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Abstract: The scenario where the renewable generation penetration is steadily on the rise in an
increasingly atomized system, with much of the installed capacity “sitting” on a distribution level, is in
clear contrast with the “old paradigm” of a natural oligopoly formed by vertical structures. Thereby,
the fading of the classical producer–consumer division to a broader prosumer “concept” is fostered.
This crucial transition will tackle environmental harms associated with conventional energy sources,
especially in this age where a greater concern regarding sustainability and environmental protection
exists. The “smoothness” of this transition from a reliable conventional generation mix to a more
volatile and “parti-colored" one will be particularly challenging, given escalating electricity demands
arising from transportation electrification and proliferation of demand-response mechanisms. In this
foreseeable framework, proper Hybrid Energy Systems sizing, and operation strategies will be crucial
to dictate the electric power system’s contribution to the “green” agenda. This paper presents an
optimal power dispatch strategy for grid-connected/off-grid hybrid energy systems with storage
capabilities. The Short-Term Price Forecast information as an important decision-making tool for
market players will guide the cost side dispatch strategy, alongside with the storage availability.
Different scenarios were examined to highlight the effectiveness of the proposed approach.

Keywords: hybrid energy systems; optimized dispatch strategy; photovoltaic power; pumped-storage
hydropower; short-term price forecasting; wind power; optimized control strategy

1. Introduction

Over the last decade we have witnessed a renewable energy burst. This flourishing, increasingly
mature and less costly portfolio of renewable generation technologies, with a prominence of wind,
hydro, solar, biomass, geothermal and ocean energy technologies [1,2], offers a variety of clean and
environment-friendly energy sources. These are responsible for an ever-increasing supply share of
electric loads (rising electrification rate), shifting from a centralized energy mix, i.e., an upstream grid
based on circumscribed fossil fuels (prone to price increase with considerable economic spillovers)
and nuclear energy, towards a rich renewable energies’ portfolio [3,4]. The scientific community,
as well as policy makers, have set ambitious goals for the energy sector, particularly in Europe that,
in addition to its commitment to the Paris Agreement, has targeted an almost emission-free generation
in Europe by 2050 (Energy Roadmap 2050). According to recent data reports, 167 GW of new renewable
power capacity was added, in 2017 alone, totaling now more than 2 TW of global renewable energy
generation capacity, surpassing the already astounding figure of 138.5 GW added in 2016, which
in itself was approximately equivalent to Canada’s total installed capacity [5,6]. With this regard,
we must emphasize the levels of photovoltaics integration, either in self-consumption or mandatory
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grid injection schemes, with both residential and buildings appliances adding up to a third of the
globally installed PV capacity [7]. Even though these technologies present some drawbacks, specifically
their dependence upon weather conditions (stochastic nature), making them too unreliable to meet the
whole energy demand, which in unconnected systems can lead to supply disruptions [8,9].

An hybrid energy system (HES) is typically formed by matching different forms of renewable/
non-renewable energy sources with or without storage units in order to achieve a greater balance in the
energy supply (mitigating its uncertain nature), a more distributed generation, as well as an increased
system reliance [8,9], i.e., by better exploiting the local endogenous resources, taking advantage of the
combined production from different technologies, e.g., solar photovoltaic, solar thermal, wind, hydro,
biomass, hydrogen, fuel cells, micro-turbine generators, diesel generators among others. As a result of
the wide range of existing technologies, innumerous HESs have been proposed, combining all sorts of
generation technologies to deal with both generation and load uncertainty, in different topologies and
operating strategies [2–4,10–17]. For instance an optimal scheduling approach for a thermal-wind-solar
system with storage, considering the uncertainty in load forecast, and in wind and solar power output
is proposed in [14], another example is the stand-alone wind-photovoltaic-hydrogen presented in [18].
In another instance, a maritime solution anticipating the increasingly high costs of fossil fuels and
increasing restrictions on diesel usage and gas emissions from ships was proposed. Its operation is
based on an optimal PV/battery/diesel scheme during the cold-ironing connection. A solar HES
with diesel generators is contemplated (via Homer®) in [19] to respond to the growing demand on
isolated telecommunication infrastructures in Nigeria. This type of hybrid renewable energy systems
integration is an effective electrification solution, in particular for rural electrification in least developed
countries. Following this path, an off-grid hybrid PV-diesel-battery appliance (with an optimization
based on PSO and ε-constraint method) serving a demand of 20 households in remote Saharan regions
with 93% renewable fraction is proposed in [20]. A multi-objective optimization of the power dispatch
of a large-scale integrated energy system (distributed district heating and cooling units and a power
grid) via adaptive covariance and Lévy flights was assembled in [21]. Lastly, a rule-based method
is implemented in [17] to a PV, wind, diesel and battery energy storage system via minimizing the
operation cost by scheduling the distributed energy resources.

Besides, these systems can operate as “grid-connected” or “off-grid”, i.e., as stand-alone systems,
constituting a suitable solution for rural and isolated areas (ranging from suitable HES for remote
islands to particular alternatives for buildings) with demand and resource availability [1,2,4,11,16,22].
However, the optimized operation of these systems still poses some challenges. For all these reasons,
HESs are presently a hot topic among researchers [4], covering topics ranging from feasibility analysis,
optimum sizing, modeling, dispatch, control aspects and reliability issues [9,23].

Furthermore, one of the most important tasks regarding HESs is the generation and storage
operation control, known as dispatch strategy. Load Following, Cycle Charging and Combined
Dispatch are the most employed classical strategies. A common complementary strategy is the use of
demand and/or renewable generation forecasts to outline the charging periods of the battery bank,
usually known as Predictive Dispatch [24,25].

As a matter of fact, these HES together with demand-response mechanisms, constitute a great
opportunity for industrial, commercial and public prosumers (active energy consumers), whose
primary activity is not electricity generation, but who possess the necessary capital and land resources
to collect the energy savings. Moreover, benefiting from the fall in the cost of renewable energy
technologies and by actively participating as players in the “broader” horizontal electricity markets,
can make them achieve noteworthy profits [26,27]. In this framework, this research proposes an
optimal dispatch strategy for a simulated grid connected/stand-alone hybrid energy system, owned
by an industrial prosumer with resources availability. Contemplating the common PV/Wind (onshore)
generation in simultaneous operation mode [23], as well as a traditional energy storage unit (battery),
complemented by the addition of a less common small hydro unit with pumping that, in parallel to the
battery bank, will provide storage capability. This is a particular feature since few research works have
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explored HES with both multi-generation units and multi-storage units [22]. The operating strategy
proposed in this paper, essentially, can be decomposed into two phases. In the first phase a short-term
electricity price forecast (24 h-ahead) is carried out, using a feed forward neural network (FFNN).
In a second phase, a real-time dispatch is performed subject to several constraints, incorporating
the short-term price forecast and the current state-of-charge of the storage units, to allow the best
compromise between cost and reliability of the various generation and storage technologies, i.e.,
satisfying the electricity demand while minimizing the operation costs. The main contributions of this
work can be defined as:

• A new hybrid energy system architecture is proposed, combining a wide-range of technologies,
including a Pumped Storage Hydro unit as a complementary storage technology;

• A novel dispatch strategy (algorithm) based on a 24 h electricity price forecast coupled with the
state-of-charge information from the storage technologies is presented;

• In addition to the main grid-connected mode, the novel dispatch strategy contemplates modifications
to the algorithm (cost formulas) for the off-grid operation (standalone mode), with the addition of
traditional diesel generators.

This paper is organized as follows: Section 2 describes the proposed hybrid topology and its
operating principles (operation assumptions) and formulates the PV/wind/PSH/diesel/battery
optimal dispatch strategy. The case study is presented in Section 3, explaining the prosumer profile
replicated in this paper and illustrating the used input variables. Section 4 briefly describes the current
electricity market structure (where our industrial prosumer is inserted), the importance of Short-Term
Price Forecasting as a decision-making tool and finally the approach followed in this paper, including
its data preprocessing stage. Then, in Section 4 the modeling of the HES is presented, including all the
specifications employed. In Section 5, the case study is simulated in different scenarios and its results
are highlighted, before closing this work in Section 6 with the main conclusions.

2. System Architecture and Operation

The underlying hybrid architecture, interconnected with the grid, combining the generation
technologies (PV-wind-PSH-diesel) and the storage unit mentioned above, is illustrated in Figure 1.
An advantage of this architecture is the plug-and-play operation, where wind, hydropower and diesel
generation units are coupled directly to the AC Bus. The storage unit (battery bank) and the PV
generation are coupled to a DC bus, through proper DC/DC converters, which is then sequentially
coupled to the AC bus through a bidirectional DC/AC, thus allowing a two-way (flow between the two
busbars) power flow. The diesel generator will play a reserve role, i.e., its primary state is off, only on
shut down situations will be turned one, otherwise the grid exchanges will provide existing shortages.
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The proposed HES, shown in Figure 1, was designed to fully satisfy an actual load profile
for a simulated prosumer profile. The overall operation strategy pseudocode is formulated above
(Algorithm 1), it starts with a data gathering and features extraction stage (i), where the different
time-series are analyzed and processed. Subsequently, the short-term price forecasting (ii) is carried
out for a one-day ahead horizon, using a FFNN as a forecasting engine. These procedures are further
explained in Section 4.

Algorithm 1: Proposed operation strategy

i. init: Data gathering and Features Extraction
ii. price forecasting { p̂1, p̂2, . . . , p̂24}
iii. for k = 1 : KN

iv. ε(k) = PD(k)− (Psolar(k) + Pwind(k))

v. min

{
CsolarPsolar(k) + CwindPwind(k) + Cgrid(ε(k))Pgrid(k)+

+∑2
j=1 Cj

(
SOCj(k), ∆ SOCj, p̂(k)

)
Pgj

}
System constraints:

vi. Psolar(k) + Pwind(k) + Pgrid(k) + ∑2
j=1 Pgj(k) = PD(k)

vii. ifε(k) > 0 then

a. Pg1(k) > 0
b. Pg2(k) > 0.1Phydro rated

c. Pgrid(k) > 0

viii. else

a. Pg1(k) ≤ 0
b. Pg2(k) ≤ −0.1Phydro rated

c. Pgrid(k) ≤ 0

ix. end if

x.

{
Pgj,min(k) ≤ Pgj(k) ≤ Pgj,max(k)

Pgrid(k) ≤ Pgrid, max

xi. end for
xii. end

Following the forecasting stage (ii), for each discrete-time step k, up to a total of KN steps
(simulation time horizon), it is determined how much the non-dispatchable PV and wind generations
can supply the existing load PD(k) given by ε(k) (iv). This will result in situations where ε(k) > 0, i.e.,
energy deficit, which involves the discharge of the storage technologies or the purchase of energy from
the grid. On other hand, when ε(k) ≤ 0, i.e., energy surplus, requiring that the energy surplus is either
stored in the storage technologies or sold to the grid.

Thereafter, the economic dispatch is carried out, i.e., allocating the available generation to supply
the HES load, while minimizing the operation costs (v) and fulfilling the demand–supply balance (vi)
and unit capacity limits constraints (x).

In (v) the economic dispatch (ED) stage is executed by linear programming, determining the
output power of the different units that form the proposed HES, to fulfill the existing energy deviation
ε(k) in the most cost-effective manner. Csolar, Cwind, Cj and Cgrd are the costs associated with the
respective generation technologies and the grid electricity cost (energy price), respectively. In particular,
Cj translates the storage unit and pumped-storage hydro plant (PSH) cost as defined in Equation (2)
and are computed as a function of the state of charge, SOCj, and an estimate of how much the SOC
of the storage technologies varies, ∆SOCj, as well as the forecasted prices, p̂(k), where the index j
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selects the battery bank for j = 1 and PSH as a source/sink for j = 2. In the case of the PSH, SOC2 is
defined as the ratio between the current volume of stored water and the reservoir maximum capacity.
Equation (2) was defined as a piecewise function where each sub-function has its own SOCj, working
range and signal of ε(k). The considered SOC working range for both storage technologies were
[0.15,1], implying that the domain of ∆SOCj is [−0.85,0.85].

The marginal costs of the non-dispatchable generation are considered null. Regarding the grid
cost, the same is computed as a function of the state of charge, SOCj, and the electricity price forecast
(predicted value p̂, predicted daily average and maximum predicted value) and is given by Equation (1).
This cost was also defined as a piecewise function where each sub-function is defined over an interval
formed by the signal of ε(k) and p̂(k). The inclusion of the electricity price forecast information on
the formulation allows to gauge the future trend of electric energy prices, which is of high interest for
a player with this type of generation mix. Since it allows to dispatch the stored energy when high
electricity prices are expected and, on the opposite, to take advantage of off-peak periods for storing
energy when lower electricity prices are expected.

For instance, in the presence of energy deficits, ε(k) > 0 , the SOCj(k) is inversely proportional

to the attributed grid cost, furthermore a normalized price information 1
24

24
∑

j=1
p̂j/max ({ p̂1 . . . p̂24})

regarding the considered day will translate how the average compares with the maximum forecasted
value, finally the predicted p̂(k) price for the current hour is compared with its daily average,

decreasing the grid cost if p̂(k) < 1
24

24
∑

n=1
p̂n and otherwise increasing it, in turn for the energy surplus

situation, ε(k) ≤ 0, the SOCj(k) is now directly proportional to the attributed grid cost and instead of
adding the factor regarding the difference between the current dispatch price and its daily average,
the same is now subtracted.

From point (vi) forward, we focus the attention on the set of operational and system constraints to
which the ED is subject. The first system operation constraint is the demand–supply balance equation
(vi), translating the need for the non-dispatchable generation, Psolar(k) and Pwind(k), coupled with the
sum of the output power from the PSH and battery bank units, Pgj(k), as well as the power flow with
the upstream grid, Pgrid(k), to match at all times the HES load, PD(k). In addition, it was established
that for energy deficit occurrences, the output power Pgj(k) and Pgrid(k) have by convention a positive
signal (vii), i.e., power is being injected into the buses (HES), contrarily, when Pgrid(k) < 0 and
Pgj(k) < 0 power is now being injected into the grid and being consumed for pumping up the
water (upstream reservoir) and/or to charge the storage bank (viii). Besides, an additional constraint
concerning the operating range of the PSH unit is defined, imposing 10% of the rated power of the
turbine, as minimum operating point both for turbine and pump modes (vii-b and viii-b). The last
constraints (x) ensure that the power generation limits, firstly for battery bank, translates the lower
and upper charge and discharge power, and secondly the generation/consumption bounds for the
PSH unit, which are a function of the current SOC2 and its generator rated power, Phydro rated.

Cgrid
(

p̂(k), SOCj(k)
)

=



min

{1− SOC1(k) 1− SOC2(k)}
1

24

24
∑

j=1
p̂j

max ({ p̂1 ... p̂24})

+
p̂(k)− 1

24

24
∑

j=1
p̂j

max ({ p̂1 ... p̂24})
, if ε(k) > 0 ∧ p̂(k) > 0

min

{SOC1(k) SOC2(k)}
1

24

24
∑

j=1
p̂j

max ({ p̂1 ... p̂24})

− p̂(k)− 1
24

24
∑

j=1
p̂j

max ({ p̂1 ... p̂24})
, if ε(k) ≤ 0∧ p̂(k) > 0

0, p̂(k) ≤ 0

(1)
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Cj
(
SOCj(k), ∆ SOCj(k), p̂(k)

)

=



2, if
(
SOCj(k) ≤ 0.15∧ ε(k) > 0

)
∨
(
SOCj(k) = 1∧ ε(k) ≤ 0

)
(1−SOCj(k)+∆ SOCj(k))

(
1

24

24
∑

j=1
p̂j

)
max ({ p̂1 ... p̂24})

, if 0.15 ≤ SOCj(k) ≤ 1∧ ε(k) > 0

SOCj(k)

(
1
24

24
∑

j=1
p̂j

)
max ({ p̂1 ... p̂24})

, if SOCj(k) < 1∧ ε(k) ≤ 0

(2)

Lastly, several tweaks were also considered: for small discharge depths and state of charges close
to 1 the cost of both technologies is similar; with state of charges close to 1 and as the discharge depth
increases, the cost of using the battery bank is higher. This is especially important, since the battery
bank is a more sensible storage technology, i.e., its preferable to avoid full discharges cycles, even if it
requires charging cycles more frequently.

To better highlight the codomain of this cost function, Figure 2 is introduced, where four different
initial SOCs are considered for an energy deficit situation (where a discharge of the storage technologies
is expected). The chosen SOCs, were the upper limit, i.e., SOC = 1, followed by two intermediate levels
(equally spaced), i.e., SOC = 0.5 and SOC = 0.75 and a near border limit of SOC = 0.85.Energies 2019, 12, x FOR PEER  7 of 26 
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Figure 2 clearly shows that the cost is inversely proportional to the current SOC and varies in a way
that favors the use of PSH and storage bank technologies when not only its SOCs are higher but also
when the required DOD is smaller. Although the function ranges between [−1,1.85], for energy deficit
situations its respective cost is always positive, since discharge cycles have negative repercussions on
these technologies’ lifespan.

3. Case Study

The proposed daily operation optimization strategy for a HES (dispatch strategy) is tested under
the assumption that a prosumer, such as a resourceful industrial/commercial corporation, has invested
in an increasingly mature energy generation portfolio, firstly with the intent of suppressing/lessening
their electric loads consumption burden, but also to take advantage of the decreasing storage cost,
in other words to “act” as market player on both sides. Moreover, by taking advantage of the exchanges
with the upstream grid, in foreseeable profitable periods, thus he accelerates not only the payback
period (shortened), but also the medium-long term profitability. For example, the operation of a
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storage system owned by a large consumer that purchases electricity from the Ontario’s wholesale
market, where the price forecasts are also applied to an optimization platform for operation scheduling
of a battery energy storage system, within a grid-connected micro-grid in Ontario, is studied in [28].

For simulation purposes, it was necessary to use a nationwide database, which included not
only all the parameters required to model the different HES sources, but also the vital information
(explanatory/exogenous variables) for the successful implementation of a 24-h electricity prices
forecasting in a real market context. To serve this purpose, the open power system data [29] was used.
This online platform compiles national/system level data from several sources, not only containing
common time-series data (load, prices and renewable generation and its respective forecasts, etc.),
but also the important weather data (solar irradiation, temperature and windspeed). Thus, to include
all the necessary simulation variables (used both in price prediction and in HES modeling), only a
handful of countries provide all the necessary data on an hourly basis. In this sense, the data regarding
the Czech Republic (CZ) system for the period from 1 January 2015 until 31 December 2016 was used.
Furthermore, the annual average diesel prices for Czech Republic were also used to representatively
model the diesel generator operation cost [30]. Nevertheless, some processing of these raw data is
still necessary, starting with the necessary electric load adjustment, since the average CZ system load
value is about 7343 MW, then a reducing scale factor is applied to bring the load to an average value
around 100 kW (prosumer level). Secondly, since the wind speed is the result of average anemometers
measurements across the country, its average value is around 3.93 m/s, which following the Wind
Energy Resource Atlas of the United States for a height of 10 m placing it in the lowest class of wind
power potential (class 1) and well below the majority of the wind turbines cut-in speed, when viable
wind farming sites usually present values higher than 6 m/s. So, therefore, a scaling factor of 3 is
applied to the existing wind profile to simulate more favorable conditions, as is customary in wind
farm sites. In the same manner, a minor adjustment is applied to the irradiance levels, in order to better
replicate more consistently the existing conditions in photovoltaic parks.

The existence of rebated fuel for off-road usage is a common practice in the vast majority of
countries and is regulated in the European Union by the directive 92/81/EEC, which states in its
Article 8 (2) that reduced rates or exemptions can be applied, namely for electricity production purposes.
This type of fuel is often referred as colored or dyed fuel, and benefits from reduced taxes, for instance
in the UK a VAT rate of 5% is considered for “red diesel” in contrast with the normal 20% VAT [31], and
in Portugal fuels used to generate electricity are untaxed [32]. Consequently, for simulation purposes
a 10% discount was considered when dealing with the end-user diesel prices, since industrial users
benefit from a special regime.

The electricity prices and the adjusted prosumer load profile are shown in Figure 3, in turn
Figure 4 illustrates the employed meteorological data, whereas Table 1 provides the time-series
descriptive statistics after the adjustments mentioned before, i.e., mean, median, standard deviation,
upper and lower limits, as well as the shape related statistics, kurtosis and skewness for the hourly
time-series. We can see a mean and median price around 3 cents per kWh, with a considerable
standard deviation, in the order of 40% of the mean value (thus translating the difficulty for the
forecasting task), a minimum negative value of 2 cents per kWh was recorded and the shape metrics
reveal an approximately symmetric and leptokurtic distribution. The load was modeled with an
average/median value of around 100 kW and presents also an approximately symmetric distribution,
however kurtosis reveals a more compact distribution, i.e., platykurtic distribution.

With respect to the wind speed profile, we can see that it presents a considerable standard deviation
(in the order of 46% of the average value) with an adjusted average speed close to 11 m/s and the shape
metrics reveals a leptokurtic and highly positively skewed distribution. The irradiance time-series
further accentuates these shape characteristics. Furthermore, an interesting situation, where the
standard deviation is higher than the mean and the median, has a considerably distance from the
mean value of 127.2 W/m, revealing a very widely distributed data set. Meanwhile, temperature
statistics reveal a time-series with relatively low mean temperatures and an approximately symmetrical
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distribution. Finally, we can also perceive that during the summer season, conditions are substantially
more favorable for non-dispatchable generation.Energies 2019, 12, x FOR PEER  9 of 26 
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Table 1. Descriptive statistics of the different datasets.

Mean Median St. Dev Minimum Maximum Skewness Kurtosis

Prices [€/kWh] 3.17 × 10−2 3.07 × 10−2 1.28 × 10−2 −2.00 × 10−2 0.10 0.43 4.57
Load [€/kWh] 97.9 97.8 16.0 59.0 140.2 0.13 2.30

Wind Speed [m/s] 11.8 10.7 5.38 0.44 39.8 1.18 4.81
Irradiance [W/m2] 127.2 0.54 242.5 0 1193.3 2.17 6.94
Temperature [◦C] 9.07 7.96 9.00 −12.0 36.2 0.37 2.41

For this permanent load levels, an energy portfolio totaling approximately 275 kW of non-dispatchable
renewable sources (wind + solar) is considered, however, due to the unstable nature of these production
sources, a traditional battery bank with an energy availability of around 130 kWh is added to the mix,
accompanied by a small hydro unit which is one of the highlights of this paper, since it provides a
second storage capacity and a nominal power around 150 kW. To conclude, the availability of diesel
generators is also considered (~60 kW), to evaluate whether or not constitutes a viable alternative to
the upstream grid exchanges, thereby as a preferred reserve source.
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4. Short-Term Price Forecasting

The restructuring of the electric power systems saw deregulated wholesale energy markets
emerge as effective structures to foster competition and override traditional vertically integrated
utilities, enabling the participation of several entities such as generating and investment companies,
distribution (retailers) companies, among others. Therefore, as widely traded commodity with special
features (uninterruptable supply security and very limited storage capacity) electric energy (clearing)
prices are set by intersecting the supply/demand curves [33–35]. However, a set of added taxes and
levies must be accounted to determine the end user retail price, for instance in the first semester of
2018 they averaged approximately 30% of the household consumers retail electricity prices in the Euro
Area. Besides, a distinction between household and non-household retail electricity prices needs to be
considered, again for the 1 semester 2018 the Euro Area non-household prices were approximately
52% inferior [36].

In this framework, the existence of accurate price forecasts is an extremely important decision-making
tool, mainly the day-ahead forecast, since it enables producers to hedge against risks and ultimately
maximize their profits, while bulking consumers to optimize their load schedules. For the last few
years, these wholesale markets have been dealing with increased volatility, thus making the forecasting
task harder, much influenced by the snowballing levels of renewables and its particular close-to-zero
marginal costs [33,37]. Hence, by following the Predictive Dispatch concept it is possible to model
the operating costs of the implemented HES based on the information of these forecasting engines,
in order to promote cost rationalization and its integrity (lifespan).

Plentiful methods have been developed for electricity price forecasting such as: statistical methods,
computational intelligence methods and, nowadays with a greater propensity, hybrid methods [38–41].
These last further explore the best features of each individual method. Artificial intelligence techniques
are among the favorite forecasting engines, given the revealed capabilities to detect/learn complex
non-linear patterns and trends [34,42]. For instance in [43] a linear regression ensemble from a set of
individual RVMs predictors optimized via micro-genetic algorithm is proposed for electricity pricing
signal forecasting. A hybrid algorithm for simultaneous forecast of price and demand is proposed
in [44], understanding the importance of smart-grids, in particular coupled with Demand-Side
Management as a platform for market participants to consider capital cost investments.

Thus, taking advantage of the knowledge already gathered in [45], an analogous approach was
followed, using a FFNN with 2-hidden layers, and an ad-hoc number of neurons. This multi-layer
configuration is one of the most common topologies where, in each network layer, every neuron
response is given by the activation function evaluation of a cost given by a biased weighted sum,
which works as a threshold. For two consecutive layers [l − 1, l] this can be expressed mathematically
as follows:

yj = f j

(
m

∑
i=1

ωij xi + bj

)
, ∀ i ∈ [0, m] ∧ j ∈ [0, n], (3)

where m is the number of neurons in layer l − 1 and n is the number of neurons in layer l; yj is the
output for neuron j in layer l; f j is the employed activation function; xi and bj are input signals; and
finally ωij is the weight of the synaptic connection between neurons i and j.

The Scaled Conjugate Gradient Backpropagation (SCG) algorithm is then used as a learning
algorithm. The performance of the FFNN is evaluated through the mean absolute error (MAE) at
each training step (iteration). Additionally, a standard cross-validation technique (K-fold) was used to
partition the data set into 4 mutually exclusive subsets, with a distribution of 75% and 25% of training
and validation data, respectively. An extended overview of the described forecasting methodology is
presented in Figure 5.

Besides the forecasting engine choice, another delicate issue surrounding forecasting accuracy
is the proper feature selection (selected price explanatory variables) [46]. By this means, first a
pre-selection stage is carried out where Correlation Analysis (CA) is performed over the available price
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data, i.e., we take the current day D (last available information) and measure the partial correlation
between the prior lags with a span up to a total of 168 h (enabling the capture of intra-day and
intra-week relationships), and by selecting the most significant lags the recent days set is formed.
Then, a complementary set containing information regarding Similar Days (SD) is also formed, i.e.,
we take the current day D and find other historical days (SD = 3 days) with a similar daily pattern,
thereby exploring the seasonal properties of the electricity price time-series. With this stage completed,
then Wavelet Transform is used to decompose the signal up to three levels into its detailed and
approximation coefficients, and these are also fed to the multi-layer network.Energies 2019, 12, x FOR PEER  11 of 26 
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In addition, the FFNN input layer is completed with a set of exogenous variables, including
calendar variables (hour, season, weekday and binary holiday indexes), lagged load and renewable
generation, as well as load and renewable generation estimates (i.e., with the same time horizon for
which the price forecast is made).

5. Hybrid System Modeling

In this section, the modeling of the several sources and coupling devices that form the HES
is presented as realistically as possible. These sources will supply the existing electrical load, and
include the battery bank, the pumped-storage hydropower, wind turbine, PV generator, and the power
converters. In addition, the grid-connected topology enables the interaction with the upstream grid,
which is considered as a perfect power source or sink, i.e., electric power is purchased from upstream
grid to supply existing loads and/or charge storage units, otherwise in surplus situations to export
(sell) the exceeding power to the upstream grid. The available storage capacity will play a vital role,
providing the ability to respond peak time loads and store energy surplus during off-peak periods.

5.1. Kinetic Battery Model (KiBaM)

The integration of a battery pack into the HES is highly recommended since it will store the
surplus energy and supply the power deficit for the different operation conditions. The literature
offers a comprehensive range of models to describe the behavior of different types of batteries under
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different operating conditions [47,48]. Among them, four major groups stand out: electrochemical,
stochastic, electrical and analytical models. In this work, authors employed the powerful and widely
used analytical model: Kinetic Battery Model (KiBaM) [49], the same model that is used by the
computational tools Homer® and Hibrid2®.

KiBaM models the total capacity of a battery in two reservoirs, separated by a conductance,
as illustrated in Figure 6. The available charge reservoir contains a fraction c of the total (nominal)
capacity qmax (expressed by q1), responsible for the immediate supply of energy to the connected
load. The bound charge reservoir has a fraction 1− c of the total capacity (expressed by q2) and is
responsible for supplying energy exclusively to the available charge reservoir. The rate of charge flow
between reservoirs depends on the conductance parameter kbatt, as well as the difference between
the two reservoirs height (h1 − h2), with h1 = q1/c and h2 = q2/(1− c). After periods of battery
discharge/charge the reservoirs tend to balance, i.e., h1 = h2.Energies 2019, 12, x FOR PEER  12 of 26 
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The flows of available and bound charge during a constant current discharge or charge I [A],
are computed using the differential equations system, as shown in Equation (4). A full model
description, including the maximum allowable battery charge and discharge power equations, as
well as the amount of available and bound energy at each time-step can be found in [50,51]. In this
work, specific model parameters were identified using the information provided by the manufacturers
and are available in Table 2. The battery bank has a capacity about 5 times larger than a low range
electric vehicle battery and is, nowadays, easy to assemble with solutions like Tesla’s© Powerwall and
Powerpack (up to 210 kWh-AC) solutions:{

dq2
dt = kbatt(h1 − h2)

I = − dq1
dt −

dq2
dt

, (4)

Table 2. KiBaM model: battery bank specifications.

Parameter Value

qmax 131.3305 kWh
c 0.6213

kbatt 0.185

At each time-step, the maximum amount of discharge/charge power is computed, as well
as the available energy and bound energy and from these two we determine the total amount of
energy (storage) q (t) = q1(t) + q2(t), to then compute one of the most important battery parameters:
its state-of-charge (SOC), SOCbatt(t) = q (t)/qmax.
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5.2. Pumped-Storage Hydropower

Hydropower generation with pumping is characterized by the presence of two reservoirs, one
upstream and the other downstream. The concept behind this system is simple: in surplus off-peak
periods, with a lower energy price, water is pumped upstream, then when the demand is higher (peak
periods), and consequently the energy price is higher (more profitable), the stored water is turbinated
to produce energy. Given these characteristics, PSH has a very important load balancing role, since it
allows a high penetration of intermittent sources.

As defined in the literature [11,52–54], the amount of power generated, Phydro[W], and the pumped
flow rate, Qpump

[
m3s−1], can be determined using Equations (5) and (6), respectively:

Phydro = µhydroρwater g hnet Qturbine, (5)

Qpump = µpump
Ppump

ρwater g hnet
, (6)

where µhydro[%] and µpump[%] represent the turbine and pump energy conversion efficiencies,
respectively; hnet[m] is the effective head; Qturbine

[
m3s−1] is the turbined water flow; Ppump[W]

is the pump power consumption; ρwater is the water density, typically 1000 kg m−3 (4 ◦C); g is the
gravitational acceleration, usually 9.81 ms−2. Table 3 displays all the remaining parameters associated
with the hydropower turbine application.

Table 3. PSH specifications.

Parameter Value

hnet 25 m
Phydro installed 150 kW

Vtotal 35,000 m3

A Francis turbine is a good fit for energy demanding appliances. For this HES a mini hydropower
application (<1 MW) is considered, feasible with low to medium head resources with relatively small
dams, as Figure 7 reveals. China has exploited these mature small-scale ranges better than anyone
else [55], proving the effectiveness of these technologies, leading the charts with around 200 GW of
installed hydropower capacity.
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Figure 7. Head-flow ranges of small hydro turbines [56].

Having selected a Francis turbine, and in order to replicate its operational conditions in the best
manner, since the output rate depends heavily upon percent of actual flow to nominal flow, instead
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of using an approximate constant efficiency (such as the euro efficiency standard), it was decided
to do the modeling of the performance as a function of the turbine flow, as shown in [57]. For this
purpose, a 5th degree polynomial approximation was made to the curve data points, with a R2 = 0.9906,
resulting in the following polynomial expression:

µhydro(Q) = 1.19× 10−10 Q5− 6.58× 10−8 Q4 + 1.39× 10−5 Q3− 1.4× 10−3 Q2 + 0.071 Q− 0.637, (7)

Additionally, for the sake of simplification hnet[m] was considered constant despite the volume
change in the reservoir, µhydro[%] and µpump[%] were considered equal. Finally, since PSH allows
storage in an analogous form as the battery bank, the concept of SOC has also been attributed, and it is
computed as the ratio between the current reservoir capacity and its maximum capacity allowance,
i.e., SOChydro(t) = V(t)/Vmax.

5.3. Wind Power Model

The wind energy conversion process is characterized by two specific curves associated with each
wind turbine model. Power output of wind turbine generator at a specific site depends on wind speed
at hub height and speed characteristics of the turbine [58], furthermore the wind speed needs to be
constrained between a model’s specific cut-in and cut-out speeds. One known as power curve relates
the turbine output power with the wind speed, the other is the power efficiency curve relating the
turbine output power with the available power in the wind (power coefficient).

In order to perform the wind speed mapping to turbine’s output power Pwind, the authors used
the approximated power curves provided by the manufacturers, as depicted in Figure 8, despite
the existence of linear, nonlinear and physical approximated models [1,51,58–60]. In this paper,
the adopted wind energy conversion system fell on a combination of Bergey BWC Excel-10 and
Norwin 24-STALL-150 kW turbines, in order to a total an exact amount of 200 kW of installed capacity.
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Additional details vis-à-vis important features can be seen in Table 4. The wind speed measured
by the anemometer at a certain height need to be corrected given the wind shear effect; to this end the
Power Law Profile was used, Equation (8), with the power law exponent α = 1/7:

u
ur

=

(
z
zr

)α

, (8)

where ur
[
m s−1] is the measured (available) wind speed at height zr[m] and u

[
m s−1] is the wind

speed at hub height z[m] of the wind turbine.



Energies 2019, 12, 924 14 of 25

Table 4. Wind Turbine Modelling: Bergey and Norwin.

Parameter Value Parameter Value

PWind installed 200 kW α 1/7
z1 30 m z2 30 m

P1 rated 10 kW P2 rated 150 kW
Cut-in speed 2.5 m/s Cut-in speed: 4 m/s

Cut-Out speed 20 m/s Cut-Out speed 25 m/s
# of Turbines 5 # of Turbines 1

5.4. Solar Photovoltaic Model

Solar PV systems generate electric power from solar energy through PV cells. As pointed out
in Section 1, substantial penetration levels can be found both in conventional producers’ portfolios,
as well as in residential and business/industry appliances, seeking financial savings. To this end, its
relatively portable and sizeable structure, the increased technological maturity, hand-in-hand with
targeted fiscal policies and other incentives, constituted unparalleled attractiveness factors. As such,
it makes it one of the most consensual solutions for hybrid energy systems, with the disadvantage of
only being able to operate for 8 h per day.

With this regard, a rich literature is available concerning the accurate behavior mapping of
photovoltaic (PV) cells operating under different conditions. Among them we can highlight the commonly
used single diode or two diode models, as well as three or more diodes and partial-shading models.
However due to the computational effort they require, an alternative followed in HES modeling is to
use a more synthesized model [2,12,13]. PV cells are the main units of a PV generator, and are grouped
to form panels or arrays.

Considering a PV generator formed by NS modules connected in series, NP connected in parallel,
with a maximum power point PMPP,STC[W] under STC conditions, i.e., the standard test condition
temperature Tref, STC and with an irradiance Gref, STC, with an efficiency rate µMPP[%] and a temperature

coefficient of the open-circuit voltage αVOC

[
V ◦C−1

]
, then for a given solar irradiance G

[
Wm−2

]
the

PV generator maximum power output Psolar[W] is given by Equation (9) [61]:

Psolar = µMPP

(
PMPP,STC

G
Gref, STC

(1 + αVOC(Tcell − Tref, STC))

)
NS NP, (9)

where the cell temperature, Equation (10) is a function of the ambient temperature Tamb[
◦C] and the

nominal operating cell temperature NOCT[◦C] under NOCT conditions i.e., with an air temperature
Tref, NOCT and an irradiance Gref, NOCT:

Tcell[
◦C] = Tamb +

G
Gref, NOCT

(NOCT− Tref, NOCT), (10)

It is also important to notice that PV systems are commonly coupled with a grid-connected
inverter, that besides the DC/AC conversion task, employs an MPP-tracking algorithm to ensure that
the maximum power is being extracted (its absence may account for losses up to 30%). The efficiency of
these algorithms is nowadays well above 95%, and in this work a value of 99% was assumed, based on
the Chint Power© CPS SC100KT datasheet. Additionally, to achieve a total of 75 kW, the VPM voltage
of each module, as well as the maximum input voltage (DC) of the grid-inverter, 880 V, for the CPS
SC100KT, needs to be taken into account, therefore we end up with a configuration with NS = 28 and
NP = 9.

In this paper, for simulation purposes, a HARP© NU-RD300S monocrystalline silicon photovoltaic
module, with an 18.3% conversion efficiency, was employed. The full PV panel specifications are
presented Table 5.
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Table 5. Specifications of the PV solar module.

Parameter Value Parameter Value

αVOC −0.0029 V/◦C Tref, NOCT 25 ◦C
Tref, STC 25 ◦C Gref, NOCT 800 W/m2

Gref, STC 1000 W/m2 Pmax 300 W
VPM 31.2 V PPV installed 75 kW

NOCT 49 ◦C µMPP 99%

ηm 18.3%
V max(DC)

grid-inverter
880 V

NS 28 NP 9

5.5. Diesel Generator

Diesel generators, also known as diesel gensets are a stable and robust option to feed unserved
loads, widely used as stand-alone application in isolated areas, especially in developing countries,
where India stand outs [62], or in complementary forms, for instance coupled with PV systems and
storage, reducing pollution, noise, the partial loads which reduces the already low efficiency of the
generator and fuel consumption, which in addition, to direct savings, translates into indirect savings
associated with costly diesel fuel transportation, especially in rural areas.

In this work, diesel generators are always seen as a backup option, given its weak thermal
efficiency and its pollutant emissions, to ensure the HES supply safety. A linear approximation,
Equation (11), frequently used to approximate the amount of fuel the generator consumes,
Fconsumption

[
Lh−1

]
to generate electricity [16,51]:

Fconsumption = F0 ×Ygen + F1 × Pgen, (11)

where F0

[
Lh−1 kW

−1
]

stands for the fuel curve intercept coefficient, Ygen[kW] for the rated capacity

of the generator, F1

[
Lh−1 kW

−1
]

is the fuel curve slope and Pgen[kW] the generator power output.
In this context, two diesel generators with a rated power, Ygen = 60 kW, more suitable for large energy
deficits and one diesel generator with a rated power Ygen = 12 kW for small deviations were integrated
on the HES portfolio. To calculate the equation parameters, the approximate fuel consumption data
at 1

4 , 1
2 , 3

4 and full load of real generators were used, as illustrated in Figure 9, with the constant

parameters defined as: F0 = 0.0481 Lh−1 kW
−1

and F1 = 0.2187 Lh−1 kW
−1

for the 60 kW generator,
and F0 = 0.0532 Lh−1 kW

−1
and F1 = 0.2167 Lh−1 kW

−1
for the 12 kW generator.
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5.6. Power Electronic Converters

Besides energy generation sources and loads, power electronic converters are fundamental blocks
in a HES. The possible configurations of the hybrid system are namely DC coupled, AC coupled and
hybrid coupled system [9].

The AC/DC and DC/DC power converters were modeled according to their efficiency. The DC/AC
electronic power converter was modeled based on [61], where the converter is characterized according
to its efficiency as a function of the normalized rated power, Pin

Prated
, expressed by Equation (12), therefore

the only input parameter that characterizes the model is the converter rated power:

ηconv(DC/AC) [%] = 1− Prated
Pin

(
0.0094 + 0.013

(
Pin

Prated

)
+ 0.04

(
Pin

Prated

)2
)

, (12)

With regard to the DC/DC converter, the current high efficiency designs decrease the losses to the
extent of achieving efficiencies close to 98/99%, as the bidirectional full SiC 200 kW DC/DC converter
efficiency curve shows, therefore a constant value of ηconv(DC/DC) = 98% was considered reasonable.

6. Results

To validate and analyze the proposed operation dispatch strategy, two different scenarios were
considered. In the first, a grid-connected topology that allows exchanges with the upstream grid is
considered. These exchanges are governed by the existence of surplus or deficits, then the estimated
cost/income obtained by using the grid is evaluated, if surpasses the benefits or the constraints revealed
by the different technologies of the hybrid system (expressed by its cost functions, Equations (1) and
(2)). Afterwards, a standalone (off-grid) topology is tested, where the diesel generator(s) will supply
existing deficits and any generation surplus is now limited only to storage, there being no possibility
of sale, as such any surplus that exceeds the storage capacity is considered wasted.

6.1. First Scenario

In the first scenario, the topology enables power-flows with the upstream grid. The same was
tested in 4 different situations, which correspond to 1 week per season of the year. The chosen weeks
were from February 09th to the 15th of 2016 (winter week); from April 25th to May the 01st of 2016
(spring week); from August 08th to the 14th of 2016 (summer week); finally, from November 11th to
the 17th of 2016 (fall week)

Thereby, not only the load profile, the prices and the renewable generation are different,
but also the initial SOCs (SOCbatt(0) and SOChydro(0)) of storage technologies, i.e., constitute four
different starting points, as can be seen in Table 6, where the main simulation results include the
average non-dispatchable power balance ε(k); the average power-flow with the upstream grid Pgrid;
its respective imports and exports costs Gridbuy and Gridsell; lastly the final SOCs are presented,
(SOCbatt(168) and SOChydro(168)). For instance, it makes perfect sense when we refer to the hydro
plant to consider the initial SOC in a summer week (SOChydro = 0.50) lower than the existing SOC in
the winter week (SOChydro = 0.99).

To begin with, we can see the extreme of when there is a week (winter) that presents a very
weak renewable generation and high load levels, especially due to the absence of solar generation,
as such most of the power flow is given by the upstream grid and the PSH unit, since its initial
SOC was practically maximum. Interestingly, the spring week shows that on average the renewable
generation slightly exceeds the load by about 4 kW. However, the average price of the exchanges with
the grid is slightly positive, proving the balance of the implemented HES dispatch strategy that takes
advantage of the existing surplus not only to profit, but also to leveling both SOCs during the 168 h.
In turn, the summer week, leveraged by high wind and photovoltaic generation levels, illustrates not
only significant net sales, but also enables the upstream pumping to refill partially the dam and the
SOChydro(168) is 18% higher than the initial one, while the battery bank is used punctually and remains
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with a relatively unchanged SOC. For the fall week, we can see an average renewable generation
deficit, therefore the HES is called upon to alleviate this deficit, and the PSH and grid are responsible
for serving the remaining load demand.

Table 6. HES Simulation: Main results.

Test Week SOCbatt(0) SOChydro(0) –
ε(k)

–
Pgrid Gridbuy Gridsell

SOCbatt
(168)

SOChydro
(168)

12–18 February
(Winter) 0.50 0.99 22.17 17.62 87.11 1.97 0.21 0.25

18–24 May
(Spring) 0.85 0.85 −3.82 1.53 31.48 25.62 0.92 0.90

10–16 August
(Summer) 0.70 0.50 −8.89 −1.36 24.36 38.51 0.71 0.68

11–17 November
(Fall) 0.90 0.75 8.54 8.61 65.61 6.83 0.29 0.24

Additionally, the resulting energy HES dispatch for these 4 weeks is illustrated by the bar plot
in Figure 10, where the share of energy generation (168 h) of each HES technology and its respective
load level is represented. As we can see, the employed datasets clearly reveal the benefits of the used
hybrid system sizing, with an installed wind power capacity far superior to the remaining generation
technologies. Furthermore, the statistics from each test week, i.e., the mean, standard deviation,
minimum and maximum value and its mean load value are presented in Table 7, side-by-side with the
respective forecasting performance, measured by the common MAPE (%) and RMSE metrics.
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Figure 10. Energy generation share and load levels for each week. Where yellow, green and blue
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and lilac periods of charging the battery bank.

To better understand the followed dispatch strategy, Figures 11 and 12 are presented to better
highlight the proposed dispatch strategy, regarding the summer week simulation. Figure 11 illustrates
the obtained generation mix profile for 168 h horizon and the cost functions for the hydro, storage bank
and grid and, based on these, the cost-effective generation mix for this scenario was determined. As we
can observe this scenario presents an approximately constant PV generation and load profile, with the
exception of the first day, where the almost null irradiance levels unveil the presence of a cloudy day.
The high levels of wind generation can almost exclusively suppress the existing load for many hours,
as such it allows to increase the SOChydro and sales to the upstream grid. As intended, the battery
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bank has preferably an upper load balancing role within short periods of time. Moreover when the
prices are expected to be low

(
p̂(k)− 1

24 ∑24
j=1 p̂j < 0

)
and ε(k) ≥ 0, the strategy favors the energy

buying, otherwise, when prices are higher
(

p̂(k)− 1
24 ∑24

j=1 p̂j ≥ 0
)

and ε(k) ≥ 0, PSH is dispatched.
The plot shows the cost functions for the hydro, storage and grid and, based on these, the cost-effective
generation mix for this scenario was determined.

Table 7. Test weeks statistics and STPF forecasting performance.

Test Week Mean St. Dev Min Max Mean Load MAPE (%) RMSE (€)

12–18 February
(Winter) 2.45 × 10−2 9.75 × 10−3 2.23 × 10−3 4.65 × 10−2 108.0 9.12 2.53 × 10−3

18–24 May
(Spring) 2.66 × 10−2 9.31 × 10−3 2.25 × 10−3 4.23 × 10−2 92.9 6.67 1.73 × 10−3

10–16 August
(Summer) 2.69 × 10−2 6.66 × 10−3 1.40 × 10−2 4.00 × 10−2 87.0 5.49 1.89 × 10−3

11–17
November

(Fall)
4.06 × 10−2 9.75 × 10−3 1.63 × 10−2 7.58 × 10−2 110.1 6.51 3.67 × 10−3
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Figure 11. Dispatched energy mix and its dispatch costs for the summer week. Where yellow, green
and blue represent the PV, wind and hydro generation, respectively, light blue represents pumping
periods, brown buying periods and orange selling periods. In turn, purple represents discharge periods,
and lilac periods of charging the battery bank. Black represents the existing load level.

In turn, the one day-ahead electricity prices forecast for this summer week (10–16 August) with
an average daily MAPE of 5.49%., as well as the SOCs profile during the 168 h, can be seen in Figure 12.
Being evident that there is a surplus that allows the storage systems charging, and uncovers the
intended tendency of the proposed strategy, in doing so in periods where low electricity prices are
expected, as is the case with the abrupt SOC ramping around hour 80 h, in a clear contrast with what
happens for instance in the first few hours of the simulation.
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6.2. Second Scenario

For the second scenario a standalone off-grid topology is considered in the same simulation
weeks, where diesel generators are called to respond when it is not viable using the hybrid
system. To implement this scenario, some modifications in Algorithm need to be accounted,

where the cost function is re-written as: min

{
CsolarPsolar(k) + CwindPwind(k) + Cdiesel(k)Pdiesel(k)

+∑2
j=1 Cj

(
SOCj(k), ∆ SOCj

)
Pgj

}
;

where the diesel cost, Cdiesel, is given by an exponential decay function, Cdiesel(k) =

PDiesel e−(1−max{SOC1(k) SOC2(k)}) if ε(k) > 0, whereas for ε(k) ≤ 0 the considered dispatch cost
is irrelevant, since boundary conditions (system constraints) are unidirectionally limited, i.e., one
way power flow (bus injection); the power balance equation is re-written as Psolar(k) + Pwind(k) +
∑2

j=1 Pgj(k) + Pdiesel(k) = PD(k); and the systems constraints concerning the diesel generator are
Pdiesel gen > 0, if ε(k) > 0; else Pdiesel gen = 0, since it does not have the capacity to absorb situations
of surplus energy, therefore non-dispatchable energy could be wasted. Finally, the generators must
operate between its capacity limits Pdiesel, min ≤ Pdiesel(k) ≤ Pdiesel, max. The same test weeks were
considered for testing purposes, and the main simulation results for this topology are presented in
Table 8, and by analyzing them we can see that a standalone topology can be implemented as a
backup option for potential power shortages. Though, it compares badly with the grid-connected
topology of the first scenario, demonstrating how expensive diesel systems are nowadays and how
more demanding they are from the PSH and the battery bank (increased discharge cycles and DOD).

Moreover, the resulting energy HES dispatch for these four weeks is illustrated by the bar plot in
Figure 13, where the share of energy generation (168 h) of each HES technology and its respective load
level is represented. We can see a similar pattern to the one in Figure 10, since the non-dispatchable
generation is the same; however, in a stand-alone application the energy storage technologies serve
an increased share of load demand, namely the PSH. Last but not least, it was possible to infer that
for the summer week, using relatively high initial SOC values with continuous periods of energy
surplus, gave rise to curtailment situations, i.e., energy was dumped, however only for very sporadic
time-steps, thus validating the compromise made when sizing the battery bank.
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Table 8. HES Simulation: Main results.

Test Week SOCbatt(0) SOChydro(0) ¯
ε(k)

¯
Pdiesel

Dieselcost
SOCbatt

(168)
SOChydro

(168)

12–18 February
(Winter) 0.50 0.99 22.17 15.38 703.17 0.17 0.15

18–24 May
(Spring) 0.85 0.85 −3.82 3.03 137.20 0.64 0.49

10–16 August
(Summer) 0.70 0.50 −8.89 0.87 47.19 0.40 0.49

11–17
November

(Fall)
0.90 0.75 8.54 13.71 631.68 0.50 0.21
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Figure 13. Energy generation share and load levels for each week. Where yellow, green and blue
represent the PV, wind and hydro generation, respectively, light blue represents pumping periods,
black for diesel generation periods. In turn, purple represents discharge periods, and lilac periods of
charging the battery bank.

7. Conclusions

This manuscript provides a new operation strategy to cope with the challenges and opportunities
of integrating solar PV, wind energy, given its intermittent nature, with hydropower and storage units
for electricity generation, in a grid-connected system. By integrating energy resources into an optimum
arrangement, the variability nature of solar and wind resources can be partially compensated, and the
overall system becomes more reliable and cost-effective.

Short term price forecasting in deregulated electricity markets is a major research topic, with a
large profusion of published techniques, since accurate forecasting methodologies have the utmost
importance as decision-making tools for market players. The authors, using an experience capital,
employed a forecasting engine based on a feed-forward neural network preceded by an improved
input selection stage. This preprocessing stage not only relies on a similar/recent days selection
mechanism, but also employs WT with filtering purposes, in order to feed the best input information
as possible. Gains from the forecasting accuracy will translate into a better “informed” dispatch and
consequently increase the HES profitability.

The mix of generation technologies resulting from the proposed operation strategy and the
performed forecasting, as described in the algorithm, showed good performances, using the available
information to drive the best dispatch decisions. The battery bank and the PSH dam have been able to
accumulate the excess power generated by the HES and supply it to the system load during the hybrid
power shortage, depending on the electricity prices forecast.

Therefore, the PV-wind-hydro with storage capabilities both from the increasingly cheaper storage
banks and also of the PSH, which despite its significant presence in the grid, has not been incorporated
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frequently in this type of studies, is widely recommended and can also be used for remote areas.
The proposed strategy has been tested in simulation under different scenarios for a week horizon
and revealed a balanced dispatch strategy for a small range prosumer with a rich energy generation
portfolio, working as effectively for energy surplus or deficit situations. Simulations revealed that
very low irradiation levels can strongly condition the HES, since the wind despite its unstable nature
constitutes itself as the predominant energy source. This fact is not unrelated to the chosen sizing,
making evident the need for complementary strategies for systems with high levels of renewable
penetration. The simulation with the off-grid system for exceptional situations has revealed that the
use of diesel generators is a limited but a safe option, and for a better functioning it requires a greater
storage capacity since it cannot be called for surplus situations.

Future works will consider additional costs, the importance of a more accurate prediction model
to improve the algorithm’s decision-making process, the increase in the forecast time horizon and
additional simulation scenarios.
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Nomenclature

bj bias signal of neuron j
c a fraction of the nominal capacity
Cdiesel diesel generation cost [€/kW]
Cgrid upstream grid exchanges associated cost [€/kW]
Cj generation technology w/storage associated cost [€/kW]
Csolar PV generation cost [€/kW]
Cwind wind generation cost [€/kW]
f j activation function of neuron j
F0 fuel curve intercept coefficient [L h−1 kW−1]
F1 fuel curve slope [L h−1 kW−1]
Fconsumption fuel consumption rate [L h−1]
g gravitational acceleration [m s−2]
G current solar irradiance [W m−2]
Gref, STC standard test condition irradiance [W m−2]
Gref, NOCT irradiance under NOCT conditions [W m−2]
h1 height of the available energy reservoir [cm]
h2 height of the available energy reservoir [cm]
hnet effective head [m]
I constant discharge or charge current [A]
j generation technology w/storage index
k discrete-time step
kbatt rate constant translating the conductance between the two reservoirs
KN total number of steps
l arbitrary feed-forward neural network layer
m and n arbitrary number of neurons in two consecutive layers, respectively
NP number of PV modules connected in parallel
NS number of PV modules connected in series
NOCT nominal operating cell temperature [◦C]
p̂ predicted electricity price [€/kW]
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Pdiesel diesel generation output [kW]
PD electric load [kW]
Pgj generation technology w/storage associated power output [kW]

Pgj,max
maximum allowed power output for the corresponding generation technology
w/storage [kW]

Pgj,min
minimum allowed power output for the corresponding generation technology
w/storage [kW]

Pgen generator power output [kW]
Pgrid power exchanged with the upstream grid [kW]
Pgrid average power-flow exchanges with the upstream grid [kW]∣∣∣Pgrid, max

∣∣∣ maximum allowed power exchanges with the upstream grid [kW]

Phydro power output from the PSH unit [W]
Phydrorated rated power of the hydropower unit [kW]
Pin AC/DC converter input power [kW]
PMPP,STC maximum power point under STC conditions [W]
Ppump pump power consumption (storage mode) [W]
Prated AC/DC converter rated power [kW]
Psolar PV generation output [kW]
Pwind wind generation output [kW]
q1 capacity of the available energy reservoir [kWh]
q2 capacity of the bound energy reservoir [kWh]
qmax battery bank nominal capacity [kW]
Qpump pumped flow rate [m3 s−1]
Qturbine turbined flow rate [m3 s−1]
SOCj generation technology w/storage associated state of charge
Tamb ambient temperature [◦C]
Tref, NOCT air temperature under NOCT conditions [◦C]
Tref, STC standard test condition temperature [◦C]
u wind speed at hub height [m/s]
ur available wind speed data [m/s]
V current dam capacity (volume) [m3]
V

max(DC)

grid-inverter
maximum DC input voltage (inverter) [V]

VPM Voltage at point of maximum power [V]
Vtotal dam total capacity (volume) [m3]
xi input signal from neuron i
yj output signal of neuron j
Ygen rated power of the generator [kW]
z hub height [m]
zr height at which the available wind speed was measured [m]
α power law exponent
αVOC temperature coefficient of the open-circuit voltage [V◦C−1]
∆SOCj generation technology w/storage associated state of charge estimated variation
ε non-dispatchable power balance [kW]
ε average non-dispatchable power balance [kW]
η conv(DC/AC) AC/DC converter efficiency rate [%]
η conv(DC/DC) AC/DC converter efficiency rate [%]
ηm module conversion efficiency [%]
µhydro turbine energy conversion efficiencies [%]
µMPP module efficiency rate [%]
µpump pump energy conversion efficiencies [%]
ρwater water density [kg m−3]
ωij synaptic weight from neuron i to j
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