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Abstract: The analysis of crosscut stability is an indispensable task in underground mining activities.
Crosscut instabilities usually cause geological disasters and delay of the project. On site, mining
engineers analyze and predict the crosscut condition by monitoring its convergence and stress;
however, stress monitoring is time-consuming and expensive. In this study, we propose an improved
extreme learning machine (ELM) algorithm to predict crosscut’s stress based on convergence data,
for the first time in literature. The performance of the proposed technique is validated using a
crosscut response by means of the FLAC3D finite difference program. It is found that the improved
ELM algorithm performs higher generalization performance compared to traditional ELM, as it
eliminates the random selection for input weights. Furthermore, a crosscut construction project in an
underground mine, Yanqianshan iron mine, located in Liaoning Province (China), is selected as the
case study. The accuracy and efficiency of the improved ELM algorithm has been demonstrated by
comparing predicted stress data to measured data on site. Additionally, a comparison is conducted
between the improved ELM algorithm and other commonly used artificial neural network algorithms.

Keywords: crosscut; stress; convergence; artificial neural network; extreme learning machine;
FLAC3D

1. Introduction

Surrounding rock stability in crosscuts has always been a major concern in underground mining
activities. Crosscut accidents such as roof failures, rib falls, and rock blasts primarily resulted from
stress concentration and could lead to casualties and huge economic loss [1–4]. For example, major
roof failures in Australian underground mines have been known to result in the stoppage of crosscut
construction for several months, causing a production loss of more than a hundred million dollars in
some cases [5]. Generally, the crosscut stability can be monitored and predicted by analyzing stress
and displacement in surrounding rock. In situ, the displacement of surrounding rock can be measured
efficiently and economically by convergence instruments, such as tape extensometers, laser scanners
(profilometers), and geodetic surveying (total stations) [6]. These instruments are usually placed at
intervals between 5 m and 50 m relying on the rock properties. The convergence data of surrounding
rock is processed manually or automatically as digital data and then transmitted to the data processing
unit [7,8]. However, it is time-consuming and expensive to obtain the stress data of surrounding
rock in crosscuts. Additionally, the stress-deformation relationship for surrounding rock in crosscuts
is full of uncertainty, as it is affected by many factors such as lithology, rock mass structure, and
groundwater [9,10]. Hence, it is of great practical significance to seek a commercially available way to
obtain the stress distribution of surrounding rock in crosscuts.
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Recently, artificial neural networks (ANN) have been applied extensively in tunnel displacement
prediction [6], as it is an efficient identification method for its non-linear transformation and highly
parallel computing. ANN has the advantages of reducing interference from irrelevant factors, using a
specific set of criteria, considering lots of quantitative and qualitative factors and ensuring accuracy
compared to traditional methods [11,12]. Flood and Kartam [13] introduced the application of ANN in
civil engineering. Kim et al. [14] predicted the ground settlement resulting from tunnel excavation
by using the neural network. Zhou and Li [15] used nonlinear support vector machines (SVM) and
multiple linear regression models to evaluate the thickness of broken rock zone for deep crosscuts.
Pourtaghi et al. [16] integrated the wavelet theory and ANN to predict maximum surface settlement
caused by tunneling. Lai et al. [17] incorporated the ANN into predicting the soil deformation in
tunnels. Chen et al. [18] used ANN optimized by the genetic algorithm to predict the collapse depth of
thin-layered rock strata during tunneling, and the absolute error between predicted and measured
collapse depths was less than 15%. Reported literatures have highlighted the application of ANN in
predicting the displacement of surrounding rock in crosscuts. However, using ANN to predict stress
based on displacement data is scare.

Gradient-based learning methods such as backpropagation (BP) neural network are usually
adopted in ANN schemes, but problems (i.e., over-tuning, local minima, stopping criteria, and
long computation time) existed [19]. To overcome these difficulties, a relatively novel algorithm for
single-hidden-layer feedforward neural network called the Extreme Learning Machine (ELM) has
been proposed recently in References [20,21]. The input weights and hidden biases in traditional ELM
are randomly chosen, and the output weights are analytically determined by using Moore-Penrose
generalized inverse. The input weights link the input layer to the hidden layer, while the output
weights link the hidden layer to the output layer. ELM is a powerful classification model with extremely
fast learning capacity and good generalization performance compared to traditional gradient-based
learning method. Thus, ELM has been widely applied in many fields with its variants. For example,
Yeu et al. [22] evaluated the performance of ELM on multiresolution access of terrain height information.
Lian et al. [23] used the modified ensemble empirical mode decomposition-based ELM model to predict
landslide displacement. They noticed the prediction obtained from ELM was consistently better than
basic ANN. Li et al. [24] investigated the rock slope stability by using the extreme learning neural
network and terminal steepest descent algorithm. Zhang et al. [25] evaluated the ELM performance
on multicategory classification. Their results indicated that ELM produced comparable or better
accuracies with reduced training time and implementation complexity compared to ANN and support
vector machine methods.

However, the randomly assigned input weights and biases usually bring certain randomness
and then reduce the generalization ability of ELM [26]. Several studies have worked on improve the
generalization performance of traditional ELM. Liao and Feng [27] proposed a meta-ELM method
to train the training data with base ELM hidden nodes, instead of using the ensemble method. They
found the Meta-ELM is more feasible and effective compared to traditional ELM. Yadav et al. [28] used
particle swarm combined with ELM to estimate the in-situ bioremediation system cost. Deng et al. [29]
used a Fast SVD-Hidden-nodes based Extreme Learning Machine for determining the input weights
and large-scale data analytics.

To the best of our knowledge, the application of ELM for stress prediction in crosscut’s
surrounding rock is limited in the literature. In this paper, we develop an improved ELM by employing
greedy algorithm, which could improve the unsatisfactory generalization performance of traditional
ELM resulting from random selection for input weights. The improved ELM could be used as
an effective and accurate prediction method to provide accurate information about stress data for
surrounding rock and to analyze crosscut stability. A brief introduction on the traditional ELM is
presented in Section 2. Section 3 introduces the algorithm of improved ELM, followed by a validation
of its improvement using a crosscut response (Section 4) and its engineering application (Section 5).
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A comparison between improved ELM and other existing ANN algorithms is also conducted in
Section 5. Finally, the conclusion drawn from the present study is summarized in Section 6.

2. A Brief Introduction to Traditional ELM

ELM is a typical single-hidden-layer feedforward neural network (SLFN). Unlike traditional
learning algorithms in feedforward neural network where the parameters are tuned iteratively, ELM
calculates the hidden layer node parameters mathematically, resulting in good generalization ability at
extremely fast learning speed [30]. Structure of ELM is illustrated in Figure 1.
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For N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · · , xin]
T ∈ Rm and ti =

[ti1, ti2, · · · , tin]
T ∈ Rm, standard SFLN with N̂ hidden neurons and activation function g(x) are

mathematically modelled as [30]:

N̂

∑
i=1

βig(wi · xj + bi) = oj, j = 1, · · · , N (1)

where wi = [wi1, wi2, · · · , win]
T is the weight of the connection from the input neurons to the ith hidden

neuron; βi = [βi1, βi2, · · · , βin]
T is the weight vector connecting the ith output neurons and hidden

neuron; oi = [oi1, oi2, . . . , oin]
T is the jth output vector of SLFN; bi is the threshold of the ith hidden

neuron; and wi · xj presents the inner product of wi and xj.
Equation (1) can be written compactly as:

Hβ = O (2)

where

H =

 g(w1 · x1 + b1) · · · g(wN̂ · x1 + b1)
... · · ·

...
g(w1 · xN + b1) · · · g(wN̂ · xN + b1)


N×L

β = [βT
1 , · · · βT

N̂ ]
T
m×L

and O = [oT
1 , · · · oT

N̂ ]
T
m×N

where H is the hidden–layer output matrix of the neural network. The ith column of H is the ith
hidden nodes output vector corresponding to inputs x1, . . . , xN, and the jth row of H is the output
vector of the hidden layer with respect to inputs xj.

The input weight wi and hidden biases bi is chosen randomly without knowing the training
datasets. The output weight L is then solved with matrix computation formula = H+T, where H+

is Moore-Penrose of H and T = [t1, t2, · · · , tN]
T is the target value matrix. ELM not only tends to

find the smallest norm weights, but also the smallest training error, and its pseudo code is shown in
Algorithm 1 [20].
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Algorithm 1. Algorithm for traditional extreme learning machine

1: for i = 1 to N̂ do
2: randomly assign input weight wi

3: randomly assign hidden bias bi

4: calculate H
5: calculate β = H+T

3. Improved ELM Algorithm

As discussed earlier, the input weight of traditional ELM is random usually causing low
generalization ability. Therefore, the greedy algorithm is firstly employed into this study to improve
the generalization performance of traditional ELM. When solving the problem greedy algorithm
always makes the best choice at present step and will consider local optimal solution rather than the
overall optimization. The procedure of greedy algorithm includes four steps, e.g., (a) establishing
a mathematical model to describe the problem, (b) dividing the problem into several sub-problems,
(c) determining local optimal solution for each sub-problem, and (d) combining the all local optimal
solutions [31]. The iteration process for greedy algorithm is summarized as follows. In the given
dataset D and objective function f, the initial approximating value f 0 is set at 0. The approximating
value at kth iteration fk is determine based on fk−1, and the approximating error at (k − 1)th iteration
τk−1 is calculated as f − fk. For each iteration, one is expected to reduce τk as much as possible. The
analytical formula is expressed as

fk = fk−1 + (τk−1, gk)gk (3)

here
gk = g(τk−1) = arg max

g∈D
(τk−1, g) (4)

The incorporated greedy algorithm makes the traditional ELM system move in the direction of
reducing the error when the error obtained from system cannot meet the requirement. Once the local
minimum point is found, the searching step will be ended and then work on the rest data. Thus, the
whole hidden layer can be changed with reducing the error significantly. Based on the traditional ELM
model, the computational process for the improved ELM algorithm is shown in Figure 2.

The steps of constructing the crosscut stress prediction model are described as follows:

(1) Establish relational model of stress-displacement based on traditional ELM.
(2) Calculate the error E and determine the searching step t.
(3) Modify input weight wij in hidden layer with t and get new input weight wij

′.

(4) Update the new output layer weight β’.
(5) Calculated the new error E’ and compare with old error E.
(6) If E’ < E, wij

′ and β’ replace previous parameters and then iterates.

(7) If E’ > E in first change, the previous weight wij should be kept and then reverse lookup.

To illustrate the effectiveness of the proposed improved ELM algorithm, two studies including
the numerical study and case study are presented in the following sections.
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4. Verification with a Crosscut Response

4.1. Numerical Model

FLAC3D, which is a numerical software based on finite-difference method, has been widely used
in mining engineering to analyze the ground subsidence and deformation and stress distribution
of surrounding rock [32,33]. Based on FLAC3D, a three-dimensional model according to the mining
condition was established to obtain stress-displacement data for ELM use, as shown in Figure 3, since
the change of displacement in crosscuts is inconspicuous and difficult to get a lot of data in a short
time [28].

As shown in Figure 3a, the model dimensions were taken as 20 m (−10 m~+10 m) on the X-axis,
35 m (0 m~35 m) on the Y-axis, and 20 m (−10 m~+10 m) on the Z-axis. The model has 32,436 nodes
and 30,800 elements. In Figure 3b, the yellow part in the model middle is the tunnel which will be
excavated. The width of tunnel is 4 m with a height of 3.8 m in a central line, and the radius in upper
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semi-circle part is 2.0 m. Six sampling points located in cross section between y = 5 m and y = 6 m to
obtain stress-displacement data are illustrated in Figure 3c.Energies 2019, 12, x FOR PEER REVIEW 6 of 16 
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Figure 3. FLAC3D model for ELM: (a) the entire model, (b) front view of the model and (c) model
after excavation.

Another important part of numerical modelling is assigning the constitutive model, which
describes the mechanical behaviour including yielding and post-crack of geomaterial [34]. In FLAC3D,
elastic, strain softening, and Mohr-coulomb (mohr) models are often used for mining engineering. In
this simulation, the mohr model is used to simulate the behaviour of surrounding rock (e.g., magnetite),
since it can describe the granular materials with loose cementation in an ideal situation. Mechanical
properties of magnetite simulated in this study are given in Table 1, based on laboratory tests and
field investigations.

Table 1. Mechanical parameters of magnetite.

Rock Bulk Modulus
(Mpa)

Shear Modulus
(MPa)

Density
(g/cm3)

Friction
(◦)

Cohesion
(MPa)

Tensile Strength
(Mpa)

Magnetite 5246.9 3455.3 3.85 34.00 1.25 0.787

4.2. Data Collection

After crosscut excavation, the stress state balance in surrounding rock is disturbed. The
displacement and stress will change with time until it reaches equilibrium. During the computational
process, FLAC3D could record the displacement and stress information of monitoring points
automatically. The displacement distribution in crosscut surrounding rock after excavation is shown in



Energies 2019, 12, 896 7 of 15

Figure 4. It can be noticed that the biggest settlement existed in the middle roof, which is corresponding
to the monitoring point ID 21461 and ID 6061. Considering the difference of stress-displacement state
between ID 21461 and ID 6061 is unremarkable, ID 21461 is chosen for ELM training and validation.
The vertical stress and X, Y, and Z-direction displacements of ID 21461 are given in Figure 5. As shown,
the displacement of ID 21461 in Y-direction is not significant compared to that in X and Z-directions.
Additionally, the stability of a crosscut is usually influenced by the overlaying rock gravity and
horizontal displacement in side-walls. Thus, the displacements in X and Z-directions of ID 21461 are
taken as input, while the vertical stress of ID 21461 is considered as output.
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Figure 5. Stress and displacement variation of ID 21461: (a) X-direction displacement, (b) Y-direction
displacement, (c) Z-direction displacement, and (d) vertical stress.

To improve the accuracy of the ELM model, the displacement and stress data of the elements in
the same position as ID 21461 along the Y axis in different cross sections, e.g., 10 < y < 11, 15 < y < 16,
20 < y < 25, 30 < y < 31 are chosen as training samples. The total number of training samples is 3000.
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4.3. Traditional and Improved ELM Validation

After training, the model is used to validate the vertical stress of elements in cross-sections
7 < y < 8, 13 < y < 14 and 17 < y < 18 according to their displacement data. By putting the displacement
data obtained from X and Z-directions into the prediction model including traditional and improved
ELM models, the relevant predictive vertical stress of elements can be obtained. Figure 6 compares the
vertical stress obtained from two predictive models with measured data obtained from FLAC3D in
three different cross-sections. It is worth noting that the vertical stress obtained from improved ELM
model matches well with the results calculated by FLAC3D, regardless of the position of cross-section,
especially for the residual stress. However, there is significant difference between traditional ELM
predictions and numerical results.
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Figure 6. Comparison of Z-direction stress among predictive models and FLAC3D in (a) cross-section
7 < y < 8, and (b) 13 < y < 14 and (c) 17 < y < 18.

To further validate the effectiveness and validity of the improved ELM model, additional vertical
stress of 0.38 MPa was applied on the top surface of the numerical model to simulate increasing 10 m
depth of the crosscut. Increasing depth leads to higher displacement and vertical stress in crosscut
surrounding rock. During excavation of the crosscut, displacement information of elements in the
middle roof in cross-sections 5 < y < 6, 10 < y < 11, 15 < y < 16, 20 < y < 21 was recorded and then
employed into the improved ELM model. Figure 7 compares the vertical stress predicted by improved
ELM model with that obtained from FLAC3D in four different cross-sections. As seen, the improved
ELM model still predicts the vertical stress in high accuracy after changing the depth of excavated
crosscut. Therefore, it may be concluded that the improved ELM algorithm is a promising technique to
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predict stress of surrounding rock in crosscut based on the displacement data. The improved ELM
model will be applied in a case study of an underground crosscut in Yanqianshan Iron Mine.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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Figure 7. Comparison of Z-direction stress between improved ELM model and FLAC3D in (a)
cross-section 5 < y < 6, and (b) 10 < y < 11, (c) 15 < y < 16 and (d) 20 < y < 21.

5. Application to Yanqianshan Iron Mine

To illustrate its capability in engineering application, the improved ELM algorithm was used to
predict the crosscut stress in Yanqianshan underground mine. The predictions from the improved ELM
model were compared with the measured field data to evaluate the robustness of the proposed
technique. In addition, the prediction performance of BP, ELM, genetic algorithm-based ELM
(GA-ELM), and improved ELM were compared and discussed.

5.1. Engineering Background of Yanqianshan Iron Mine

Yanqianshan iron mine (YIM), located 22 km west of Anshan City, Liaoning Province, China, was
commissioned in the 1960s. YIM includes three main orebodies (e.g., Fe1, Fe2, and Fe3) distributed in
exploration lines from XVI to IX+100 as shown Figure 8. Fe1 is the main orebody with a strike length
of 1600 m in the trans-meridional direction. Extraction procedure of YIM includes three parts, such as
surface mining, transition stage mining, and underground mining. As shown in Figure 9, open-pit
mining method with an annual production of 2.5 million ton was used in YIM between 1968 and 2012.
The longest horizontal and vertical dimensions of pit are 1410 m and 710 m, respectively. The final pit
depth is 276 m ranging from elevation −183 m to 93 m. Bench height is 12 m. For the transition stage,
the target orebodies are ores in East and West hanging walls. The elevation of orebody in East-hanging
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wall ranges from −47 m and −123 m between exploration line VII-50~IX+100. The mining area in
West-hanging wall starts from the exploration line XIV and ends at the west outskirts of open-pit with
an orebody strike length ranging from 300 m to 550 m. For the underground mining stage, the mining
depth is between −183 m and −500 m. The average thickness of underground orebody is 120 m with
an average dip of 79◦.
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Figure 9. Engineering photo of open-pit in Yanqianshan Iron Mine.

Currently, YIM is in the transition stage and mining the orebody in West hanging wall, which
is also the case study in this paper. Drift-ramp and block caving method are selected to develop and
extract the orebody in the West hanging wall. Two main haulages are constructed in level −51 m
and −123 m, and the structural openings are in open-pit platform. The orebody is divided into 8
levels and each sublevel with a height of 18 m. Level +21 m is used to form the ore overburden layer.
Considering the low stability of the hanging wall, there is a 20 m pillar between each ore layer and
open-pit boundary.

5.2. Filed Data Collection

According to the geological condition and construction progress of West hanging wall, three
monitoring areas were placed at #4, #5 and #6 crosscuts respectively on −33 m level, as shown in
Figure 10a. Figure 10 also illustrates the drilling process for installing monitoring equipment. YHY200
borehole stress meter was used to record the stress variation. JSS30A Digital Display Convergence
Meter with high precision was chosen to monitor the roof displacement, and tunnel section convergence
continuous the monitoring system (TSCCMS) with a precision of 0.01 mm was used to record the
horizonal displacement of surrounding rock. JSS30A and TSCCMS were placed near the location of
borehole stress meter. The observation elapsed from January 2018 to March 2018, and data recorded
every five days. A total number of 108 observations including 36 horizontal displacement values, 36
roof subsidence values, and 33 stress values were recorded, as shown in Figure 11.
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Figure 10. Engineering photos of (a) locations of monitoring points, (b) horizontal hole drilling,
(c) vertical hole drilling, and (d) TSCCMS placement.
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The predicted stress of BP, ELM, GA-ELM, and improved ELM algorithms with the measured 
data in situ are compared in Figure 12 and Table 2. The training time, RMSE, MRE and MAPE of 
each algorithm are listed in Table 2 as well. As shown in Figure 12, we can find that predictions from 
the improved ELM model agree well with the field data in all crosscuts. GA-ELM model generally 
performs acceptable predictions on only #5 crosscut, but the prediction on the first 10 days still 
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Figure 11. Variation of (a) convergence displacement, (b) roof displacement, and (c) stress with
monitoring time.
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As shown in the Figure 11a, it is clear that the convergence of these three crosscuts was between
4.9 mm and 8.2 mm. While there is slightly difference in convergence rate, the overall deformation law
is similar, that is the crosscuts trend to convergent. The convergence rate is significantly dependent on
mining progress. After drift blasting and excavation, the convergence value increases obviously. It is
worth noting from Figure 11b, the roofs of these three monitored crosscuts performed deformation in
different degrees, and the deformation value ranges from 0.77 mm to 2.47 mm. The monitoring points
in #4 and #5 are influenced by mining activities, resulting in higher deformation in roof compared
to that in #6. During the monitoring period, there were no extracting activities in #6. As shown in
Figure 11c, the stress in monitored crosscuts has not changed distinctly with observed values between
0.18 MPa and 1.20 MPa. In general, the surrounding rock in the −33 m level could be kept stable
during mining activities.

5.3. Training and Validation

The total number of collected vertical stress on the roof of crosscuts is 36 expressed as Z36.
Accordingly, the measured convergence and roof displacements as shown in Figure 11a,b are named
as X36 and Y36, respectively. The data is divided into training group (X24, Y24, and Z24) and validation
group (X12, Y12, and Z12). After finishing training, X12 is incorporated into prediction models to
obtain predictive results. For example, when validating the roof stress in #4 crosscut, the deformation
including convergence and roof subsidence and roof stress of #5 and #6 crosscuts are selected as
training data, while deformation of #4 crosscut is used as input. For comparison, the commonly used
BP algorithms and GA-ELM are also used to predict crosscut stress.

To evaluate the prediction performance, three loss functions, namely root mean square error
(RMSE), maximum relative error (MRE), and mean absolute percentage error (MAPE) are introduced
as the evaluation criteria, as defined by Reference [23]

RMSE =

√√√√1
ρ

ρ

∑
t=1

e2
t (5a)

MRE = max
(∣∣∣∣ et

St

∣∣∣∣× 100%
)

; t = 1, 2, 3 · · · ρ (5b)

MAPE =
1
ρ

ρ

∑
t=1

∣∣∣∣ et

St

∣∣∣∣× 100% (5c)

where ρ is the number of predictions; et = st − Ŝt, Sn is the in-situ data for time t, and ŝn is the
predictive values for the same period.

The predicted stress of BP, ELM, GA-ELM, and improved ELM algorithms with the measured
data in situ are compared in Figure 12 and Table 2. The training time, RMSE, MRE and MAPE of
each algorithm are listed in Table 2 as well. As shown in Figure 12, we can find that predictions from
the improved ELM model agree well with the field data in all crosscuts. GA-ELM model generally
performs acceptable predictions on only #5 crosscut, but the prediction on the first 10 days still
overestimate the field data significantly. The predictions of both BP and traditional ELM show are not
accurate in all three cases. In general, four algorithms can predict the stress in crosscuts precisely at
the beginning of monitoring. However, with times going by the predictions of BP, ELM, and GA-ELM
gradually deviate the measured data in situ.
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prediction with a training time of 0.05 s, however, its performance is only slightly superior 
compared with BP. As for GA-ELM, although it performs acceptable precision with low RMSE (e.g., 
0.13MPa), it is time-consuming compared with other three algorithms. In addition, the MRE 
obtained from GA-ELM is three times higher than that obtained from the improved ELM. The 
improved ELM algorithm computes quickly with a training time of only 1.70 s. Therefore, it can be 
concluded that the improved ELM algorithm is superior in predicting crosscut stress compared to 
BP, ELM, and GA-ELM. 

6. Conclusions 

Crosscut stability analysis has gained worldwide interests due to its importance in 
underground engineering projects. Stability analysis and prediction are commonly based on the 
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#5 crosscut, and (c) #6 crosscut.

Table 2. Comparison of prediction performance obtained from different algorithms.

Algorithm Training
Time

RMSE (MPa) MRE (%) MAPE (%)

#4 #5 #6 Average #4 #5 #6 Average #4 #5 #6 Average

BP 3.19 0.23 0.07 0.42 0.24 85.10 21.21 64.23 56.85 12.44 10.38 27.57 16.80
ELM 0.05 0.15 0.11 0.19 0.15 41.68 33.54 42.32 42.51 14.20 14.26 31.74 20.07

GA-ELM 15.38 0.12 0.08 0.16 0.13 30.38 31.04 50.27 37.23 12.44 10.38 27.57 16.80
Improved ELM 1.70 0.04 0.03 0.03 0.03 15.53 12.58 10.09 12.73 4.48 3.23 4.67 4.13

The results obtained from Table 2 obviously indicate that the prediction performance of the
improved ELM model, is better than BP, ELM, and GA-ELM. The prediction precision of improved
ELM has a significant improvement to traditional ELM where the RMSE, MRE, and MAPE reduce
by 0.12MPa, 32.23%, and 15.94%, respectively. As expected the ELM shows the highest speed in
prediction with a training time of 0.05 s, however, its performance is only slightly superior compared
with BP. As for GA-ELM, although it performs acceptable precision with low RMSE (e.g., 0.13MPa), it is
time-consuming compared with other three algorithms. In addition, the MRE obtained from GA-ELM
is three times higher than that obtained from the improved ELM. The improved ELM algorithm
computes quickly with a training time of only 1.70 s. Therefore, it can be concluded that the improved
ELM algorithm is superior in predicting crosscut stress compared to BP, ELM, and GA-ELM.

6. Conclusions

Crosscut stability analysis has gained worldwide interests due to its importance in underground
engineering projects. Stability analysis and prediction are commonly based on the crosscut convergence
and stress data. However, it is time-consuming and expensive to monitor the crosscut stress. Therefore,
an improved ELM algorithm is proposed in this paper to predict the crosscut stress using its
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convergence displacement. The capability of the improved ELM algorithm is then verified using
a numerical model and a case study. The results show that traditional algorithm assigns input weight
randomly leading to a fast computation speed, but unsatisfactory precision in stress prediction. The
prediction accuracy and quality of ELM model was improved significantly by introducing greedy
algorithm. In terms of different criteria, RMSE, MRE, and MAPE, it is found that for the test case of
Yanqianshan Iron Mine, the improved ELM performs the best compared with BP, ELM, and GA-ELM
algorithms. GA-ELM also shows acceptable prediction for #5 crosscut, however, it is time-consuming
with a training time of 15.38 s, which is 14.37 times higher than that of the improved ELM algorithm.
In conclusion, the improved ELM model can effectively improve the crosscut stress prediction and
provide stability analysis for engineering projects, which is of great practical significance for future
underground mining activities in Yanqianshan Iron Mine.
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