wire and the helical wires. Therefore, the central
wire and the wires of the first layer were more susceptible to yielding first.
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Figure 5. (a) Finite element mesh, and (b) simulated stress–strain curve.

These results support those obtained for a monolayer conductor (1 + 6) [2,3]. Also, the stress–strain
curve of the conductor was completely simulated and is displayed in Figure 5b.
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These results support those obtained for a monolayer conductor (1 + 6) [2,3]. Also, the stress–
strain curve of the conductor was completely simulated and is displayed in Figure 5b. 
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Figure 6. Distribution of the von Mises stress in the cable in MPa (right in elastic range; left in
plastic range).

3.2. Results of the Electrical Model

Figure 7 shows the distribution of von Mises stress in the conductor in the plastic range and its
correspondence with electrical conductivity. It was shown that electrical conductivity was lower in
areas where mechanical stress was greater. This means that these areas become less conductive when
stressed, and thus damage accumulates.
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Figure 7. Distribution of the von Mises stress in the conductor in MPa in the plastic range (left) and its
correspondence in electrical conductivity (right).

Figure 8 shows the evolution of the axial stress as a function of the total electrical resistance of the
conductor. We observed that the resistance was almost constant in the elastic area. In the plasticity
area, an increasing evolution of electrical resistance was observed. For 200 MPa, which corresponds to
120% of the yield strength, we observed a 14% increase in resistance (∆R/R). The shape of this curve is
in agreement with that obtained in [6] for a single strand of aluminum. This result can be considered,
therefore, as an electrical loading curve, analogous to the mechanical stress–strain curve where we can
clearly visualize the “elastic” electrical area and the “plastic” one.
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3.3. Results of the Thermoelectric Model

As was shown in Figure 8a, the axial stress was calculated as a function of thermal resistance
and the result is shown in Figure 8b. It is interesting to note that the envelopes of stress–strain,
axial stress–electrical resistance, and axial stress–thermal resistance are identical. This implies that
damage accumulation—which affects mechanical performance of a conductor—also affects electrical
and thermal resistance with equivalent magnitude. This result can significantly help to check the
status of a high-voltage cable prior to placement in deep-sea. Indeed, checking for damage on samples
at the end of the manufacturing process and/or after shipping operations can help identify the
magnitude of damage accumulation and, thus, the effect on electrical and thermal performances of
cables. This identification can then ease the final decision of placement, or not, in deep-sea.

The phase was considered to be laid horizontally in the free air with an ambient temperature of
20 ◦C. The value for the convective heat transfer coefficient h was 11 (W/m2·K). At first, it was assumed
that the cable had not been damaged mechanically. Figure 9 shows the temperature distribution and
the magnetic field when the conductor was carrying a current of 500 A. This result serves as a reference
for the next stage.
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3.4. Plasticity Effect on the Thermal Behavior of the Phase

The objective of this stage was to study the thermal sensitivity of the cable to the different levels
of conductor plasticity (100% σe, 110% σe; Figure 1). The coupling of thermal behavior to plasticity is
represented by the curve in Figure 8—linking mechanical stresses to electrical resistance—and Equation
(8)—linking electrical resistance to electrical conductivity. For each stress level, the corresponding
electrical conductivity can be calculated. Finally, we inserted this last conductivity value into Equation
(4) to calculate temperatures that were encountered. Figure 10 shows the impact of plasticity on the
thermal behavior of the cable for 140% and 168% of the yield strength σe, highlighting an increase in
conductor temperature of 13% and 22%, respectively.

Figure 11 shows the evolution of the average temperature of the different cable components as a
function of conductor plasticity levels. It should be noted that the increase in conductor temperature
was slightly higher than the insulation and sheath.
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3.5. Effect of Strand Failure on the Thermal Behavior of the Phase

According to the mechanical results of the previous section, we noticed that mechanical stresses
were important at the central strand as well as the strands of the first layer, thus, the latter are most
likely to fail first. The aim of this stage was to study the effect of the failure of these strands on the
thermal behavior of the cable. To proceed, we successively cut the central strand, as well as the strands
of the first layer. Figure 12 shows the current density distribution and associated temperature field for
four cut wires. We observed a 47% increase in conductor temperature.
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Figure 12. Distribution of the temperature field in ◦C (right) and current density in A/m2 (left) when
the conductor is mechanically damaged (six-wire failure).

Figure 13 shows the evolution of the average temperature of the different components of the cable
as a function of the number of wires cut.
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4. Conclusions

In this article, we have used FEM to numerically study the influence of damage mechanisms
(local plasticity and wire failures) of the submarine power phase conductor on the electrical and
thermal behavior of the cable. The models show that with the increase in deformation beyond
the yield strength, not only does the mechanical behavior vary, but also the electrical and thermal
behavior. Thus, the correlation between mechanical, electrical, and thermal behaviors is clearly
emphasized. Multiphysics parameters play key roles simultaneously, in addition to chemical and
environmental aspects (e.g., humidity, salt, corrosion-assisted fatigue, etc.) which, in the future,
will be the focus of our team. From a technological perspective, this current article can help to ease
decision-making with regards to whether the cable (which may show severe defects following handling
and shipping-to-deep-sea defects) is performing sufficiently, and therefore can be placed in deep-sea.
This can be done, for example, after some damage checking at the end of the manufacturing process
and/or after shipping.

As follow-up research, using the thermomechanical fatigue bench developed in our laboratory,
these numerical results will be compared with experimental measurements made on the cable to
validate the numerical models developed in this article.
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