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Abstract: An absorption chiller model for tri-generation (combined cooling, heating, and power)
is developed and incorporated with the high temperature- (HT-) proton exchange membrane fuel
cell (PEMFC) system model that was developed in our previous study. We employ a commercially
available flow simulator, Aspen HYSYS, for solving the energy and mass balances of various system
components, including an HT-PEMFC stack that is based on a phosphoric acid-doped PBI membrane,
natural gas-fueled reformer, LiBr-H2O absorption chiller, balance of plant (BOP) components, and
heat exchangers. Since the system’s operating strategy for tri-generation must be changed, depending
on cooling or heating loads, a major focus of this study is to analyze system performance and
efficiency under different requirements of electricity generation, cooling, and heating conditions. The
system simulation results revealed that high-current fuel-cell operation is essential in raising the
cooling capacity, but the overall system efficiency is slightly reduced as a result. Using a lower fuel-air
ratio for the burner in the reforming module is one alternative that can minimize the reduction in the
overall system efficiency under high-current fuel-cell operation and large cooling-capacity modes.

Keywords: tri-generation; phosphoric acid-doped PBI membrane; steam reforming; absorption
chiller; fuel cell system modeling

1. Introduction

Due to fossil-resource depletion and environmental pollution, lately the importance of renewable
energy has received much attention. Moreover, technologies that can efficiently use clean-energy
resources are considered to be a solution for these environmental concerns. Among the various
clean-energy technologies that can potentially replace fossil fuels, fuel cells are considered to be one of
the most environmentally friendly technologies. Fuel cells produce electricity by using hydrogen and
oxygen, and water and waste heat are the only byproducts. Over the last several decades, considerable
progress has been made regarding of fuel cell performance and durability. Developing new materials
and optimizing its design and operation conditions have achieved the rapid growth of fuel cell
technologies. The numerical modeling and experimental diagnostics become valuable tools for the
design and operation of fuel cells [1–4]. In particular, fuel cells that operate at high temperatures
are appropriate for combined heat, cooling, and power generation (CHCP), or tri-generation. Even
though fuel-cell systems for tri-generation have relatively high initial capital costs, these systems offer
significant benefits in terms of system-energy efficiency [5,6].
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In a typical fuel cell-based CHCP system, an absorption chiller is used to generate cooling power
from the heat of water that is released from a fuel-cell stack. Many efforts have been led to model
and analyze the diverse types of absorption chillers [7–13]. Gordon et al. [7] formulated a simple
thermodynamic model for an LiBr-H2O absorption chiller and then analyzed the relation among
coefficients of performance (COP). Xu et al. [8] has proposed a dynamic model, which is a single-effect
absorption chiller using gPROMS and analyzed the dynamic responses of the chiller under various
conditions, such as thermal mass, control strategy, and operating temperatures. Martínez et al. [9]
modeled a Yazaki WFC-SC 5 absorption chiller with 17.6-kW of cooling capacity and calculated it
through the use of the EES software. The simulation data were compared with the manufacturer’s
catalogue data and experimental data. Ochoa et al. [10] derived mass- and heat-balance equations
for a single-effect LiBr-H2O absorption chiller based on the first law of thermodynamics, which were
discretized by using the finite differences method and solved by the MATLAB program. These authors
investigated the dynamic responses of the chiller in the step changes of temperature, concentration, and
pressure. Rubio-Maya et al. [11] presented an optimization model on the single-effect absorption chiller.
Based on the exergy concept, these authors formulated an objective function for the annual operating
cost, while considering the temperatures of individual components and the efficiency of solution heat
exchanger as design variables. The optimum operating conditions to minimize the annual operating
cost were reported for various working fluids. Yin et al. [12] simulated a double-effect absorption
chiller under different load conditions that can be required for micro building and district power
plants. Xu and Wang [13] experimentally tested a 50-kW LiBr-H2O absorption chiller over a wide
generation-temperature range.

Efforts have been expended to combine an absorption chiller with fuel-cell systems for
tri-generation and analyzing the electrical power, cooling, and heating performances [14–22]. Among
the various fuel cell types, solid oxide fuel cells (SOFCs) were the most studied for fuel cell-based
tri-generation applications [14–18]. Takezawa et al. [14] applied a combined SOFC and gas turbine (GT)
system to single and double-effect absorption chillers. Their comparison results showed similar cooling
capacities between the two system designs, indicating that the use of a single-effect absorption chiller
is beneficial in terms of economics. Malico et al. [15] applied a hospital load profile, which comprises
heating, cooling, electricity, and hot water, to a SOFC-based tri-generation system and analyzed its
economic feasibility. Yu et al. [16] presented a tri-generation system model that was based on an
SOFC stack and double-effect absorption chiller and investigated the effects of air inlet temperature,
fuel-utilization ratio, and fuel-flow ratio. Burer et al. [17] created a residential tri-generation system
that used an SOFC stack, GT, and absorption chiller, and then optimized its operation to minimize
CO2 emission. Tse et al. [18] analyzed different tri-generation configurations that are based on a
hybrid SOFC and GT system for marine applications, wherein various absorption chillers were
considered and compared. Besides SOFCs, other types of fuel cells have been applied to tri-generation
systems [14–17]. Margalef et al. [19] considered a commercially available molten carbonate fuel-cell
stack (300 kWe) and double-effect absorption chiller (40 refrigeration tons) and analyzed the effects
of system-integration strategies and chiller inlet temperatures on tri-generation performance. The
applicability of low-temperature (LT) proton exchange membrane fuel cells (PEMFCs) for tri-generation
applications has been investigated [20,21]. Higher system efficiency was attained in the winter
operating mode rather than the summer mode, because of the better waste-heat utilization [21].
Alexandros Arsalis [22] focused on a 100-kWe liquid-cooled HT-PEMFC stack that was based on a
phosphoric acid (PA)-doped PBI membrane. By using 107 kW of waste heat from the HT-PEMFC stack,
the author simply estimated the available cooling loads for an LiBr-H2O double-effect absorption
chiller (COP = 1.2) and a H2O-NH3 single-effect chiller (COP = 0.6), i.e., approximately 128 kW and
64.5 kW, respectively.

This paper aims to analyze a tri-generation system under different operating modes as seasons
change. An HT-PEMFC stack that is based on a PA-doped PBI membrane is chosen and then combined
with an LiBr-H2O absorption chiller. Although several efforts have been made for modeling and
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simulation of various fuel cell-based tri-generation systems [23–27], detailed system modeling, and
analysis of a combined fuel-cell stack, fuel reformer, and absorption chiller have not been reported in
the literature. In this study, a HT-PEMFC system model for tri-generation is presented and numerically
implemented within a commercial flow-sheet simulator, Aspen HYSYS® (V7.2, AspenTech®, Bedford,
MA, USA), i.e., used to deal with the energy and mass balances of various system components.
Subsequently, the system model is applied to a 5 kWe tri-generation system and the effects of key
operating parameters, such as stack operating current density and burner fuel-air ratio (FAR), are
investigated and discussed. Particular emphasis is placed on analyzing the cooling capacity and
tri-generation efficiencies in the summer and winter operating modes. This work addresses the
flexibility and operating strategy of fuel cell-based tri-generation systems under different electric,
cooling, and heating loads.

2. Analytical Model

2.1. Model Assumptions

Figure 1 shows the schematic of a typical High Temperature (HT)-PEMFC system for tri-generation
consisting of three aforementioned modules: an HT-PEMFC stack module, fuel-reforming module,
and combined heating and cooling (CHC) module. The HT-PEMFC stack that is based on a PA-doped
PBI membrane is connected with a natural gas-fueled reformer, heat-storage tank, and LiBr-H2O
absorption chiller. In addition, various balance of plant (BOP) components (blowers, compressors, and
pumps) and heat exchangers are used in the operation of the tri-generation system. The HT-PEMFC
system model is based on the previous work of Jo et al. [28], wherein the model was experimentally
validated against the test data measured under the 5 kWe HT-PEMFC system developed by Doosan
Corporation Fuel Cell. Only the difference from our previous work is that an absorption chiller model
is newly developed and incorporated to simulate HT-PEMFC system operations for the summer
cooling mode. The main assumptions made during system modeling are as follows:

1. The natural gas constitutes 100% methane (CH4). All of the impurities in the natural gas are
removed before utilization during the fuel pretreatment process. Hence, the minor components
in the fuel and their properties are ignored.

2. Peng–Robinson’s equation of state is followed by the individual gases and their mixtures to
facilitate the relatively simple and accurate analysis of the natural gas reacting system.

3. The operations of tri-generation system and its components are at the steady-state condition.
4. The desulphurization component is included in the HT-PEMFC system to alleviate the sulfur

poisoning of metal catalysts, such as Ni and Rh, inside the steam reforming (SR) reactor. Hence,
the catalyst deactivation effect can be neglected.

5. The effect of CO poisoning on the performance of HT-PEMFC stack is assumed to be negligible,
which is reasonable for high operating temperatures (>160 ◦C) and/or the CO content range of
1~2% in the anode reformate gas [29,30].

6. The LiBr solution in the absorber and generator, and any refrigerant (water) in the condenser
and evaporator are under thermodynamic equilibrium corresponding to their temperatures and
pressures. The temperature, pressure, and concentration within the each component of LiBr-H2O
absorption chiller are assumed to be uniform.

7. The water vapor that leaves the evaporator is assumed to be fully saturated, whereas the water
leaves the condenser as saturated liquid.
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Figure 1. Configuration of a high temperature-proton exchange membrane fuel cells (HT-PEMFC)
system with tri-generation.

2.2. Fuel-Reforming Module

In the fuel-reforming module, we considered a SR reactor, water gas shift (WGS) reactors, and
auxiliary catalytic burner along with several Balance of Plant (BOP) components and heat exchangers.
As shown in Figures 1 and 2, the steam and process natural gas (PNG) are fed into the SR reactor, while
the anodic exhausts from the HT-PEMFC stack, air, and burner natural gas (BNG) are supplied to the
burner. Despite the number of reactions that are involved in the SR process [31], the following three
major chemical reactions are considered for simplicity:Energies 2018, 11, x FOR PEER REVIEW  5 of 21 
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Figure 2. Fuel-reforming module flowsheet created by ASPEN HYSYS® V7.2.

Methane SR
CH4 + H2O↔ CO + 3H2 ∆h1 = 206 kJ/mol (1)

WGS
CO + H2O↔ CO2 + H2 ∆h2 = −41 kJ/mol (2)

Direct SR
CH4 + 2H2O↔ CO2 + 4H2 ∆h3 = 165 kJ/mol (3)

where, ∆hi is the specific enthalpy change for the reaction, i (i = 1, 2, 3 denote the methane SR, WGS,
and Direct SR). The kinetic equations of Equations (1)–(3) are derived regarding the plug-flow kinetic
model, which was previously investigated by Xu and Froment [31]:
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r1 = A1exp
(
−E1

RT

)(
pCH4 pH2O −

p3
H2

pCO

Kp1

)
/
(

p2.5
H2
·DEN2

)
(4)

r2 = A2exp
(
−E2

RT

)(
pCO pH2O −

pH2 pCO2

Kp2

)
/
(

pH2 ·DEN2
)

(5)

r3 = A3exp
(
−E3

RT

)(
pCH4 p2

H2O −
p4

H2
pCO2

Kp3

)
/
(

p3.5
H2
·DEN2

)
(6)

In Equations (4)–(6), Kpi, Ai, Ei, and ri are the equilibrium constant, pre-exponential factor, the
activation energy, and the net kinetic reaction rate of the reaction i, respectively. In addition, pj means
the partial pressure of species and j in the mentioned reactions. The term, DEN in the denominators of
Equations (4)–(6) represents the adsorption of reactants onto the active catalytic sites. Because all three
reactions occur at the same sites, DEN in Equations (4)–(6) are equivalent, being expressed, as follows:

DEN = 1 + KCO pCO + KH2 pH2 + KCH4 pCH4 + KH2O pH2O/pH2 (7)

For the given Ni/MgAl2O4 catalyst, the adsorption constant of individual species j, Kj is described
using Van’t Hoff expression, as below:

Kj = A
(
Kj
)
exp
(−∆hj

RT

)
(8)

where, ∆hj and A
(
Kj
)

are the adsorption-specific enthalpy and the pre-exponential factor of Kj for the
species j, respectively.

Based on Equations (1)–(3), the mass balance equations for individual species in the SR reactor
are derived, as follows:

.
mSR,out

CH4
=

.
mPNG − (r1 + r3)·MWCH4

.
mSR,out

CO = (r1 − r2)·MWCO
.

mSR,out
CO2

= (r2 + r3)·MWCO2
.

mSR,out
H2O =

.
mSR,in

H2O − (r1 + r2 + 2r3)·MWH2O
.

mSR,out
H2

= (3r1 + r2 + 4r3)·MWH2

(9)

where,
.

mPNG is the PNG mass flow rate fed into the SR reactor.
In the WGS reactor comprising high temperature-shifts (HTS) and low temperature-shifts (LTS)

sub-reactors, only the exothermic WGS reaction, as in Equation (2), is assumed to occur. Thus, the
mass balance equations for the WGS reactor are described in Equation (10).

.
mLTS,out

CH4
=

.
mLTS,in

CH4
=

.
mSR,out

CH4
.

mLTS,out
CO =

.
mHTS,in

CO −
(
rHTS

2 + rLTS
2
)
·MWCO

.
mLTS,out

CO2
=

.
mHTS,in

CO2
+
(
rHTS

2 + rLTS
2
)
·MWCO2

.
mLTS,out

H2O =
.

mHTS,in
H2O +

.
mSR,in

H2O −
(
rHTS

2 + rLTS
2
)
·MWH2O

.
mLTS,out

H2
=

.
mHTS,in

H2
+
(
rHTS

2 + rLTS
2
)
·MWH2

(10)

where, rHTS
2 and rLTS

2 represent the net WGS reaction rates of Equation (2) for the HTS and LTS
processes, respectively. Table 1 summarizes all the equilibrium constants and reaction kinetics
parameters for the SR, HTS, and LTS reactors. Figure 2 shows the flowsheet of fuel reforming module
generated by the ASPEN HYSYS® V7.2.
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Table 1. Adsorption and equilibrium constants and kinetic parameters for Equations (1)–(3).

Arrhenius Expression

Reaction Catalyst Type
Activation
Energy, Ei,

kJ/mol
Ref.

Pre-Exponential
Factor,

Ai

Ref.
Equilibrium
Constants,

Kpi

Ref.

1 Ni-Al2O3 217.01 [32] 2.084 × 1013

kmol·bar0.5·kgcat
−1·h−1 [32]

1.198 × 1013
exp(−26830/T)

bar2
[33]

2

SR Ni-Al2O3 68.20 [32] 3.359 × 107

kmol·bar−1·kgcat
−1·h−1 [32]

1.767 × 10−2

exp(4400/T)
[33]

HTS SHT-4 70 [34]
1.78 × 1022 × (1 +

0.0097·SCR −
1.1364·SCR2)T−8

[34]

LTS MDC-7 35 [34]
1.74 × 1017 × (1 −

0.1540·SCR −
0.0008·SCR2)T−8.5

[34]

3 Ni-Al2O3 215.84 [32] 4.644 × 1013
kmol·bar0.5·kgcat

−1·h−1 [32]
2.117 × 1011

exp(−22430/T)
bar2

[33]

Van’t Hoff Expression

Parameter
Adsorption Specific Enthalpy,

∆hj, kJ/mol Ref.
Pre-Exponential

Factor,
A(Kj)

Ref.

CH4 −38.28 [31] 6.65 × 10−4·bar−1 [31]

CO −70.65 [31] 8.23 × 10−5·bar−1 [31]

H2 −82.90 [31] 6.12 × 10−9·bar−1 [31]

H2O 88.68 [31] 1.77 × 105·bar0 [31]

2.3. HT-PEMFC Stack Module

The HT-PEMFC stack model is simplified from the three-dimensional (3-D) high temperature
(HT)-PEMFC models [29,35–38]. The cell voltage can be determined after the activation loss ηact, ohmic
loss ηohm, and concentration loss ηcon are estimated and then subtracted from the thermodynamic
equilibrium potential, Enernst, as follows,

Vcell = Enernst − ηact − ηohm − ηcon (11)

The expression of Enernst is given by Chippar and Ju [31], as follows:

Enernst = 1.1669− 0.24× 10−3(Tcell − 373.15) (12)

In Equation (11), the activation overvoltage, ηact, represents the total activation loss, i.e., the sum
of the activation loss in the anode side due to the hydrogen oxidation reaction (HOR) and the activation
loss in the cathode side due to the oxygen reduction reaction (ORR). The anode and cathode activation
losses can be estimated from the Butler–Volmer (B-V) equations for the HOR and ORR, as follows [35]:

HOR in the anode

ηact,a =
i

ire f
0,a

RuT
(αa + αc)F

(CH2,re f

CH2

)1/2

(13a)

ORR in the cathode ∣∣ηact,c
∣∣ = RuT

αcF
ln

(CO2,re f

CO2

)3/4 i

ire f
0,c

 (13b)

ηact = ηact,a +
∣∣ηact,c

∣∣ (14)



Energies 2019, 12, 905 7 of 21

In Equation (13), Cj is the molar concentration. α is the transfer coefficient. The exchange current

densities for the HOR and ORR, denoted by ire f
0,a and ire f

0,c , respectively, are dependent of temperature,
as follows [35]:

ire f
0,a (T) = ire f

0,a (353.15K)·exp
[
−1400·

(
1
T
− 1

353.15

)]
(15)

ire f
0,c (T) = ire f

0,c (353.15K)·exp
[
−7900·

(
1
T
− 1

353.15

)]
(16)

The ohmic loss, ηohm is a combined result of proton and electron transport through various
components of HT-PEMFC stack.

ηohm = i(RH+ + Relec) (17)

In Equation (17), RH+ and Relec represent the area specific resistances due to proton and electron
transport, respectively. RH+ can be determined by the given membrane and catalyst layer (CL)
properties and dimensions, as follows.

RH+ =
δmem

κ
+

0.5·δaCL

ν1.5
aCLκ

+
0.5·δcCL

ν1.5
cCLκ

(18)

where νaCL and νcCL are the ionomer volume fraction in the anode and cathode CLs, respectively. It
should be noted that, for proton transport through the anode and cathode CLs, half the thickness of
CL (i.e., 0.5·δaCL and 0.5·δaCL) is considered as the average proton transport path.

The expression of concentration polarization, ηcon is given by:

ηcon =
RT
4F

ln
(

ilim
ilim − i

)
(19)

In Equation (19), ilim is the limiting current density, i.e., a function of the oxygen concentration at
the interface of the cathode gas diffusion layer (GDL) and gas channel, CO2,int, as well as the porosity
(vGDL), tortuosity, and thickness (δGDL) of the cathode GDL. The expression is given by:

ilim = ν1.5
GDLDO2

CO2,int

δGDL
(20)

Based on a typical HT-PEMFC stack configuration where the single cells are connected in series, the
stack voltage Vstack and stack power Pstack can be estimated if the number of cells in the stack, ncell and
the area of membrane electrode assembly (MEA), AMEA, are given.

Vstack = ncellVcell (21)

Pstack = ncellVcell ·i·AMEA (22)

When considering the stack power that was obtained by Equation (22) and the sum of power
consumption of an individual BOP component i (denoted by bhpi), the electric efficiency εe for the
HT-PEMFC system can be evaluated, as follows,

εe =
Pstack −∑ bhpi
.

m f uel × LHVf uel
× 100% (23)

where LHVf uel is the lower heating value of fuel.
.

m f uel is the total fuel mass flow rate supplied to
the fuel reforming module. As shown in Figure 2,

.
m f uel is the sum of PNG mass flow rate for the SR

reactor and BNG mass flow rate for the burner.

.
m f uel =

.
mBNG +

.
mPNG (24)
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The waste heat generated during the HT-PEMFC stack operation is described by Equation (25):

.
Qstack =

(
U0 − T

dU0

dT
−Vcell

)
× i× AMEA × ncell (25)

Inside the HT-PEMFC stack,
.

Qstack in Equation (25) is mainly removed by a coolant flowing through
the cooling channels [35]. Triethylene glycol is usually employed as a coolant for HT-PEMFC stacks,
owing to its high boiling point around 285 ◦C. The coolant temperature gradient from the inlet to
outlet, ∆Tcool can be estimated through a simple heat balance of the total waste heat generation rate
from the stack and heat removal rate by the coolant.

∆Tcool =

.
Qstack

.
mcoolcp,cool

=

(
U0 − T dU0

dT −Vcell

)
× i× AMEA × ncell

.
mcoolcp,cool

(26)

In Equation (26),
.

mcool represents the flow rate of coolant that is supplied to the HT-PEMFC stack.
The present stack model described in Figure 3a is implemented while using the flow simulator ASPEN
HYSYS® V7.2 and relevant flowsheet, as seen in Figure 3b.
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2.4. Single-Effect Absorption Chiller

To simulate the HT-PEMFC based tri-generation system, an absorption chiller model is newly
developed and incorporated into the aforementioned HT-PEMFC system model. As schematically
shown in Figure 4, this absorption chiller system operates with the LiBr-H2O solution, in which LiBr
and H2O are employed as the absorbent and refrigerant, respectively. Its main components are the
generator, absorber, condenser, evaporator, solution heat exchanger, expansion valve, and solution
pumps. The water vapor that originates from the evaporator is absorbed in an aqueous LiBr-H2O
solution in the absorber, wherein the cooling water removes the exothermic heat that is released
during absorption. The diluted LiBr solution in the absorber is then pressurized by the pump (P1) and
pre-heated through heat exchange with the concentrated solution before being sent to the generator.
In the generator, the waste heat from the HT-PEMFC is supplied to obtain steam from the diluted
solution. After the steam is further superheated, it enters the condenser and is liquefied, releasing
latent heat. Finally, the water is depressurized through the expansion valve and vaporized in the
evaporator, producing useful cooling. The vaporized water is recombined with a strongly concentrated
LiBr solution from the absorber for completing the absorption refrigeration cycle. While assuming a
steady-state operation, the following mass and energy balance equations are applied to individual
components in the absorption chiller system and implemented into Aspen HYSYS® V 7.2.

∑
in

.
mj = ∑

out

.
mj (27)

∑
in

.
mjhj = ∑

out

.
mjhj (28)

where j represents either water or LiBr solution. To solve the energy-balance equations for the absorber
and generator, the following expression for the specific enthalpy of the LiBr solution, i.e., as a function
of temperature, T, and LiBr concentration, X, is used in the model [6]:

hLiBr(T, X) = (a0 + a1X)T + 0.5(b0 + b1X)T2 +
(

c0 + c1X + c2X2 + c3X3
)

(29)
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Figure 4. (a) Configuration of the absorption chiller using LiBr –H2O solution and (b) related flowsheet
created by ASPEN HYSYS®.

In Equation (29), the values of the individual coefficients are listed in Table 2. The COP and
cooling efficiency (defined based on the rate of the total fuel supply) can be readily determined by the
following expressions:

COP =

.
mH2O·(1− x)·hvap( .

m59.96%LiBr·h59.96%LiBr +
.

mH2O(v)·hH2O(v)

)
− .

m53.07%LiBr·h53.07%LiBr

× 100% (30)

εcooling =

.
mH2O·(1− x)·hvap

.
m f uel ·LHVf uel

× 100% (31)

where
.

mH2O represents the mass flow rate of water through the condenser and the evaporator. x and
hvap are the mass fraction of water vapor at the end of the expansion valve and the specific latent heat
of vaporization of water, respectively.

Table 2. Specific-enthalpy coefficients of the LiBr solution.

Specific Enthalpy of the LiBr Solution

a0 3.462023 c0 162.81

a1 −2.679895 × 10−2 c1 −6.0418

b0 1.3499 × 10−3 c2 4.5348 × 10−3

b1 −6.55 × 10−6 c3 1.2053 × 10−3

2.5. Heat-Recovery Module

Heat-recovery modules are used to collect excess heat from various system components and to
store it in the storage tank. Figure 5 displays the flowsheet of the heat recovery module, in which five
heat exchangers (HXs) are employed to recover the available heat. HXs 1 and 2 are placed near the
ends of the SR and HTS reactors, respectively, in order to maintain optimal operating temperatures
of HTS and LTS processes, as well as to preheat the stream that is supplied to the SR reactor. HXs
3, 4, and 5 are mainly to cool the burner exhaust gas, LTS downstream, and coolant flow from the
HT-PEMFC stack, respectively.
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To solve the heat balance equations of the individual HXs, either heat capacity or the outlet
temperature is required, i.e., obtained from the following equation.

q = UA∆Tlm (32)

In the Equation (32), Tlm, A, and U denote the logarithmic mean temperature difference (LMTD),
effective heat exchanger area, and the overall heat transfer coefficient, respectively. The thermal
efficiency can be estimated by calculating the total heat that is recovered from the HT-PEMFC system
under the following equation.

εt =

.
mhrH2O·Cp,H2O·

(
ThrH2O,in − ThrH2O,out

)
.

m f uel ·LHVf uel
× 100% (33)

where ThrH2O and
.

mhrH2O are the temperature and mass flow rate of the storage tank, respectively. The
overall CHCP efficiency of the tri-generation HT-PEMFC system can be estimated by the summation
of electric, thermal, and cooling efficiencies.

εCHCP = εe + εcooling + εt (34)

2.6. Operating Conditions

The key operating parameters for an HT-PEMFC system are the steam to carbon ratio (SCR) for
the SR reactors and the FAR for burners, which are defined as

SCR =

.
mSR,in

H2O /MWH2O
.

mPNG/MWCH4

(35)

FAR =

.
mBNG/MWBNG +

.
mAOG/MWAOG

.
mair/MWair

(36)

where
.

mAOG. represents anode exhaust the mass flow rate from the HT-PEMFC stack. The equivalence
ratio (ER) for the burners means the actual FAR normalized by the minimum theoretic FAR for complete
combustion. Under a fixed air supply, the ER can be approximated to the ratio of the actual BNG mass
flow rate to the minimum BNG mass flow rate that is required for complete combustion:

ER =
FARactual
FARmin

=

.
mBNG,actual

.
mBNG,min

(37)
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According to our previous study [23], the SCR has a negligible influence on the hydrogen yield and
system efficiencies when this factor varies from 3.0 to 3.6. Only the CO content in the reformate gas
is slightly reduced with increasing SCR, so the SCR value is fixed at 3.0 in this study. Contrarily, the
burner FAR directly controls the amount of heat that is supplied for the endothermic reactions in the SR
reactor and thus highly influences the system efficiencies as well as the total hydrogen yield. Therefore,
we numerically assess the effect of the burner FAR on the electrical, cooling, and heating efficiencies of
HT-PEMFC systems. In addition, the summer cooling and winter heating modes demand different
cooling, heating, and power loads for the HT-PEMFC systems. One approach to meet these various
load requirements is to adjust the operating current density of the HT-PEMFC stack. In this study, low
(0.2 A/cm2), intermediate (0.4 A/cm2), and high (0.65 A/cm2) current-density HT-PEMFC operations
are simulated and then compared in terms of electric-power generation and cooling capacity.

3. Results and Discussion

Figure 6 display the cell voltage, stack power, and waste heat under different operating current
densities, wherein the calculated polarization curve agrees well with the experimental curve that was
measured by Qingfeng [39]. In addition, the stack power and waste heat were estimated based on the
stack configuration in Table 3 (AMEA = 300 cm2, Ncell = 160). While the cell voltage decreased with the
current density, the stack power and waste heat dramatically increased with current density. Therefore,
when greater cooling and electrical loads are required during summer, operating a HT-PEMFC stack
at lower voltage (higher current) is needed to obtain higher stack power for more electricity use
and supplying more heat to the absorption chiller. Figure 7 schematically shows the HT-PEMFC
system simulation results for the lower current-density operation of the HT-PEMFC stack at 0.2 A/cm2.
With a PNG flow rate of 0.8587 kg/h, 0.4283 kg/h of hydrogen was produced through the SR, HTS,
and LTS processes and then fed into the HT-PEMFC stack, wherein 5.978 kW of electric power was
generated with around 6.097 kW of waste heat. The heat was transferred to the LiBr-H2O solution in
the absorption chiller and 4.011 kg/h of water was vaporized from the strong solution and used as
refrigerant. The cooling capacity of 2.568 kW was finally delivered through 135.11 kg/h of chiller water
loop (TChiller H2O, in = 25.35 ◦C, TChiller H2O, out = 9.045 ◦C). The electric-power generation from the
HT-PEMFC stack, which ranged from 5 to 6 kW, was sufficient in coping with the power consumption
of five households, but the cooling capacity, which was around 2.566 kW, was less than that of one
household in the summer, which implies that the HT-PEMFC stack’s operating mode must be switched
to a higher power and lower efficiency mode during summer.
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Table 3. Geometric/operating conditions and input parameters for simulations of the HT-PEMFC stack.

Description Value Ref.

MEA area, AMEA 300 cm2 -

Operating temperature, Tcell 165 ◦C -

Anode/cathode stoichiometry, ξ 1.2/2.0 -

Number of cells in a stack, ncell 160 -

Thickness of anode/cathode CLs, GDLs, δCL, δGDL 0.015, 0.35 mm -

Thickness of anode/cathode membrane, δMEM 0.07 mm -

Anode/Cathode inlet pressure 1.0 atm -

Reference hydrogen/oxygen molar concentration, CH2,re f /CO2,re f 40.88 mol/m3 [40]

Electronic conductivity in BP, GDL, CL 14000, 1250, 300 S/m [40]

Phosphoric acid doping level 18.7 [40]

Anode/cathode transfer coefficient 0.5, 0.65 [40]

Reference exchange current density in anode/cathode, ire f
0,a , ire f

0,c 1.0 × 109, 1.0 × 104 A/m2 [35]

Volume fraction of ionomers in CLs 0.3 [40]

Porosity of GDL, CL 0.6, 0.4 [40]

Proton conductivity of the membrane, κ 36.22 S/m [39]
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Therefore, higher current-density operations of an HT-PEMFC stack at 0.4 and 0.65 A/cm2 were
simulated. As the stack’s operating current density increase, the BNG and PNG flow rates should
accordingly increase to obtain greater hydrogen yield at the higher current density. Figure 8a shows
the required BNG and PNG flow rates and the amount of heat that is transferred from the burner to
SR reactor, wherein the BNG and PNG flow rates were controlled to provide a sufficient amount of
heat to the SR reactor and generate hydrogen flow that corresponds to the same anode stoichiometry
of 1.2 according to current density. Thus, the BNG and PNG flow rates and the amount of heat that
was provided to the SR reactor almost linearly increased with the current density. In Figure 8b, the
stack’s electric power, waste heat, and cooling capacity are plotted with respect to the operating current
density. As the operating current density increased, the waste heat and resultant cooling capacity
of the absorption chiller relatively steeply increased with the current density when compared to the
stack’s electric power. The cooling capacity increased from 2.566 kW at 0.2 A/cm2 to 17.292 kW
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at 0.65 A/cm2, while the electric-power generation increased relatively slowly from 5.978 kW at
0.2 A/cm2 to 13.812 kW at 0.65 A/cm2.
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Figure 8. (a) Required burner natural gas (BNG) and process natural gas (PNG) flow rates and amount
of heat supplied to the SR reactor with the variation of operating current density, (b) electric power,
waste heat, and cooling capacity of HT-PEMFC stack as a function of operating current density. As the
operating current density varied, the BNG and PNG flow rates were adjusted to maintain the same
anode stoichiometry of 1.2.

Figure 9 shows the electrical, cooling, thermal, and overall efficiencies (expressed in
Equations (23), (31), (33) and (34), respectively) at three different current densities. Absorption
chillers typically perform more efficiently at higher temperature and larger heat input, so the cooling
efficiency increases relatively sharply with increasing current density, which offsets the decreases in
the electrical and thermal efficiencies. Thus, the overall efficiency remained almost unchanged (around
70%) as the operating current density varied. This result indicates that an HT-PEMFC system with an
absorption chiller can be adapted to various electrical, cooling, and heating-load requirements as the
seasons change.
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Figure 9. Curves for the electrical, cooling, thermal, and overall efficiencies under various
current densities.

The burner FAR directly controls the heat supply to the SR reactor and it thus significantly
influences the resulting hydrogen conversion rate and HT-PEMFC efficiencies. Therefore, HT-PEMFC
system simulations were conducted with various burner FARs, which are summarized in Table 4. For
simplicity, the air supply rate for the burner was fixed for each current-density condition, and only the
BNG flow rate was adjusted to vary the burner FAR and ER. As predicted, the highest heat supply
rate for the SR reactor is calculated with ER = 1, i.e., corresponding to a BNG flow rate of 0.3177 kg/h
at 0.2 A/cm2, 0.4877 kg/h at 0.4 A/cm2, and 0.7526 at 0.65 A/cm2. Operating with higher FARs and
ERs (rich mixture for the burner) should be avoided, because these conditions significantly reduce
the efficiency of HT-PEMFC systems. On the other hand, lowering the FAR and ER (lean mixture
lower than ER = 1) was beneficial, thus improving the tri-generation performance and efficiency. Even
slightly higher H2 yields and stack power (Pstack) were predicted with the lower ERs, owing to the
reduced HTS and LTS temperatures and enhancing the CO conversion rate to CO2 for the exothermic
WGS reaction. Although the cooling capacity was reduced with a lower ER, the cooling and overall
CHCP efficiencies were improved because less fuel was used. However, a further decrease in the ER
can produce an insufficient heat supply for the SR reactor, substantially decreasing the hydrogen yield,
stack power, and cooling capacity.
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Table 4. Effects of fuel-air ratio (FAR) for the burner on the performance of the tri-generation system.

Operating Condition
ER

(
.

mBNG)
[kg/h]

FAR
CO

Fraction
[%]

H2
Fraction

[%]

WBurn,sup
[kW]

H2
yield
[kg/h]

THTS
[◦C]

TLTS
[◦C]

Pstack
[kW]

Wcooling
[kW] COP εe

[%]
εcooling

[%]
εt

[%]
εCHCP

[%]

I = 0.2 A/cm2
.

mair = 8.536 kg/h
.

mPNG = 0.8587 kg/h
.

mBNG = 0.3177 kg/h
.

mSR,w = 3.865 kg/h

1.33
(0.4236) 5.052 0.5287 79.88 5.177 0.4284 358.3 248.6 5.980 2.558 0.494 30.679 14.351 18.950 63.981

1
(0.3177) 4.610 0.5553 79.87 5.205 0.4283 362.7 251.6 5.978 2.566 0.493 33.429 15.692 20.656 69.777

0.76
(0.2421) 4.200 0.1197 79.95 4.428 0.4303 226.0 165.6 6.007 2.494 0.563 35.916 16.300 22.075 74.291

0.4 A/cm2
.

mair = 13.27 kg/h
.

mPNG = 1.725 kg/h
.

mBNG = 0.4877 kg/h
.

mSR,w = 7.755 kg/h

1.33
(0.6503) 4.867 0.5631 79.89 8.085 0.8608 304.3 250.8 10.228 8.729 1.080 28.870 26.439 10.230 65.538

1
(0.4877) 4.507 0.6060 79.88 8.145 0.8604 310.4 255.9 10.223 8.657 1.062 30.974 28.147 10.982 70.103

0.80
(0.3902) 4.194 0.1581 79.97 7.135 0.8656 202.0 166.0 10.285 8.338 1.169 32.614 28.360 11.488 72.462

0.65 A/cm2
.

mair = 20.91 kg/h
.

mPNG = 2.801 kg/h
.

mBNG = 0.7526 kg/h
.

mSR,w = 12.60 kg/h

1.33
(1.0035) 4.780 0.6349 79.87 12.773 1.3967 302.7 265.2 13.819 17.270 1.352 25.009 32.658 6.387 64.054

1
(0.7526) 4.439 0.6752 79.86 12.840 1.3960 307.1 269.2 13.812 17.292 1.347 26.761 35.008 6.838 68.606

0.80
(0.6021) 4.142 0.2389 79.97 11.280 1.4051 196.4 171.6 13.902 16.737 1.484 28.135 35.383 7.140 70.658
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4. Conclusions

In this paper, we developed the HT-PEMFC system model for tri-generation, wherein an LiBr-H2O
absorption chiller model was developed and then coupled with an HT-PEMFC stack model that is
based on a PA-doped PBI membrane and fuel-reforming model that comprises an SR reactor, HTS
and LST reactors, and burner, which were connected with various BOPs and heat exchangers. Using
the commercially available flowsheet simulator Aspen HYSYS®, the system model for tri-generation
was simulated under various operating conditions. The simulation results highlighted that higher
current operation in the HT-PEMFC stack was needed to achieve sufficient cooling capacity. As the
stack current density was raised from 0.2 A/cm2 to 0.65 A/cm2, the electric efficiency of HT-PEMFC
stack dropped from 33.4% to 26.8%, but the cooling efficiency of single-effect LiBr-H2O absorption
chiller was improved from 15.7% to 35.0%, leading to a substantial increase in the cooling capacity
from 2.566 to 17.292 kW. In addition, a burner ER of around 0.75–0.8 levels was suitable in achieving
higher overall CHCP efficiencies ranging from 70% at 0.65 A/cm2 to 75% at 0.2 A/cm2 without any
loss of cooling capacity. This numerical study clearly illustrated that an HT-PEMFC system with an
absorption chiller can adequately respond to various electrical, cooling, and heating-load requirements
as seasons change.
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Nomenclature

A area, m2

Ai pre-exponential factor of reaction i

A
(

Kj

)
pre-exponential factor of the adsorption constant for species j

bhpi power consumption of an individual BOP component i, W
C concentration, mol·m−3

D mass diffusivity of a species, m2·s−1

Ei activation energy of reaction i, kJ·mol−1

F Faraday constant, C·mol−1

hj specific enthalpy of species j, kJ·mol−1

∆hi specific enthalpy change of reaction i, kJ·mol−1

∆hj adsorption specific enthalpy of species j, kJ·mol−1

i current density, A/cm2

ki rate of reaction i
Kj adsorption constant for species j
KPi equilibrium constant of reaction i
LHV lower heating value, kJ·kg−1

M volume flow rate, m3·s−1

MW molar weight, kg·kmol−1
.

m mass flow rate, kg·h−1

n number of the cell
p pressure, Pa
P stack power, W
.

Qstack total heat generation from a stack, W
ri reaction rate i, kmol·(kg cat·h)−1
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R universal gas constant, 8.314 J·(mol·K)−1

Relec equivalent contact resistance to electron conduction, Ω
RH+ area-specific resistance from proton transport, Ω
T temperature, K
U entire heat transfer coefficient, W·m−2·K−1

U0 thermodynamic equilibrium potential, V
V voltage, V
z number of electrons in the electrochemical reaction
Greek letters
α transfer coefficient
ε efficiency
ν porosity
ρ density, kg·m−3

η overpotential, V
κ proton conductivity, S·m−1

ξ stoichiometry flow ratio
Subscripts & abbreviations
a anode
act activation
AOG anode off gas
b backward
burn burner
BNG burner natural gas
BOP balance of plant
B−V Butler-Volmer
c cathode
chiller chiller
con concentration
cool coolant
cooling cooling
COP Coefficient of Performance
CHCP combined heat, cooling and power
CHC Combined Heating and Cooling
CL catalyst layer
e electric
ER Equivalence Ratio
f forward
FAR Fuel Air Ratio
GDL gas diffusion layer
GT gas turbine
hr heat recovery
H2O water
HX Heat Exchanger
HOR Hydrogen Oxidation Reaction
HT High temperature
HTS High temperature-shifts
i reaction number
in in
j species
k BOP component
lim limiting current density
lm logarithmic mean temperature difference
LTS Low temperature-shifts
LiBr Lithium bromide
LT Low temperature
LMTD logarithmic mean temperature
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mem membrane
MEA membrane electrode assembly
0 standard condition
ohm ohmic
opt optimum
out out
O2 oxygen
ORR Oxygen Reduction Reaction
PNG process natural gas
PBI Polybenzimidazole
PA Phosphoric Acid
PEMFC Polymer electrolyte membrane fuel cell
re f reference value
sup supply
SCR Steam to carbon ratio
SR Steam reforming
SOFCs Solid Oxide Fuel Cells
t thermal
total total
tri-gen tri-generation system
WGS Water Gas Shift
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