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Abstract: An estimation method of equivalent circuit parameters for rechargeable batteries that
follows Artificial Neural Network (ANN) logic is proposed in this paper. The capability of the
nonlinear analysis of the ANN is suitable for estimating the parameters that are nonlinearly involved
in the complex circuit equation. The parameters have to be obtained from the complex internal
impedances, which are measured in a wide frequency range. The accuracy is improved by dividing
this wide range into a low-frequency and a high-frequency region. These regions are strongly related
to the capacity fade and the maximum chargeable/dischargeable current, respectively. The improved
method will determine the optimal frequency region for three different rechargeable batteries, which
are composed of Li-Ion, Pb and Ni-MH. The accuracy of the proposed method is confirmed by a
comparison with the measured results obtained using a conventional frequency domain method.
For obtaining the real-time diagnostics of the battery, an improved dual ANN system, which employs
unequal sampling, is proposed to obtain the circuit parameters. The deterioration of a battery can be
detected from the estimated parameters, which can help in further investigations that aim to develop
diagnostic models for the embedded circuit in industrial applications.

Keywords: optimal frequency region; dual ANN; parameter estimation; rechargeable battery; internal
impedance; EV

1. Introduction

The technology of portable energy storage is rapidly improving due to the need for high-energy
capacity and fast charging capabilities. This is further compounded by the desire for smart and
autonomous devices. In all battery systems from the small portable devices to large-scale storage
systems, achieving improvements in the battery manufacturing technology is the main goal for high
technology battery companies and electric vehicle manufacturers. For mobile computer manufacturers,
the operating time is still the weak point while the chips and operating systems are becoming more
efficient in terms of saving power. The dynamic characteristic of the battery, i.e., the operational
characteristics of the battery driven equipment, is closely related to the State of Charge (SoC) and the
maximum chargeable/dischargeable current. This is because the maximum battery current is limited
by the terminal voltage, which depends on and is related to the SoC and the internal impedance of the
battery. As explained and confirmed in [1,2], the internal impedance can be expressed by a resistor,
which expresses the voltage drop in a high frequency region, and some RC parallel circuits, which
expresses the transient characteristics of the battery. On the other hand, the battery health is a key
factor in improving and advancing new technologies. An accurate lifetime estimation and diagnosis
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of deterioration becomes an important task in order to increase the battery capacity. The internal
impedance is known as an index of the battery deterioration. It is necessary to develop a diagnostic
system, which can operate without removing the battery so as to maintain the normal operation of
the processes. The aging of the rechargeable batteries is a concern, especially when they are used for
applications that could potentially have long-life usage. The battery can only efficiently operate inside
its safety zone when there is a practical and accurate diagnosis system [3]. An estimation method for the
internal impedance, which is one of the key variables determining the battery deterioration, has been
proposed based on the circuit theory, with different approaches having been undertaken to estimate the
internal impedance or to relate factors that contribute to the battery deterioration as explained in [1–6].
The computational time and memory requirements of the on-board diagnostic system are points that
need to be improved. This research introduces an improved parameter estimation method based on
Artificial Neural Network (ANN) logic. The battery terminal voltage and the load current waveform
are used for the estimation of the parameters. By dividing the frequency characteristic into two regions,
an accurate evaluation of the maximum current and the capacity fade of the battery can be estimated.
The deterioration level and discharging rate was increased for a better generalization algorithm.

2. Battery Modelling

Rechargeable batteries are crucial for the technological advancement when it comes to autonomous
systems and devices. Different types of an equivalent circuit model (ECM) have been proposed by the
researchers, which helps us to understand and explain the chemical composition or electrochemical
reaction of the rechargeable batteries. These circuits have different degrees of complexity and
nonlinearity, which can express different behaviors. The response is different because it is highly
dependent on the type of the rechargeable battery.

2.1. Battery Equivalent Circuits

When choosing a specific model, the following characteristics of the model must be taken
into consideration. It is first important whether this model can explain precisely the battery
behavior, including the DC and transient characteristics. Secondly, there must be a trade-off between
performance/cost, which includes variables, such as accuracy, complexity of the proposed model,
experimental and computational time, in order to provide a total cost in the end. In general, these
models can be divided into three main groups:

• Electrochemical models,
• Mathematical models,
• Electric equivalent circuit models.

Despite the fact that the electrochemical model can accurately explain the operational
characteristics of the battery, these models unfortunately have high complexity. This introduces
new problems and requires a long computational time for calculations [7–9].

Mathematical models are based on the derived equations from the data retrieved through
experiments. The high grade of the equations and nonlinear behavior of the battery makes these
models unable to fully explain and estimate the variables and the phenomenon, which happens during
operation [10,11]. Electric equivalent circuit models are very suitable for the purpose of real-time
estimation due to their simplified mathematical and numerical approach. Many types of the equivalent
circuit have been proposed and each are suitable for a specific purpose, such as studying the DC or
transient characteristics as explained in [5,6].

Several examples of the equivalent circuit of a battery are shown in Figure 1a–c, based on their
scale of complexity. Figure 1a illustrates the simplest model that is composed of a resistor and an
internal voltage source. Although the model can explain and shows satisfactory accuracy in calculating
the DC characteristic, it cannot express the operational characteristic during the dynamic process,
i.e., the transient behavior of the battery. Figure 1b shows a more complex equivalent circuit of
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the battery. The impedance of the model that consists of a series resistor RB0 with an RC parallel
circuit (RB1 and CB1) can be written by the first order rational function. Figure 1c illustrates a more
sophisticated model that is expressed by a high-order rational function. Although the accuracy of
the model increases with an increase in the number of RC circuits, the estimation of the parameters
becomes difficult. The internal voltage in each model V0 expresses an open-circuit voltage (OCV) of
the battery. In general, the OCV is determined by its SoC and it shows only small changes in its value
due to the deterioration effect.
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Figure 1. (a) Simplest conventional model. (b) First order model. (c) High order model.

2.2. Conventional Modelling

Different methods and approaches which estimate the deterioration of the batteries have been
proposed. Despite the fact that frequency characteristics of the internal impedance can be accurately
measured based on the AC superimposition method, still it requires a removal of the battery, especially
for dynamic systems like EV, HEV, PHEV [12]. This method cannot be used during operation as an
online process. The frequency characteristics can be obtained from the battery voltage and current
waveforms by substituting the steady measurement with discrete Laplace Transform (DLT)) [13–15].
Although this method is applicable for diagnosis during operation, still requires a long computational
time in order to obtain the characteristics at a wide frequency range. Different proposed methods are
based on a logarithmic segmented Laplace Transformation as already confirmed and explained in [9],
as well explained in exponential & logarithmic Fourier transformation applications in [16,17]. This
method makes possible to study the wideband characteristics. This algorithm simplifies and reduce
the complexity level, also a low-cost diagnostic system can be realized. However, it needs to secure the
numerical stability.

Figure 2 Shows a measured voltage characteristic of a Li-Ion battery during CCCV charging mode.
It corresponds with the OCV-SoC plot.
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Figure 2. Voltage characteristics of a Li-Ion battery during charging (ICR18650PD, 1 sample/s).
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2.3. Proposed Model

The ECM applied in this paper is shown in Figure 3. It is provided by a modification of the electric
equivalent circuit shown in Figure 1c. This ECM consists of the second order circuit with the capacitor
C∞ connected in series. The invers of the capacitance corresponds to the slope of the voltage shown
in Figure 2. The need to insert this capacitor is also clarified to explain the dynamic characteristic
from the experimental results. The series capacitor expresses the characteristic of the battery in a low
frequency region. For example, it explains the changing speed. In addition, the capacity fade can be
detected by the capacitance C∞. Figure 4 shows an example of a capacity fade of a Ni-MH battery cell.
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3. Experiment and Estimated Results

3.1. Diagnostic Approach by the Proposed Circuit

The composition of the proposed diagnosis method is based on two steps. First, the hardware is
developed to obtain the experimental data, which will be used for the training model of ANN. In the
second step, this ANN is used in order to estimate the desired characteristics.

Figure 5 shows the block diagram of the developed circuit in order to obtain the required
experimental data for the training process of the ANN. The circuit is based on that described in [18],
which can charge and discharge Pb, Ni-MH or Li-Ion battery by an arbitrary current waveform.
In addition, the measured voltage and current waveforms are saved to an SD-card.
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3.2. Experimental Data from Different Batteries

This section explains the experimental data obtained by the developed circuit. From the
comparisons of the characteristics and estimated values between the different types of batteries,
the credibility and accuracy of the proposed method can be confirmed. The Li-Ion battery shows many
advantages compared to the other types of batteries. Figures 6 and 7 show the characteristics of the
Li-Ion cell battery.
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Table 1 shows the main specifications for the Li-Ion battery used in this study, cylindrical single
cell 18650.
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Table 1. Primary Specifications of Li-Ion cell.

Model ICR18650PD

Diameter 1 18.3 s ± 0.2
Height 1 64.95 + 0.15/−0.30

Weight 2 (g) 46
Max. voltage 3 (V) 4.2
Max. current 3 (A) 2.25
End voltage 4 (V) 2.75
Max. current 4 (A) 6

Nominal voltage (V) 3.7
Minimum capacity (mAh) 2250

Type High-Capacity type
1 Dimensions of fresh cell without tube, 2 Approximate values. 3 Charge (CCCV), 4 Discharge (CC).

The experiments conducted in this study were made at 25 ◦C as a constant ambient temperature,
during the practical test in order to obtain the actual data. It must be clear that this method is
not based on temperature-compensated model like [19,20], due to constant temperature at 25 ◦C,
but also a very limited info regarding 30 ◦C was inserted in the ANN database. The Ni-MH battery
chemistry is a hybrid of the proven positive electrode of the sealed Ni-Cd battery with the energy
storage features of metal alloys based on development for advanced hydrogen energy-storage concepts.
Regarding this battery characteristics it introduces few. Its discharge voltage profile is relatively flat,
has several hundred of cycles regarding the recharge capability. Efficient at high rate discharges.
Ni-MH retains 50–80% self-discharge rate within 12 months. Operates well at a wide range of
temperatures. When it comes to weight it’s lighter than Lithium batteries as well can be recycles for a
better environmental-friendly effect. Table 2 shows the specification for the Ni-MH used in this study.

Table 2. Primary Specifications of Ni-MH Panasonic-BSG cell.

Model HHR-380A

Diameter 17
Height 67

Weight (g) 53.52
Nominal voltage (V) 1.2
Discharge Rate (mA) 740

Standard Charge Current (mA) 370
Rated capacity (mAh) 3700

Figures 8 and 9 shows the characteristics of a Ni-MH battery obtained by the CCCV charging and
discharging, respectively. In the experiments, two Ni-MH batteries are connected in series, because
the voltage across the cell is lower than the voltage specification of the developed circuit. The rated
capacity of each battery is 3.7Ah and is charged/discharged by a current rate of 0.2C, 0.5C, 1C.
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Lead-acid battery known as Pb battery is the most common rechargeable battery. Despite
having a very low energy-to-weight ratio and a low energy-to-volume ratio, its ability to supply
high surge currents means that the cell has a relatively large power-to-weight ratio. This battery
has few advantages and drawbacks. Despite the drawbacks, still Pb batteries are very used in low
budget projects or in initial low-cost situation investment. The chemical composition of Pb batteries
is well known to be very complex compared with other commercial battery technologies. With the
new Japanese Pb batteries technology by Hitachi Ltd. (Tokyo, Japan), producing with Pure Lead,
Punching Carbon technology (PPC), which have improved the capacity, discharging rate, lifetime and
environmental applicability. But in this study a common Pb battery was used, without the cutting-edge
technique of PPC, Table 3 shows the specifications. During the experiment, a deep-cycle type Pb
battery was used. Figures 10 and 11 show the Pb characteristics during charging/discharging.

Table 3. Primary Specifications of the valve-regulated lead-acid battery.

Model of Product NP3-6

20-h Rated Capacity 3.0 Ah
Nominal Voltage 6 V

Maximum Charging Current 0.25C20 (=0.75 A)
Maximum Discharging Current 3C20 (=9 A)

Temperature Range −15 to 40 ◦C

Cutoff Discharging Current

5.25 V (under 0.2C20)
5.10 V (0.2C20 to 0.5C20)
4.65 V (0.5C20 to 1.0C20)

3.90 V (over 1.0C20)
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3.3. Sampling Method

As already mentioned in the previous section, the proposed method divides the estimation region
into two frequency regions. The regions can be specified in a time domain that uses the ANN as its
input signal. The conditions are:

∆t1 ≤
1

2 fmax
, T2 ≥

1
fmin

(1)

where ∆t1 represents the time step of the first (high) frequency region, T2 is the maximum observation
time of the second (low) region, f max is the maximum observation frequency and f min is the minimum
frequency resolution. The sampling method is based on the results from Equation (2). The number of
the samples for each region is composed based on the following equation:

Nk =
1

Nreg
22 log10

fmax
fmin

+ε, ε ≥ 2 (2)

where Nk is the number of samples of the k-th section, Nreg (=2) is the number of regions and ε is the
overlap coefficient. During the high frequency region, the sampling time was constant with the same
∆t. Furthermore, in the low frequency region, the sampling time was constant in order to maintain the
same characteristics.

Figure 12 explains the relation between the equivalent circuit and the electrochemical meaning
of the internal impedance using the Cole–Cole plot. The parameters R0, R1 and C1 are obtained
through the high frequency sampling mode. The other parameters obtained through the low frequency
sampling mode explain the transient characteristic of the kinetically controlled region, which is closely
related to the SOH. Figure 13 shows the typical frequency borders. Point A is positioned with the
frequency of 1 MHz and is related to electronic conductivity, Point B at 1 kHz is obtained through the
SEI film and Point C at 10 Hz is related to the charge transfer at the electrode/electrolyte interface. Point
D at 10 mHz expresses the diffusion in the electrode and electrolyte phase. The lowest frequency region
Point E occurs at 1 mHz, which has a state of charge that changes during the impedance measurement.

A main focus for this study involves finding the optimal frequency regions (OFR) in order to
explain and estimate the deterioration of the batteries based on the values of the ECM parameters.
From one battery type to another one, the best OFR will be different. Li-Ion is a high-performance
energy battery with very low memory effect and long last cycle performance. In contrast, Ni-MH
is affected by the memory effect and will approximately lose up to 35% of their stored energy in
3 months (up to 40% for Ni-Cd battery). Compared with the lead acid battery, it self-discharges the
same amount in one year. Table 4 shows the regions with a specific frequency range. Table 5 shows
the proposed combinations for a further accurate investigation in order to be used for the proposed
estimation method. In the low and high frequency regions, the starting value was maintained to be
constant before proceeding by 1 decade for each case. The authors of this present study are aware
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that the combinations are infinitive but this study wants to maintain a possible and actual scenario for
measurements and simultaneously simplify the dividing range.
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Figure 13. Cole–Cole plot impedance characteristics through the frequency spectroscopy.

Table 4. Frequency of regions.

Low Freq. High Freq.

10 mHz–100 mHz 10 Hz–100 Hz
10 mHz–1 Hz 10 Hz–1 kHz

10 mHz–10 Hz 10 Hz–10 kHz

Table 5. Proposed combinations.

Cases Low Freq. High Freq.

Case 1 10 mHz–100 mHz 10 Hz–100 Hz
Case 2 10 mHz–100 mHz 10 Hz–1 kHz
Case 3 10 mHz–100 mHz 10 Hz–10 kHz
Case 4 10 mHz–1 Hz 10 Hz–100 Hz
Case 5 10 mHz–1 Hz 10 Hz–1 kHz
Case 6 10 mHz–1 Hz 10 Hz–10 kHz
Case 7 10 mHz–10 Hz 10 Hz–100 Hz
Case 8 10 mHz–10 Hz 10 Hz–1 kHz
Case 9 10 mHz–10 Hz 10 Hz–10 kHz

In each case, depending on the battery type, we will show and will try to explain which case
is more appropriate to use in order to reduce the point of frequency for an optimal calculation
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time/accuracy rate. In the previous study, the low and high frequency regions were wide in order to
explain the physical meaning of each variables for the proposed ECM. However, the most efficient
region will be investigated in this study.

4. Artificial Neural Network

4.1. Designing the Optimal Structure

ANN logic is an ML approach based on the human brain behavior, which is an electronic imitation
of the neural structure of the brain in other words. This method is based on processes, learning,
validation and test. The proposed ANN method is processed in MATLAB R2018a and in this study,
the hardware specifications of the used PC are shown in Table 6.

Table 6. Hardware Specifications.

CPU RAM HDD

i7 6700 3.4 GHz/L3 cache 8 Mb 8 Gb DDDR4/2133 MHz 1 Tb

During the training process that is the first step, the selection of the most appropriate NN
configuration is crucial. The typical structure of the ANN is composed of an input layer, a hidden
layer and an output layer. The input signals are multiplied by the weights before being calculated
through the mathematical function, which expresses the activation of the neuron. The next necessary
step of the process is to compute the output of the neuron. A higher weight of the artificial neuron
expresses a strong relation with the input. It expresses that the specific input is more significant. The
neuron is inhibited by the negative weight. Depending on the weights, the state of the neuron will be
changed. The output is optimized by adjusting the weights of an artificial neuron according to the
specific inputs, i.e., by learning with a “teacher.” This is the main role of the ANN in the training phase
for finding an algorithm in order to obtain the desired output from the NN automatically. The relation
between the input and output is shown in Equation (3):

a =
R

∑
i=1

Wij pi + bi (3)

where Wij is the weight, p is the input and a is the output. As explained in [20–24], the weight between
the ith neuron of the (k − 1)th layer and the ith neuron of the kth layer is defined as Wij,k. in order to
define the most appropriate adapted values:

Wij, k(tn) = Wi j, k(tn−1)−
αE(tn)

Wi j, k(tn−1)
∆Wi j, k(tn−1) (4)

where 0 < α < 1 and E = 1/2 ∑(yi − bi)2, i = 1 . . . n, yi is ith actual output and bi is ith simulation output.
In addition to this, the time series prediction approach is applied for the Linear Prediction Error

Methods (L-PEM), which can be applied to different arbitrary model parameterizations. One of the
positive things of this method is that it can be applied to a wide region of model parameterizations.
Based on the previous samples as in the case of x(t −∆t), x(t −2∆t), . . . ., x(t − k∆t), the value of x(t)
needs to be predicted. The required value can be expressed as a function of the previous k samples:

X(t|t− ∆t, · · · , t− k∆t) = Φ(x(t− ∆t), · · · , x(t− k∆t)) (5)

X(t|t− ∆t, · · · , t− k∆t) =
k

∑
i=1

θix(t− i∆t) (6)
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In Equation (5), the left side of the equation expresses the one-step-ahead prediction of the output
and Φ is an arbitrary function of the past-observed data. If the function Φ is linear, the prediction is
called a linear PEM, which is expressed in Equation (6). In the case that the last data set is composed
of linear combinations of the k previous ones, the objective is to find θi, which is a vector coefficient.
The optimum weight θi is obtained as a solution of (6) and it can be found by minimizing the distance
between the predicted outputs X from the measured results x(t). With the help of Equation (7), it is
possible to obtain the optimum weight θi. With more data, it can be easier to see a convergence.

d
dθk

k

∑
i=1
‖X(t− i∆t)−x(t− i∆t)‖2

= 0 (7)

In this study, the improved dual ANN structure is proposed in order to obtain the parameters,
which are related to one of the specific frequency regions. As in the previous study, theoretically the
parameters of the equivalent circuit will be obtained from a pair of the battery voltage and current
waveforms during its operation.

The internal voltage is expressed as a function of the SOC. The series resistor R0 and the parallel
R1C1 circuit in Figure 3 explain the voltage drop in a high frequency region and the other RnCn circuit
with the series capacitor C∞ expresses this in the low frequency region. The transient characteristic of
the battery can be expressed by the circuit.

4.2. Validating of the Improved Estimation Model

Figure 14 shows the ANN structure where U and I are genuine and practical inputs obtained from
the devices as illustrated in Appendix A, respectively Figures A1 and A2. Based on each frequency
region the desired outputs are estimated, this is similar with the structure confirmed in [6], were the
authors used Zre and Zim as the input of a single ANN structure.
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Table 7 shows the results of the previous study for the wide regions of frequency. This was the
most accurate case, especially based on the Li-Ion battery estimation.

Table 7. Estimated Circuit Parameters.

Parameters Measured Estimated

R0 (mΩ) 48.3 46.65
R1 (mΩ) 2.3 2.46
Rn (mΩ) 58.2 56.35
C1 (kF) 0.7 0.721
Cn (kF) 1.88 1.81

C∞ (MF) 3.58 3.69
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The estimated cases are shown as below. It must be clarified that in this estimation the
deterioration effect of the battery was inserted in order to be as much as possible a real case which
includes the component of SOH. In simple words, it means that an estimation model which includes a
better generalization in deterioration was used. Tables 8–16 show the results and comparison for each
of 9 cases.

Table 8. Results of Case 1.

Parameters Measured Estimated

R0 (mΩ) 47.9 55.18
R1 (mΩ) 2.4 2.81
Rn (mΩ) 57.5 67.85
C1 (kF) 0.65 0.54
Cn (kF) 1.9 1.61

C∞ (MF) 3.5 4.1

Table 9. Results of Case 2.

Parameters Measured Estimated

R0 (mΩ) 50.2 55.3
R1 (mΩ) 2.42 2.13
Rn (mΩ) 59.1 51.95
C1 (kF) 0.75 0.65
Cn (kF) 2.1 2.39

C∞ (MF) 3.74 4.13

Table 10. Results of Case 3.

Parameters Measured Estimated

R0 (mΩ) 50.8 57.09
R1 (mΩ) 2.46 2.12
Rn (mΩ) 58.1 52.11
C1(kF) 0.82 0.93
Cn (kF) 1.9 1.65

C∞ (MF) 3.65 3.22

Table 11. Results of Case 4.

Parameters Measured Estimated

R0 (mΩ) 49.2 57.95
R1 (mΩ) 2.38 1.94
Rn (mΩ) 58.9 70.03
C1 (kF) 0.85 1.02
Cn (kF) 1.94 2.27

C∞ (MF) 3.62 3.04

Table 12. Results of Case 5.

Parameters Measured Estimated

R0 (mΩ) 51.3 47.7
R1 (mΩ) 2.43 2.22
Rn (mΩ) 59.7 64.17
C1 (kF) 0.74 0.82
Cn (kF) 1.95 2.15

C∞ (MF) 3.7 4.03
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Table 13. Results of Case 6.

Parameters Measured Estimated

R0 (mΩ) 50.5 53.01
R1 (mΩ) 2.35 2.18
Rn (mΩ) 59.2 63.94
C1(kF) 0.78 0.84
Cn (kF) 1.87 1.735

C∞ (MF) 3.72 4.01

Table 14. Results of Case 7.

Parameters Measured Estimated

R0 (mΩ) 48.9 50
R1 (mΩ) 2.32 2.45
Rn (mΩ) 58.9 60.7
C1 (kF) 0.81 0.75
Cn (kF) 1.92 1.81

C∞ (MF) 3.61 3.69

Table 15. Results of Case 8.

Parameters Measured Estimated

R0 (mΩ) 49.3 50.2
R1 (mΩ) 2.35 2.43
Rn (mΩ) 59.3 60.6
C1 (kF) 0.85 0.87
Cn (kF) 1.95 1.89

C∞ (MF) 3.65 3.72

Table 16. Results of Case 9.

Parameters Measured Estimated

R0 (mΩ) 48.3 46.65
R1 (mΩ) 2.3 2.46
Rn (mΩ) 58.2 56.35
C1 (kF) 0.7 0.721
Cn (kF) 1.88 1.81

C∞ (MF) 3.58 3.69

Based on the estimated values for 9 cases, Figure 15 shows the absolute error values for each case.
For each case of frequency regions, two columns are used to explain the minimum and maximum
errors. In order to have a better generalization, the model has to also be aware of the different levels of
deterioration. For each of the cases, the numbers are different because all the measure was made at
different cycles of usage.

It is clear that even in Figure 16, the cases 7–9 achieve the lowest error. For R0, Rn, C∞,
the cases 7 and 8 have almost the same accuracy, which means that if you want to estimate the
SOH, we recommend to use the transient characteristics in case 7 in order to have less frequency points
compared to the cases 8 or 9. However, if the researchers want to focus in the R1, C1 and C2, the case 8
is better compared to the case 7 or 9. Based on the same technique on the Li-Ion, the estimation was
achieved for the Pb and Ni-MH batteries.
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Figure 15. Error plot of Li-Ion battery for each frequency regions.
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Figure 16. Error plot of Li-Ion battery for each of the parameters.

The measured data were obtained during SOC 100% for all the batteries, more details are
illustrated in Appendix A, Figures A3–A6. In case of the Pb battery 0 cycle, 100 cycles, 200 cycles,
300 cycles, 500 cycles and 600 cycles information were used for the training process of the Dual
ANN structure, which in comparison with the previous study was made until 300 cycles. Tables 17
and 18 show the best estimation case of frequency regions, which emphasize Case 4 and 5 with
respective frequency:

Case 4-LF(10 mHz-1 Hz)/HF(10 Hz-100 Hz), Case 5-LF(10 mHz-1 Hz)/HF(10 Hz-1 kHz).

Table 17. Results of Case 4 for Pb.

Parameters Measured Estimated

R0 (mΩ) 60.5 57.96
R1 (Ω) 12.72 2.12

Rn (mΩ) 51 47.43
C1 (kF) 2.5 2.605
Cn (kF) 5.2 5.47

C∞ (MF) 4.7 4.97
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Table 18. Results of Case 5 for Pb.

Parameters Measured Estimated

R0 (mΩ) 61.3 65.1
R1 (mΩ) 11.95 12.77
Rn (mΩ) 53.2 50.38
C1 (kF) 2.45 2.27
Cn (kF) 5.36 5.745

C∞ (MF) 4.85 5.15

Figure 17 shows the error value for each of the parameters regarding Cases 4–5.
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Figure 18 show the estimation error plot of Ni-MH battery for the parameters. Case 6 in
Table 19 and case 9 in Table 20 show the best estimation and generalization ability during all the
estimation process.
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Table 19. Results of Case 6 for Ni-MH.

Parameters Measured Estimated

R0 (mΩ) 26.4 25.1
R1 (mΩ) 5.9 6.22
Rn (mΩ) 32.4 30.39
C1 (kF) 0.68 0.71
Cn (kF) 2.092 2.092

C∞ (MF) 3.76 3.76
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Table 20. Results of Case 9 for Ni-MH.

Parameters Measured Estimated

R0 (mΩ) 28.2 29.69
R1 (mΩ) 5.1 4.83
Rn (mΩ) 34.1 32.56
C1 (kF) 0.71 0.73
Cn (kF) 2.16 2.09

C∞ (MF) 3.89 4.05

Respectively, the frequency regions of the 2 cases for Ni-MH battery are shown as below:

Case6-LF(10 mHz-1 Hz)/HF(10 Hz-10 kHz), Case 9-LF(10 mHz-10 Hz)/HF(10 Hz-10 kHz).

Figure 19 shows the optimal frequency region depending on the type of battery based on the
matrix plot. Each battery is colored differently in order to distinguish the type. As explained above,
the optimal cases are 4 and 5 for the Pb battery, which has a LF range from 10 mHz to 1 Hz and a HF
range of up to 1 kHz. For Ni-MH, the best cases are 6 and 9, which shows the fact that this battery is
highly dependent in the extreme regions of HF up to 10 kHz and LF up to 10 Hz. Regarding the Li-Ion,
the best cases are 7 and 8. At the same time, the case 9 can be used if the user can accept errors of up to
6.7%. Furthermore, the case 9 shows good generalization. However, we recommend the cases 7 and 8
for the optimal estimation with a LF of up to 10 Hz and a HF with a maximum frequency of 1 kHz or
10 kHz for the case 9 frequency specified in Table 5.

Figure 20 provides a simpler explanation derived from the matrix characteristics in Figure 19.
This plot specify which frequency must be used in order to obtain a better estimation. For example,
the Pb battery is recommended to be used in the LF region of up to 1 Hz but it can be used in a HF
region from 10 Hz to 100 Hz or even up to 1 kHz. Thus, in the HF region, 1 decade or 2 decades can
be used. If the user needs more accuracy, the data set must be studied in a frequency range with a
maximum of 1 kHz but they must be aware that this higher frequency requires more data points, more
calculation time and experiments. Thus, this needs more powerful hardware to handle the processing.
In addition, in the case of the embedded circuit, the computational power is very important as less data
will make it faster for the circuit in order to handle it. Thus, depending on the type of the application,
cost, accuracy and time, the user can choose the best regions among the recommended by the authors.
The cost/performance trade-off must be taken into account.
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5. Conclusions

In this study, the updated and improved version of the dual ANN structure for estimating the
circuit parameters of the rechargeable batteries was introduced. As already explained in the previous
study [13–15], due to the difficulty to handle a wide range of frequency, the estimation process was
divided into a high-frequency region, which is related with the maximum chargeable/dischargeable
current, and a low-frequency region, which is closely related with SOH. With the help of ANNs, it was
possible to estimate these variables with a small difference between the real and calculated by NN and
processed in MATLAB R2018a. The updated algorithm with better estimation and calculation time,
adaptive algorithm for a better generalization made possible even for different regions of frequency
to estimate with high accuracy. In this study, the number of cycles was increased in order to make
possible to study the batteries at the full range of deterioration from a new to totally deteriorated based
on the manufacture’s datasheet. In addition, this fact helps to increase the generalization of the method
and it can be used for future diagnosis work, related to the SOH fade. As well the range of discharging
ratio was increased, 0.1C, 0.2C, 0.5C, 0.6C, 0.8C and 1C. It was possible to obtain an accurate estimation
with 2% error for the Li-Ion for frequency from 10 mHz up to 1 kHz, an estimation error of 3.3% for
Ni-MH especially for high frequency regions up to 10 kHz and a minimum error of 4.1% for Pb battery
which is based mostly in low frequency regions, with frequency up to 100 Hz or 1 kHz in case that a
large number of data points can be obtained. The frequency points were maintained constant the same
as in the previous study to confirm the model in case of a small amount of data. In the final step after
optimizing and improving the algorithm and the structure of the ANN, the required inputs cells are
less than 100, depending by the battery type, capacity, and the charging/discharging ratio. The number
of neurons was changed a little comparing from the previous work, as in the hidden layer for the
high-frequency structure 32 neurons and in the low-frequency region is 28 neurons. Through this study,
it was possible to investigate further the relation of the frequency regions with parameters value of the
proposed ECM. The accuracy and generalization were improved as shown in Appendix A, Table A1.
The estimation was calculated in just a few seconds. The future work will be the focus on obtaining
a more reliable and accurate model from a practical device during dynamic loads. As well using
parameters like OCV waveform and capacity fade, as online-adaptive parameter approach with the
help of ANN [22–27], based on an arbitrary waveform will be investigated for the real-time diagnosis.

Author Contributions: M.B. developed the MATLAB code for the ANN algorithm with a generalization
characteristic, conducted all the battery experiments by the devices which are in shown in Appendix A respectively
NF As-510-LBA, AS-510-B shown in Figure A1 and Thermo-hygrostat HIFLEX KEYLESS TL401E as shown in
Figure A2, and also wrote most of the manuscripts. R.G. conducted most of the experiments in the proposed
multi-type secondary-battery circuit, with CCCV mode and by pulse waveform as well did some data analysis.
N.N. supervised all process of the development, experiments and results, also checked the whole manuscript.
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Appendix A

Figures A1 and A2 show the devices used to obtain the experimental data used for the training of
the ANN.
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Figure A2. Evaluation system AS-510-LB4.

As already explained in the Author Contributions, most of the data were obtained by these
devices, but in the same time extra data were obtained through the multi-type Secondary-Battery
Charger/Discharger by Arbitrary Current Waveform [16]. From this device extra experiments were
conducted for waveforms different from CCCV mode, pulse current where used. Also, different
charging/discharging ratio was conducted as: 0.1C, 0.2C, 0.3C, 0.5C, 0.8C, 1C, as shown in Figure A3.
The range of the experiments where conducted from a new battery to a full deteriorated as specified
in the official specification, from 0 cycle to (500–600) cycle. Figure A3 shows the discharging plot for
different ratio.

Figure A4 shows Cole–Cole plot during the charging process. All the values of the ECM
parameters are extracted at 100% SOC. The authors would like to investigate further the effect of ratio
in the deterioration effect of the batteries related to the values of the internal resistance. Temperature
as well-known variable which reduce the lifetime of the battery, should be inserted in the nonlinear
characteristics. Also, other experiments based on the pulse waveform are conducted by the authors,
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in future works these experiments will compare the effect of the pulse charging or any arbitrary
waveform for a practical application in EV batteries.

Table A1. Comparison of accuracy between previous and this study.

Studies Li-Ion Error (%) Pb Error (%) Ni-MH Error (%)

Previous study [5] 3 4.9 4.5
This study 2 4.1 3.3
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