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Abstract: Effective state estimation is critical to the security operation of power systems. With the
rapid expansion of interconnected power grids, there are limitations of conventional centralized state
estimation methods in terms of heavy and unbalanced communication and computation burdens for
the control center. To address these limitations, this paper presents a multi-area state estimation model
and afterwards proposes a consensus theory based distributed state estimation solution method.
Firstly, considering the nonlinearity of state estimation, the original power system is divided into
several non-overlapped subsystems. Correspondingly, the Lagrange multiplier method is adopted to
decouple the state estimation equations into a multi-area state estimation model. Secondly, a fully
distributed state estimation method based on the consensus algorithm is designed to solve the
proposed model. The solution method does not need a centralized coordination system operator,
but only requires a simple communication network for exchanging the limited data of boundary
state variables and consensus variables among adjacent regions, thus it is quite flexible in terms of
communication and computation for state estimation. In the end, the proposed method is tested
by the IEEE 14-bus system and the IEEE 118-bus system, and the simulation results verify that the
proposed multi-area state estimation model and the distributed solution method are effective for the
state estimation of multi-area interconnected power systems.

Keywords: consensus algorithm; distributed state estimation; multi-area; power systems

1. Introduction

Power system state estimation has an important impact on power system security assessment and
on-line security control. At present, the centralized state estimation method is widely researched, and
usually a control center is needed to estimate the state of the whole system based on comprehensive
measurement information provided by the Supervisory Control and Data Acquisition (SCADA)
system [1]. With the development of interconnected power systems and the expanded scale of power
grids, a control center is used to collect huge measurement data for the state estimation, and thus this
center usually faces the defects of heavy communication and computation burden. Therefore, it is
significant to divide interconnected large power grids into several sub-areas and accordingly design a
distributed state estimation models with efficient solution methods.

The distributed state estimation models with proper solution approaches have been investigated
by some scholars [2–5]. A distributed state estimation model was established with a hierarchical
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framework in [6], where the local estimation results of the first layer need to be globally coordinated
at the center of the second layer. However, the reliability of this hierarchical estimation model was
slightly poor. In [7], based on the Richeardson iterative and linear equations, a distributed method
was proposed for the weighted least square estimation. This method could well adapt to power
network topology changes, but the convergence performance was not convincing enough. Authors
of [8] presented an effective and accurate method for multi-area power system state estimation, which
could improve the bad data detection capability and the convergence speed by using well-tuned
measurement weights. In [9], an overlapped sub-region partitioning was proposed for the distributed
state estimation problem, and a parallel algorithm based on the principle of virtual boundary
measurement was designed to solve the problem. Authors of [10] proposed a multi-area paralleled state
estimation method on the basis of sub-regions independently performing the local state estimation and
the control center coordinately calculating the global optimal solution with the boundary variables. The
distributed state estimation approach presented in [11] was based on a recursive estimation algorithm
with time-varying weight parameters, which needed global communication network information to
calculate the eigenvalues of Laplacian matrix and afterward determined the parameter range of the
time-varying weights, and the number of convergence iterations was usually large. In [12], a state
estimation algorithm was designed with optimal weighting factors for power system state estimation
and the data packet loss was also considered in the model.

In recent years, popular applications of wide area measurement system (WAMS) and phasor
measurement unit (PMU) in power systems have significantly promoted the development of state
estimation [13,14]. Since sampling phase errors are inevitable among PMUs in their deployments,
authors of [15] proposed a novel power state estimation algorithm with consideration to PMU phase
errors. Authors of [16] presented a PMU-based decomposition method for distributed state estimation
and evaluated the impact of measurement errors on state estimation accuracy. Authors of [17] divided
the whole system into observable and unobservable sub-regions and solved them separately. With the
help of WAMS/SCADA mixed measurements, a distributed state estimation algorithm was formed
based on matrix-splitting strategy to improve the robustness of state estimation in [18]. In [19],
a bi-linear state estimation model with mixed measurements was presented and afterward solved by
the alternating direction multiplier method.

This paper proposes a nonlinear multi-area state estimation model and presents a consensus theory
based distributed state estimation method. For the proposed method, each sub-system independently
conducts the individual state estimation according to the local measurements, and only limited
information of consensus variables and boundary-bus state variables is shared among adjacent regions,
while the system-level global optimal solution can be obtained within several iterations. The main
contributions of this paper are threefold.

(1) A multi-area state estimation nonlinear model is proposed in this paper by using Lagrange
multiplier function, and a consensus theory based distributed state estimation method is designed
accordingly to solve the model.

(2) The proposed distributed state estimation method does not need a coordination center, but only
requires a simple communication network for exchanging limited data of boundary state variables
and consensus variables among adjacent regions, thus it is quite flexible in terms of communication
and computation for state estimation.

(3) Compared with the centralized method, simulation results of the IEEE 14-bus and the IEEE
118-bus systems demonstrate that the proposed multi-area distributed state estimation method is
effective and flexible for state estimation of interconnected power systems.

The main contents of this paper are organized as follows: Section 2 introduces the traditional state
estimation model. Section 3 establishes a multi-area state estimation model, while Section 4 covers the
consensus theory based distributed state estimation method designed to solve this model. In Section 5,
simulations of the IEEE 14-bus and the IEEE 118-bus systems conducted to validate the effectiveness
of proposed distributed method are addressed, and conclusions are drawn in the last section.
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2. Traditional State Estimation Model

This section generally describes the traditional state estimation model. Assume the measurement
vector of power systems are z including the voltage magnitudes, power flows, power injections, etc.
The system state vector is x representing the voltage angles and magnitudes of all buses. In a traditional
state estimation model, the state variable x is described in measurement equation h(x), which could be
used to establish the relationship of system state vector x and the measurement vector z. When further
considering the measurement noise, the relationship can be refined as (1):

z = h(x) + v (1)

where h(x) and v are the function vector and noise vector of measurement data, respectively.
Since the accuracy of each measurement is different, the weighted least square (WLS) method is

widely used in state estimation problems in order to improve the accuracy of state estimation, and each
measurement is tuned with a proper weight related to its variance. If the variance of the measurement
error is denoted as a diagonal matrix R = diag[σ1

2, σ2
2, . . . , σm

2], where σi
2 is the variance of the

measurement error vi, the objective function of WLS method for state estimation problems is [20].

minJ(x) = (z− h(x))T R−1(z− h(x)) (2)

If the initial value of the state variable is denoted as x(0) and h(x) is expanded around x(0) using
the Taylor series, the function vector h(x) can be linearized at x(0) as (3):

h(x) = h(x(0)) + H(x(0))∆x (3)

where H(x(0)) is the Jacobian matrix of the function vector h(x). By substituting (3) into the weighted
least squares criterion, we can obtain J(x) = [∆z − H(x(0))∆x]TR−1[∆z − H(x(0))∆x], where ∆z=z −
h(x(0)). To minimize the function J(x) in (2), the following equation must be satisfied:

∆x̂ = G−1(x(0))HT(x(0))R−1∆z (4)

where G(x(0)) = HT(x(0))R-1H(x(0)). With (4), the variable x̂ can be updated from the initial value x(0)

by (5):
x̂ = x(0) + ∆x̂ = x(0) + G−1(x(0))HT(x(0))R−1[z− h(x(0))] (5)

With the iteration number (indicated as k) increased, the following formula can be adopted to
continuously update x̂ until achieving a satisfactory accuracy:

∆x̂(k) = G−1(x̂(k))HT(x̂(k))R−1[z− h(x̂(k))]

= [HT(x̂(k))R−1H(x̂(k))]
−1

HT(x̂(k))R−1[z− h(x̂(k))]
x̂(k+1) = x̂(k) + ∆x̂(k)

(6)

3. Multi-Area State Estimation Model

In this section, a nonlinear multi-area state estimation model is presented. Assume that a
power network has n buses and is portioned into r non-overlapped sub-system Si (i = 1, 2, ..., r,
each sub-system Si includes ni buses) during the system planning phase based on the following
principles: (1) each sub-system has a similar network scale with the consideration of geographical
location; (2) designed with few tie lines between subsystems, which can reduce the amount of data
exchange and communication burden among subsystems for distributed state estimation.

Figure 1 shows a non-overlapped sub-area partition diagram, and the measurements include
voltage amplitude, nodal power injections (indicated by the small solid square), and line power
flow (indicated by the small filled-dot). In the multi-area state estimation model, the buses with no
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connection to any neighboring regions are called internal buses, and the buses connected to neighboring
regions are called boundary buses. Correspondingly, the measurements related to boundary buses are
called boundary measurements, as circled by the large red dot circle, and the measurements inside the
sub-areas are called internal measurements, as circled by the large blue dot circle.
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Figure 1. Partition of power systems.

Assume that the slack bus of the whole network is included in sub-system i, and its voltage
amplitude is measurable. The other sub-area has a local reference bus, and its voltage and phase angle
are set as pseudo-measurements. It is also assumed that all sub-areas are observable. Based on these
assumptions and the non-overlapped partition scheme in Figure 1, the state estimation measurement
equation of the system can be divided into the internal and boundary equations:

zi = hi(xi) + vi, i = 1, 2 · · · r
zc = hc(x) + vc

(7)

where zi is the internal measurement for sub-system i, and it is a column vector with dimensions mi × 1,
while mi is the number of internal measurements; xi is a 2ni × 1 column vector of voltage magnitudes
and phase angles for internal buses; zc is a mc × 1 column vector of boundary measurements where mc

is the number of boundary measurements; x = [x1, x2, . . . ,xr]T is the state variable of the original system;
vi and vc are the corresponding measurement errors for internal and boundary buses. The proposed
multi-area state estimation can be expressed in terms of the WLS minimization problem with boundary
equality constraints as (8):

minJ(x)= rT
c R−1

c rc +
r

∑
i=1

rT
i (xi)R−1

i r(xi)

rc= zc − hc(x)

(8)

where the measurement error ri (xi) = zi − hi (xi), the internal measurement variance matrix Ri = cov(vi)
= diag[σ1

2, σ2
2 . . . σmi

2], and the boundary measurement variance matrix Rc = cov(vc) = diag[σ1
2, σ2

2

. . . σmc
2].

By using Lagrange multiplier method, the state estimation problem (8) can be transformed into
the Lagrange function L(x, λ) as (9):

L(x, λ) =
1
2

rT
c R−1

c rc +
1
2

r

∑
i=1

rT
i (xi)R−1

i ri(xi) + λT(rc − zc + hc(x)) (9)

where λ is a mc × 1 vector of Lagrange multiplier. To minimize L(x, λ) in (9), the following
Equations (10)–(12) should be satisfied at the optimal solution:



Energies 2019, 12, 900 5 of 16

∂L
∂x

= 0⇒ −

 HT
1 (x̂1)R−1

1
. . .

HT
r (x̂r)R−1

r

×
 z1 − h1(x̂1)

· · ·
zr − hr(x̂r)

+ HT
c (x̂)λ̂ = 0 (10)

∂L
∂rc

= 0⇒ R−1
c rc + λ̂ = 0 (11)

∂L
∂λ

= 0⇒ rc − zc + hc(x̂) = 0 (12)

From Equations (11) and (12), we have:

hc(x̂)− zc − Rcλ̂ = 0 (13)

The transformed nonlinear Equations (10) and (13) can be solved by Newton’s iterative method
as follows: G1(xk

1)
. . .

Gr(xk
r )

×
 ∆xk

1
· · ·
∆xk

r

+ HT
c (xk)λk+1 =

 HT
1 (xk

1)R−1
1 ∆zk

1
· · ·

HT
r (xk

r )R−1
r ∆zk

r

 (14)

Hc(xk)∆xk − Rcλk+1 = ∆zk
c (15)

where k is the number of iterations, and ∆xk = [∆x1
k, ∆x2

k, . . . ∆xr
k]T = [(x1

k+1 − x1
k), (x2

k+1 − x2
k),

. . . ,(xr
k+1 − xr

k)]T; ∆zi
k = zi − hi(xi

k), I = 1,2 . . . r; ∆zc
k = zc − hc(xk); Gi

k(xi
k) = Hi

T(xi
k)Ri

-1Hi(xi
k); Hc(xk)

= [Hc1(x1
k), Hc2(x2

k), . . . , Hcr(xr
k)], and Hci is the Jacobian matrix (mc×2ni) of state variables for the

boundary measurement in sub-region Si.
The Equations of (14) and (15) can be iteratively solved by (16)–(19) with the help of introducing

an intermediate variable ∆yk
i in Equation (16) [10]:

∆yk
i = G−1

i (xk
i )HT

i (xk
i )R−1

i ∆zk
i , i = 1, 2 · · · r (16)

λk+1 = G−1
c (xk)(∆zk

c −
r

∑
i=1

Hci(xk
i )∆yk

i ) (17)

uk+1
i = G−1

i (xk
i )HT

ci(xk
i )λ

k+1, i = 1, 2 · · · r (18)

∆xk
i = ∆yk

i + uk+1
i , i = 1, 2 · · · r (19)

where Gc is a mc order square matrix calculated by (20):

Gc(xk) =
r

∑
i=1

(Rci + Hci(xk
i )G

−1
i (xk

i )HT
ci(xk

i )) (20)

As can be observed above, though Equations (16) and (19) can be solved independently for
each sub-area i, the calculation of Gc(xk), Hci(xi

k) and ∆zc
k in Equations (17) and (18) depends on the

boundary measurements and state variables of boundary buses. Therefore, a control center is needed
for the centralized method to collect the necessary information of these boundary bus measurements
and boundary bus state variables from the whole system for calculating λk+1 and ui

k+1. However, with
the increased scale of the power grid, the communication and calculation burden of the control center
for centralized state estimation are very likely to be overloaded, which may jeopardize the reliability.
In order to balance computational burden and improve reliability, a fully distributed state estimation
method based on consensus theory is proposed in the next section.
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4. Consensus Algorithm Based Distributed State Estimation Approach

4.1. Graph Description and Consensus Algorithm

4.1.1. Graph Description

A graph G can be used to model the communication network topology of power networks, which
is a pair of sets (VG, EG), where VG is a vertex set containing all vertices of graph G, and EG is an
edge set of unordered binary arrays of all elements in VG. If there is a path between any two different
vertices in graph G, the graph is called a connected graph, and the structure of the connected graph
can be reflected by an adjacency matrix A. When G is a finite and simple undirected graph containing n
vertices, the adjacency matrix A = [aij] of G is a n× n symmetric matrix. The element aij is a (0,1)-matrix
with zero diagonal [21]. If there is a connection between vertice i and vertice j, aij = 1, otherwise aij = 0.
The row-stochastic matrix D = [dij] could be designed based on the adjacency matrix A, and its element
dij, representing the communication coefficient between agents i and j, could be defined by (21) [22,23]:

dij =


1/(bi + bj + 2) j ∈ Ni

1−∑j∈Ni
1/(bi + bj + 2) j /∈ Ni

0 otherwise

(21)

where Ni represents the index of adjacent vertices of vertex i, and bi is the sum of the number of edges
associated with vertex i, defined as:

bi =
n

∑
j=1

aij (22)

4.1.2. Consensus Algorithm

Denote the state of vertex i by wi. According to the consensus theory, if and only if all vertex
states in the network are equal, i.e., w1 = w2 = . . . wn, the vertices of the network reach consensus.
A consensus algorithm is given in [24] as:

.
wi = −

n

∑
j=1

aij(wi − wj) i = 1, 2 · · · n (23)

where aij is an element of (i, j) in the adjacency matrix A. When it takes a fixed time for information
share between vertices, we need to model the consensus network as a discrete-time system using dij
and D, which is described as follows [23]:

wi[t + 1] =
n

∑
j=1

dijwj[t] i = 1, 2 · · · n (24)

w[t + 1] = Dw[t] (25)

The stopping criterion for the consensus procedures is that the value wi[t] of each node i satisfies∣∣wi[t]− wj[t]
∣∣ ≤ ε, ∀j ∈ Ni, where the parameter ε is a preset threshold for error tolerance [25].

4.2. Propose Distributed State Estimation Method

For the multi-area state estimation model proposed in Section 3, the key point of realizing the
distributed method is to solve λk+1 of (17) in a distributed manner. Specifically, understanding how
to effectively calculate the two terms Gc(xk) and ∆zc

k − ∑Hci(xi
k)∆yi

k) of (17) in a distributed way
is essential for the proposed distributed state estimation method, which is elaborated upon in the
following section.
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Equation (17) can be rewritten in the form of (26):

λk+1 =

(
1
N

Gc(xk)

)−1
(

1
N
(∆zk

c −
r

∑
i=1

Hci(xk
i )∆yk

i )

)
(26)

where the error ∆zc
k and ∆zci

k are defined as:

∆zk
c =



(
zc1 − hc1(xk)

)
mc1×1

...(
zci − hci(xk)

)
mci×1

...(
zcr − hcr(xk)

)
mcr×1


mc×1

Sub− system 1
...

Sub− system i
...

Sub− system r

(27)

∆zk
ci =



 0
...
0


mc1×1

...(
zci − hci(xk)

)
mci×1

... 0
...
0


mcr×1


mc×1

Sub− system 1
...
...

Sub− system i
...
...

Sub− system r

(28)

where mci is the number of boundary measurements for region Si, and hci(•) is the function vector for
the boundary measurements. Thus, ∆zc

k can be converted into the following form:

∆zk
c =

r

∑
i=1

∆zk
ci (29)

Afterward, Equation (26) can be converted to:

λk+1 =

(
1
N

Gc(xk)

)−1
(

1
N

r

∑
i=1

(∆zk
ci − Hci(xk

i )∆yk
i )

)
(30)

4.2.1. Distributed Solution Process

According to the consensus theory, the average value of consensus variables can be iteratively
approached via limited iterations of exchanging local data. Therefore, there is no need to set up a
control center to collect the global information from all sub-areas for computing Gc(xk) and ∑(∆zci

k

− Hci(xi
k)∆yi

k) of (30) in a centralized way. Instead, the consensus algorithm can be used in each
sub-system to solve λ in a distributed manner. In the following section, we demonstrate how to
conveniently calculate the terms Gc(xk) and ∑(∆zci

k − Hci(xi
k)∆yi

k) of (30) in a distributed manner.

(1) For distributed calculation of Gc(xk)

Apply the consensus algorithm to solve Equation (30) for the multi-area state estimation. The term
(1/N)Gc(xk) [refer to Equation (20)] can be calculated in a distributed manner as follows:
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
Rc1 + Hc1(xk

1)G
−1
1 (xk

1)HT
c1(xk

1)

Rc2 + Hc2(xk
2)G

−1
2 (xk

2)HT
c2(xk

2)
...

Rcr + Hcr(xk
r )G−1

r (xk
r )HT

cr(xk
r )


[t+1]

= D ·


Rc1 + Hc1(xk

1)G
−1
1 (xk

1)HT
c1(xk

1)

Rc2 + Hc2(xk
2)G

−1
2 (xk

2)HT
c2(xk

2)
...

Rcr + Hcr(xk
r )G−1

r (xk
r )HT

cr(xk
r )


[t]

(31)


1
N Gc(xk)
1
N Gc(xk)

...
1
N Gc(xk)

 = lim
t→∞


Rc1 + Hc1(xk

1)G
−1
1 (xk

1)HT
c1(xk

1)

Rc2 + Hc2(xk
2)G

−1
2 (xk

2)HT
c2(xk

2)

...
Rcr + Hcr(xk

r )G−1
r (xk

r )HT
cr(xk

r )



[t+1]

= lim
t→∞

Dt ·


Rc1 + Hc1(xk

1)G
−1
1 (xk

1)HT
c1(xk

1)

Rc2 + Hc2(xk
2)G

−1
2 (xk

2)HT
c2(xk

2)

...
Rcr + Hcr(xk

r )G−1
r (xk

r )HT
cr(xk

r )



[0]

(32)

where D is the row-stochastic matrix calculated by Equation (21) based on the communication network
topology, k is the number of external iteration to update the state variables, and t is the number
of internal iteration to update the consensus variables. Theoretically, when t approaches infinity,
each sub-area can get the exact mean value of consensus variables in Equation (32). In practice, very
few iterations are needed to get the approximated mean value of consensus variables with satisfied
engineering accuracy.

Based on Equation (32), each sub-area i independently calculates the local consensus variable Rci +
Hci(xi

k)Gi
−1(xi

k)Hci
T(xi

k) and then interacts with the neighboring sub-areas through the row-stochastic
matrix D, and afterwards obtains the mean value of network variables via few iterations. In this way,
the term (1/N)Gc(xk) can be calculated in a distributed manner.

(2) For distributed calculation of ∑(∆zci
k − Hci(xi

k)∆yi
k)

Similarly, the second term (1/N)∑(∆zci
k − Hci(xi

k)∆yi
k) in (30) can also be solved in a distributed

manner by (33) and (34) based on consensus algorithm:
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1
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...
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[0]

(34)

With the help of (32) and (34), the Lagrange multiplier λ in (30) or (17) can be obtained in a
distributed manner. Considering that Gi

−1(xi
k) and Hci

T(xi
k) could be calculated in each sub-system

independently, ui
k of (18) can be computed in a distributed manner with λ obtained by (30). Therefore,

the proposed state estimation solution approach essentially including Equations (16)–(19) can be
completely calculated in a distributed manner.

Remarks
The essential step of realizing a distributed state estimation algorithm is to calculate (in a

distributed manner) the global variable Lagrange multiplier λ in (17), which is actually coupled
with the global state variables xk in terms of Gc(xk) and ∆zc

k − ∑Hci(xi
k)∆yi

k. The proposed distributed
algorithm transforms (17) into (30), and then introduces the consensus theory to compute the terms
Gc(xk) and ∑(∆zci

k − Hci(xi
k)∆yi

k) by Equations (32) and (34) in a distributed manner. For the proposed
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algorithm, there is no need to set up a control center to collect the measurements of the whole system.
Each sub-system only requires the local measurements in its own sub–area and exchanges consensus
variables with the adjacent regions to calculate the average value of consensus variables, thereby
realizing a distributed state estimation approach.

4.2.2. Main Steps of Proposed Algorithm

The detailed steps of the proposed multi-area distributed state estimation method are as follows:
Step 1 Initialize k = 0 and set initial values for state variables as well as the internal iteration

convergence precision ε and external iteration convergence precision δ;
Step 2 Collect network structure parameters, and form an adjacency matrix A according to the

communication network topology among sub-systems;
Step 3 The following procedures are performed simultaneously in each sub-system Si:
Step 3.1 Obtain internal measurement zi and boundary measurement zci, as well as Ri (the internal

measurement variance matrix) and Rci (the boundary measurement variance matrix in sub-system i);
Step 3.2 Calculate the internal measurement function hi(xk), internal Jacobi matrix Hi(xk), and

Gi(xk) = Hi
T(xk)Ri

−1Hi(xk) for each subsystem
Step 3.3 Calculate internal error ∆zi

k=zi − hi(xi
k) then compute ∆yi

k according to Equation (16);
Step 4 Each sub-area interacts with neighboring areas to compute hci(xk) and Hci(xk) and calculate

∆zci
k = zci − hci(xk)
Step 5 Each sub-area exchanges consensus variables Gci(xk) and ∆zci

k − Hci(xi
k)∆yi

k, iteratively
calculates (1/N)Gc(xk) and (1/N)∑(∆zci

k − Hci(xi
k)∆yi

k) according to Equations (32) and (34) until the
internal convergence precision ε is satisfied, and then computes λk+1 according to Equation (30);

Step 6 Each sub-area calculates ui
k according to Equation (18) and then obtains ∆xi

k and xi
k+1

according to Equations (19) and (6);
Step 7 Check the convergence of each subsystem. If all subsystems meet the convergence

conditions (∆xi
k < δ), xk is the global optimal solution; otherwise k = k + 1, return to step 3.2.

5. Simulation Results

5.1. Case 1: IEEE 14-bus System

The effectiveness of the proposed method is verified by the simulation results of the IEEE 14-bus
system. The internal state variable convergence precision ε is settled as 10−4, and the external state
variables convergence precision δ is settled as 10−5 for the following simulations. The system partition
and measurement configuration are shown in Figure 2. Set bus 1 as the slack bus with zero phase angle
and measurable voltage amplitude. The other measurements include the active and reactive power flow
and the active and reactive power injections, as shown in Figure 2. The total number of measurements
for the whole system is 43. The communication topology of sub-systems is shown in Figure 3.
The proposed distributed state estimation method has no special requirements for communication
networks, and the mature communication technologies, such as carrier communication and optical
fiber communication, are all applicable.

In this case study, the measured data are assumed as the solutions of power flow calculation plus
Gaussian white noise with standard deviation σ, where voltage amplitude measurement error σv =
0.03, bus injection power measurement error σPi = 0.01, and line transmission power error σPij = 0.004.
The boundary measurement may belong to either of the two adjacent areas according to the actual
measurement position. In addition to the reference bus located in sub-system i, each of the other
sub-systems is provided with a zero phase angle pseudo measurement and 1 p.u. voltage pseudo
measurement {in this example [(θ3, V3), (θ6, V6), (θ9, V9)]}. The detailed system measurements are
as follows:



Energies 2019, 12, 900 10 of 16

z1 =



0.0000

1.5708

0.7594

−0.4081

1.0600

−0.1748

0.0532

−0.0193



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1

P1-2

P1-5

P5-2

V1

Q1-2

Q1-5

Q5-2

z2 =



0.0000

−0.2510

0.2707

0

1.0000

0.0473

−0.1540

0.2103



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ3

P3-4

P4-7

P8

V3

Q3-4

Q4-7

Q8

z3 =



0.0000

−0.0816

0.1834

0.0188

−0.0610

1.0000

−0.0864

0.0998

0.0141

−0.0160



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ6

P11-6

P6-13

P12-13

P12

V6

Q11-6

Q6-13

Q12-13

Q12

z4 =



0.0000

0.0745

−0.1051

1.0000

0.0665

−0.0366



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ9

P9-10

P14-9

V9

Q9-10

Q14-9

zc1 =


0.1830

0.6006

0.3523

−0.1006


∣∣∣∣∣∣∣∣∣∣

P2

P5-4

Q2

Q5-4

zc2 =



−0.9420

−0.5427

0.2707

0.0000

0.0876

0.0213

0.1480

1.0000



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P3

P4-2

P7-9

θ3

Q3

Q4-2

Q7-9

V3

zc3 =



−0.0350

0.4589

0.0000

−0.0180

−0.2084

1.0000



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P11

P5-6

θ6

Q11

Q5-6

V6

zc4 =



−0.1490

0.1546

0.0000

−0.0500

−0.0264

1.0000



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P14

P4-9

θ9

Q14

Q4-9

V9

Based on the above measurement configurations, the proposed multi-area distributed estimation
method is applied to the IEEE 14-bus system. The solutions of proposed distributed estimation method
are benchmarked with that of the conventional centralized weighted least square state estimation
method, and these comparisons are shown in Table 1.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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Table 1. Solution comparisons of distributed and centralized state estimation method for the IEEE
14-bus system.

State
Variable

Centralized
Method (◦)

Distributed
Method (◦)

State
Variable

Centralized
Method (p.u.)

Distributed
Method (p.u.)

θ1 0 0 V1 1.0600 1.0605
θ2 −4.9808 −4.9816 V2 1.0450 1.0446
θ3 −12.7176 −12.7860 V3 1.0100 1.0080
θ4 −10.3241 −10.2464 V4 1.0186 1.0140
θ5 −8.7825 −8.7684 V5 1.0203 1.0174
θ6 −14.2223 −14.4500 V6 1.0700 1.0683
θ7 −13.3680 −13.2353 V7 1.0620 1.0480
θ8 −13.3680 −13.2353 V8 1.0900 1.0822
θ9 −14.9462 −14.8114 V9 1.0563 1.0333
θ10 −15.1039 −15.0375 V10 1.0513 1.0256
θ11 −14.7949 −14.8601 V11 1.0571 1.0435
θ12 −15.0771 −15.3064 V12 1.0569 1.0512
θ13 −15.1586 −15.3386 V13 1.0504 1.0444
θ14 −16.0386 −16.0839 V14 1.0358 1.0166

As shown in Table 1, the estimation results in terms of voltage amplitudes and phase angles
solved by the proposed distributed state estimation method are very similar to those of the centralized
state estimation method with the maximal voltage amplitude error 2.4% for the bus 10 and the maximal
phase angle error 1.5% for the bus 12. From the vivid bar chart based solution comparisons of two
methods in Figure 4, it is clear that the estimation results of the proposed distributed method are very
similar to those of the centralized method, and therefore the proposed distributed state estimation
method has a good accuracy.
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Figure 4. Voltage amplitude and angle comparisons of distributed and centralized method for the IEEE
14-bus system.

In order to verify the convergence of the proposed method, Figure 5 shows the solution errors
of the distributed method benchmarked with the centralized state estimation method in terms of
nodal voltage amplitudes and phase angles at each external iteration. For the proposed distributed
algorithm, one step of the external iteration is with several internal consensus iteration steps, and it is
performed only after the internal iteration loop converges. Therefore, the convergence of algorithm
errors can be reflected with regard to the external iterations in Figure 5. It can be seen that the voltage
amplitude and phase angle differences of every node decrease rapidly when the number of iterations
increases, and finally, they can converge to a satisfactory accuracy via only seven or eight iterations.
These curves indicate that the proposed multi-area distributed state estimation method has good
convergence performance.
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Figure 5. Convergence performance of proposed distributed method benchmarked with conventional
centralized state estimation method for the IEEE 14-bus system.

It should also be noted that the adjacency matrix A varies for different communication network
topologies. However, a different matrix A only affects the number of internal iterations for consensus
variables convergence in Equation (17), while the solution accuracy of the distributed state estimation
method is not affected. Based on the investigations of the influence of communication network
topologies on convergence speed in [15,21], increasing the communication network connection density
enhances the information exchange efficiency and thus accelerates the convergence speed.

5.2. Case 2: IEEE 118-bus System

In order to check the effectiveness and scalability of the distributed state estimation algorithm,
an IEEE 118-bus system is adopted to test the proposed method. The IEEE 118-bus system including
179 lines is partitioned into six subsystems, as shown in Figure 6 (black lines represent internal lines
in sub-systems and red lines represent boundary lines) with the communication network topology
shown in Figure 7. For each sub-area, a local phase angle reference bus is settled as: S1: {bus 1}, S2:
{bus 17}, S3: {bus 33}, S4: {bus 24}, S5: {bus 74}, S6: {bus 91}. The total number of measurements is
389 (except for pseudo measurements). The standard deviation σ of Gaussian white noise for various
measurement data is the same as that in Case 1.
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With the above measurement configurations, the traditional centralized weighted least square
state estimation method and the proposed distributed state estimation method are both used to solve
the state estimation problem of the IEEE 118-bus system, and Figure 8 clearly demonstrates the solution
differences between these two methods at each iteration. It can be observed from Figure 8 that the
results of the proposed distributed method gradually approach the state estimation results of the
centralized method, and finally, the former matches well with the solutions of the centralized method
after 10–12 iterations, which is demonstrated by the magnification part in Figure 8. Furthermore, when
comparing Figure 5 for the IEEE 14-bus system with Figure 8 for the IEEE 118-bus system, it can be
observed that with the increasing number of system buses, the error of the distributed state estimation
results is not deteriorated for a large power network. These comparisons verify that the proposed
distributed state estimation method is effective and scalable for the state estimation of large scale
power systems.
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6. Conclusions

In this paper, a multi-area state estimation model is proposed by using Lagrange multiplier
algorithm, and then a novel consensus theory based distributed state estimation method is designed
to solve the model. The proposed distributed state estimation method does not need a coordination
center and only requires a simple communication network for exchanging the limited data of boundary
state variables and consensus variables among adjacent regions. Compared with the conventional
centralized method, the proposed distributed state estimation method can solve state estimation
problems with satisfactory accuracy and good convergence. Simulation results of the IEEE 14-bus and
the IEEE 118-bus systems demonstrate that the proposed distributed method is effective and flexible
for state estimation of multi-area interconnected power systems.
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