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Abstract: This paper reports a novel frandsen generalized wake model and its variation
model-frandsen generalized normal distribution wake model for off-shore wind farms. Two different
new wake models in off-shore wind farms have been studied comparatively. Their characteristics
have been analyzed through mathematical modeling and derivation. Meanwhile, simulation
experiments show that the proposed two new wake models have different properties. Furthermore,
the distributions of wind speed and wind direction are modeled by the statistical methods and
Extreme Learning Machine through the off-shore wind farms of Yangshan Deepwater Harbor in the
Port of Shanghai, China. In addition, the data of wind energy are provided to verify and test the
correctness and effectiveness of the proposed two models. Wind power has been demonstrated by
wind rose and wind resources with real-time data. These techniques contribute to enhance planning,
utilization and exploitation for wind power of off-shore wind farms.

Keywords: off-shore wind farms (OSWFs); wake model; wind turbine (WT); Extreme Learning
Machine (ELM); wind power (WP); large-eddy simulation (LES)

1. Introduction

The global warming and the climate changes lead to a gradual shift from conventional to
renewable energy sources which are more reliable clean resources. The main reason is the growing
trend of global energy demands accompanied with the detrimental effects of overuse conventional
fossil fuel sources namely [1–3].

Wind is one of the fastest growing energy sources, and it is also pollution-free, renewable and
abundant. At present, some researchers have done a lot of research work on wind energy [4,5].
For example, based on short term wind speed forecasting of variable weight, Li et al. provided
the research and application of a combined model [6]. Romanic et al. studied wind and tornado
climatologies and wind resource modelling for a modern development situated in ‘Tornado Alley’ [7].
Ahmed Shata Ahmed investigated wind energy characteristics and wind park installation in Shark
El-Ouinat, Egypt [8]. Using standard exergy and Extended Exergy Accounting (EEA) approaches,
Aghbashlo et al. studied performance assessment of a wind power plant [9].

Wind energy has a low carbon footprint, which is a type of renewable energy. Some researchers
and experts believe that local power generation sources like micro-grids on wind farm or micro power
sources are better, in view of transmission efficiency and grid laying cost [10]. Some of the methods by
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which sustainable energy can be harvested are solar, wind, vibration, tidal, etc. Ideally, a power source
should be sustainable, reliable, economical and eco-friendly [11,12].

Among renewable energy sources, Wind Power (WP) is considered to be one of the most
prospective renewable energy technologies, and its usage has been increased immensely over recent
decades. Usually, Horizontal Axis Wind Turbines (HAWTs) as types of wind energy converters are
a kind of medium to large scale rotating machinery and their technologies have been developed
substantially during the last decades, resulting in significant performance improvement. Despite the
considerable achievements in the aerodynamic improvement of the HAWTs, wind energy still has
certain drawbacks that make the popularity of the wind turbine technology difficult.

Due to the location optimization caused by operation in the unsteady flow condition and dynamic
loading exerted on the Wind Turbine (WT), one of its main problems is how to increase performance
of the control system as decision-making, which makes the most effective use of the WT controller.
The WT location optimization is an interesting topic, which provides a predominant approach to
increase the total WP of the Wind Farm (WF) and decreases the wake effect of WTs [13–15]. In recent
years, the size of WTs has been more extensive from a few kilowatts to several megawatts. Lots
of experiences have shown that the larger the WTs, the lower the cost per kilowatt installed [16].
Furthermore, their total costs of production, installation and maintenance are less than the total of
smaller WTs achieving the same WP [17]. In 2013, Chen et al. investigated tower height matching
optimization for WT positioning in the wind farm [18]. One scheme for properly handling these
aerodynamic interactions is to use and promote wake models in the optimization and distributed
algorithms control. An alternative approach is to present an online control method where each WT
adjusts its own sense model coefficients, which is in line with the communication of local Wind Farms
(WFs) [19–21]. For example, V. Seshadri Sravan Kumar and D.Thukaram presented accurate modeling
of doubly fed induction generator [22] based WFs in load flow analysis. Farajzadeh et al. proposed
statistical modeling of the power grid from a wind farm standpoint [23]. Tian et al. developed and
verified a new WT wake model with two dimensions in 2015 [24–27].

It is worth mentioning that Wind Energy (WE) has developed rapidly in China in recent years.
For example, Figures 1 and 2 show off-shore wind farms (OSWFs) of Yangshan Deepwater Harbor in
the Port of Shanghai, China, which is one of the largest wide range or scope WFs in China [28,29].

From the control point of view, the research of WFs has attracted a great deal of interest from
researchers. Recently, Ebrahimi et al. proposed a new optimizing power control scheme based on a
centralizing WF control system [30]. Song et al. presented the decision model of WF layout design
with three dimensions [31]. Sadegh Ghani Varzaneh et al. have studied a novel simplified model
for assessment of power alteration of Doubly-fed Induction Generator (DFIG) [32] based wind farm
participating in frequency control system. Hossain has presented a nonlinear controller for transient
stability enhancement of DFIG based new bridge type fault current limiter [33] for WFs. Yao et al.
studied coordinated control of hybrid WFs [34] in a Permanent Magnet Synchronous Generator
(PMSG) based and fixed-speed induction generator (FSIG) for WTs during an asymmetrical grid fault.
Li et al. also proposed adaptive fault lenient control of WTs with safeguard transient performance
considering active power control of WFs [35]. From met-mast and remote sensing techniques,
Chaurasiya et al. proposed comparative analysis of Weibull parameters with wind data measured [36].
Hamid Atighechi et al. presented an effective load shedding remedial action strategy [37] for WF
generation. Suganthi et al. proposed an Improved Differential Evolution algorithm [38] based on
congestion management in the presence of wind turbine generators.
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Figure 1. China’s first off-shore wind farm in Yangshan Port.
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Figure 2. Off-shore wind farm of Yangshan Deepwater Harbor in the Port of Shanghai, China.

Recently, there are some machine learning techniques used in such prediction of wind direction
and wind speed for OSWFs. For example, Wan et al. proposed an Extreme Learning Machine (ELM)
based method of probabilistic forecasting for wind power generation [39]. Vlastimir Nikolić et al.
presented a novel wake model based upon ELM for sensor-less computation of wind speed based on
WT parameters in WFs [40]. Lazarevska presented an alternative approach to forecasting the wind
speed based on Extreme Learning Machine [41]. Wu et al. presented a real-time precise wind speed
estimation approach and sensor-less control for variable pitch and variable speed Wind Turbine Power
Generation System (WTPGS) [42].

Based on the above discussion, in general, the main contributions of this paper are as follows.
Firstly, a Frandsen Generalized Wake Model (FGWM) and its variation model-Frandsen Generalized
Normal Distribution Wake Model (FGNDWM) for WFs have been analyzed and presented with
mathematical derivation forms. Then, comparisons of these two different wake models of OSWFs
have been presented. Furthermore, comparative experiments of both Wake Models have been studied.
Finally, focused on the OSWFs of Yangshan Deepwater Harbor in the Port of Shanghai, China, wind
rose, wind Weibull probability density distribution and ELM prediction are elaborated and discussed
through the OSWFs of Yangshan Harbor. Simulation figures are also provided to show the effectiveness
of the proposed approach.

The structure of the paper is as follows: FGWM and FGNDWM are derived and studied in
Sections 2 and 3. Meanwhile, in Sections 4 and 5, comparative analysis and experiments for the
proposed two novel different wake models are studied. Furthermore, in Section 6, the wind rose, wind
Weibull probability density distribution and ELM prediction are proposed for OSWFs of Yangshan
Deepwater Harbor in the Port of Shanghai, China. Finally, in Section 7, the conclusions are summarized.
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2. A Frandsen Generalized Wake Model (FGWM) for OSWFs

Frandsen Generalized Wake Model (FGWM) in the ideal state is shown in Figure 3, where the far
wake area is described by the sideways trapezoidal region. The near field is denoted WT1ij (radius
is r1ij) and can be seen as a turbulent wake. In the down-wind distance xij, the wind speed denoted
P1ij and P2ij are assumed to be equal v0ij, and the wind speed on Sxij is given by vxij. The circular
cross-section radius is rxij, where i and j are row vector and column vector for Wind Turbine in
large-scale Wind Farms, respectively.

Figure 3. The portrait of Frandsen Generalized Wake Model (FGWM) with stream tube [43].

In an ideal state, the model assumes that the far wake region spreads with a linear approach, and
the distribution of wind speed is homogeneous on every cross-section. In FGWM, the tube includes
the near wake area, which is described in the green rectangular region in Figure 3. The fluid inlet mass
flow rate in the tube is equal to ∑n

i=1 ∑m
j=1 ρπr2

xijv0ij and it goes through the WT. The fluid outlet mass

flow rate is equal to ∑n
i=1 ∑m

j=1 ρπr2
xijvxij. The FGWM assumes

n

∑
i=1

m

∑
j=1

Ṁij =
n

∑
i=1

m

∑
j=1

∂Mij

∂tij
=

n

∑
i=1

m

∑
j=1

ρπr2
xijvxij, (1)

for n = 1, 2, · · · , N; m = 1, 2, · · · , N.
By conservation of momentum, we obtain

n

∑
i=1

m

∑
j=1

Tij =
n

∑
i=1

m

∑
j=1

(
Ṁijv0i − Ṁijvxij

)
=

n

∑
i=1

m

∑
j=1

(
∂Mij

∂tij
v0ij −

∂Mij

∂tij
vxij

)
,

(2)

for n = 1, 2, · · · , N; m = 1, 2, · · · , N.
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We assume that the radius of the row vector ith and column vector jth actuator disk is rrij, then the
area of ith × jth actuator disk is given as Arij = πr2

rij. According to the definition of thrust coefficient
CTij, one can have

n

∑
i=1

m

∑
j=1

CTij =
n

∑
i=1

m

∑
j=1

TThrustForceij

TDynamicForceij

=
n

∑
i=1

m

∑
j=1

Tij

Tijmax

=
n

∑
i=1

m

∑
j=1

[ 1
2 ρ(v2

0ij − v2
xij)Arij

1
2 ρv2

0ij Arij

]

=
n

∑
i=1

m

∑
j=1

[
2ρv2

0ij Arijaij(1− aij)

1
2 ρv2

0ij Arij

]
,

(3)

which is equivalent to

n

∑
i=1

m

∑
j=1

Tij =
n

∑
i=1

m

∑
j=1

CTijTijmax. (4)

Substituting Equations (1), (3) and (4) into Equation (2), we obtain the following equation:

n

∑
i=1

m

∑
j=1

[
v2

xij − v0ivxij +
1
2

CTij(
rrij

rxij
)2v0ij

]
= 0. (5)

Solving Equation (5), one can have the following equation:

n

∑
i=1

m

∑
j=1

vxij =
n

∑
i=1

m

∑
j=1

v0ij ±
√

v2
0ij − 2CTij(

rrij
rxij

)2v2
0ij

2

=
n

∑
i=1

m

∑
j=1

[
1
2
± 1

2

√
1−

2CTij

(rxij/rri)2

]
v0ij

=
n

∑
i=1

m

∑
j=1

{
1− 1

2

[
1±

√
1−

2CTij

(rxij/rrij)2

]}
v0ij.

(6)

Using the physical solution of Equation (6), then we obtain

n

∑
i=1

m

∑
j=1

vxij =
n

∑
i=1

m

∑
j=1

{
1− 1

2

[
1−

√
1−

2CTij

(rxij/rrij)2

]}
v0ij. (7)

The above equation gives the main variables and results of the FGWM.

3. A Frandsen Generalized Normal Distribution Wake Model (FGNDWM) for OSWFs

The Frandsen Generalized Normal Distribution Wake Model (FGNDWM) called Frandsen
Generalized Gaussian Distribution Wake Model (FGGDWM) for OSWFs is illustrated in Figure 4 where
the two dotted lines Aij and Cij are selected to be the boundaries of the FGNDWM tube. The far wake
region is confined to the dotted line tube region while the farthest boundary is extended to infinity.
The wind speed on P1ij and P2ij are recognized as v0ij and the wind speed on Sxij is vxij. Here, i and j
are row vector and column vector for Wind Turbine in large-scale offshore Wind Farms, respectively.



Energies 2019, 12, 863 7 of 32

Figure 4. The portrait of Frandsen Generalized Normal Distribution Wake Model (FGNDWM)
with stream.

The conservation of mass does not hold comparing to the FGWM. The following equation is
considered as the outlet mass flow rate

n

∑
i=1

m

∑
j=1

Ṁij =
∂Mij

∂t
=

n

∑
i=1

m

∑
j=1

∫ +∞

0
2πrxijρvxij ,rxij drxij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(8)

The FGNDWM satisfies the following equation:

n

∑
i=1

m

∑
j=1

vxij ,rxij =
n

∑
i=1

m

∑
j=1

[
1−Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)]
v0ij, (9)

where σij is the standard deviation, which is also called the characteristic width of FGNDWM and
Ψ(xij) is a coefficient related to xij.

According to the momentum conservation law, one can obtain the following result

n

∑
i=1

m

∑
j=1

∫ +∞

0
2πrxijρvxij ,rxij

(
v0i − vxij,rxij

)
drxij =

n

∑
i=1

m

∑
j=1

Tij, (10)

which is equivalent to

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrxijρvxij ,rxij

(
v0ij − vxij,rxij

)
drxij

=
n

∑
i=1

m

∑
j=1

Tij.
(11)
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From the definition of the thrust coefficient, one can have the following equation:

n

∑
i=1

m

∑
j=1

Tij = CTijTijmax =
1
2

n

∑
i=1

m

∑
j=1

ρArijv2
0iCTij

=
1
2

n

∑
i=1

m

∑
j=1

ρπr2
rijv

2
0ijCTij.

(12)

Substituting Equations (9) and (12) into Equation (11), we obtain

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrxijρvxij ,rxij(v0i − vxij,rxij)drxij

=
n

∑
i=1

m

∑
j=1

CTijTijmax .
(13)

From this equation, we obtain:

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrxijρv2

0ij

[
1−Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)]
drij

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrxijρv2

0ij

[
1−Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)]2

drij

=
n

∑
i=1

m

∑
j=1

1
2

ρπr2
rijv

2
0ijCTij, n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(14)

which is also equivalent to

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2rxij

[
1−Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)]
drij

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2rxij

[
1−Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)]2

drij

=
n

∑
i=1

m

∑
j=1

1
2

r2
rijCTij, n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(15)
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Computing this equation, then we have

n

∑
i=1

m

∑
j=1

lim
b→+∞

rxij

2

∣∣∣b
0

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)
rijdrij

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

rxij

2

∣∣∣b
0

+ 2
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
Ψ(xij) exp

(
−

r2
ij

2σ2
ij

)
rijdrij

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
Ψ2(xij) exp

(
−

2r2
ij

2σ2
ij

)
rijdrij

=
n

∑
i=1

m

∑
j=1

1
4

r2
rijCTij, n = 1, 2, · · · , N; m = 1, 2, · · · , N

(16)

or also

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
Ψ(xij) exp

(
−

r2
ij

2σ2
i

)
rijdrij

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
Ψ2(xij) exp

(
−

r2
ij

σ2
i

)
rijdrij

=
n

∑
i=1

m

∑
j=1

1
4

r2
rijCTij, n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(17)

which can be also written as

−
n

∑
i=1

m

∑
j=1

lim
b→+∞

Ψ(xij)σ
2
ij exp

(
−

r2
xij

2σ2
ij

) ∣∣∣b
0

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

Ψ2(xij)
σ2

ij

2
exp

(
−

r2
ij

σ2
ij

) ∣∣∣b
0

=
n

∑
i=1

m

∑
j=1

1
4

r2
rijCTij, n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(18)

Then, we obtain

n

∑
i=1

m

∑
j=1

[
Ψ(xij)σ

2
ij −Ψ2(xij)

σ2
ij

2

]
=

n

∑
i=1

m

∑
j=1

(
1
4

CTijr2
rij

)
,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(19)

which is

n

∑
i=1

m

∑
j=1

Ψ2(xij)− 2Ψ(xij) +
1
2

CTij

(
rrij

σij

)2
 = 0,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(20)
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or equivalently

n

∑
i=1

m

∑
j=1

Ψ2(xij)− 2Ψ(xij) +
CTij

2
(

σij
rrij

)2

 = 0,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(21)

By solving Equation (21), we obtain

n

∑
i=1

m

∑
j=1

Ψ(xij) =
n

∑
i=1

m

∑
j=1

2±
√

4− 2
CTij

(σij/rrij)2

2

=
n

∑
i=1

m

∑
j=1

[
1±

√
1−

CTij

2(σij/rrij)2

]

=
n

∑
i=1

m

∑
j=1

1±

√√√√1−
CTij

2

(
rrij

σij

)2
 ,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(22)

From Equation (22), the physical solution is

n

∑
i=1

m

∑
j=1

Ψ(xij) =
n

∑
i=1

m

∑
j=1

1−

√√√√1−
CTij

2

(
rrij

σij

)2
 ,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(23)

By substituting this solution into Equation (9), we obtain

n

∑
i=1

m

∑
j=1

vxij ,rxij

=
n

∑
i=1

m

∑
j=1
{1−1−

√√√√1−
CTij

2

(
rrij

σij

)2
 exp

(
−

r2
ij

2σ2
ij

) v0ij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(24)

Here, σij is recognized as a linear function of xij in FGNDWM. In FGWM and FGNDWM, owing
to every plane is perpendicular to the axis, the rates of mass flow are equal to each other in both FGWM
and FGNDWM. According to the law of mass conservation, we can calculate and get:

n

∑
i=1

m

∑
j=1

∫ +∞

0
2πrijρijvxij ,rxij drij

=
n

∑
i=1

m

∑
j=1

∫ rxij

0
2πrijρijvxijdrij +

n

∑
i=1

m

∑
j=1

∫ +∞

rxij

2πrijρiv0ijdrij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(25)
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which is

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrijρijvxij ,rxij drij

=
n

∑
i=1

m

∑
j=1

∫ rxij

0
2πrijρijvxijdrij

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

rxij

2πrijρijv0ijdrij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(26)

Substituting Equations (7) and (24) into Equation (26), we obtain

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
2πrijρij {1

−

1−

√√√√1−
CTij

2

(
rrij

σij

)2
 exp

(
−

r2
ij

2σ2
ij

) v0ijdrij

=
n

∑
i=1

m

∑
j=1

∫ rxij

0
2πrijρij {1

−1
2

[
1−

√
1−

2CTij

(rxij/rrij)2

]}
v0ijdrij

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

rxij

2πrijρijv0ijdrij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(27)

or equivalently

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
rij {1

−

1−

√√√√1−
CTij

2

(
rrij

σij

)2
 exp

(
−

r2
ij

2σ2
ij

) drij

=
n

∑
i=1

m

∑
j=1

∫ rxij

0
rij

{
1− 1

2

[
1−

√
1−

2CTij

(rxij/rrij)2

]}
drij

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

rxij

rijdrij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(28)
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which can be also written as

n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

0
rijdrij −

n

∑
i=1

m

∑
j=1

[1−

√
1−

CTij

2

( rrij

σi

)2
 lim

b→+∞

∫ b

0
rij exp

(
−

r2
ij

2σ2
ij

)
drij

=
n

∑
i=1

m

∑
j=1

∫ rxij

0
rij

[
1
2
+

1
2

√
1−

2CTij

(rxij/rrij)2

]
drij

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

∫ b

rxij

rijdrij

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(29)

or equivalently

n

∑
i=1

m

∑
j=1

lim
b→+∞

r2
ij

2

∣∣∣b
0
−

n

∑
i=1

[1−

√
1−

CTij

2

( rrij

σi

)2
 lim

b→+∞

∫ b

0
rij exp

(
−

r2
ij

2σ2
ij

)
drij

=
n

∑
i=1

m

∑
j=1

1
2

r2
i
2

∣∣∣rxij

0
+

n

∑
i=1

m

∑
j=1

1
2

√
1−

2CTij

(rxij/rrij)2

r2
ij

2

∣∣∣rxij

0

+
n

∑
i=1

m

∑
j=1

lim
b→+∞

r2
ij

2

∣∣∣b
rrij

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(30)

From Equation (30), we have

−
n

∑
i=1

m

∑
j=1

[1−

√√√√1−
CTij

2

(
rrij

σij

)2
 lim

b→+∞

∫ b

0
rij exp

(
−

r2
ij

2σ2
ij

)
drij

=
n

∑
i=1

m

∑
j=1

1
2

r2
xij

2
+

n

∑
i=1

m

∑
j=1

1
2

√
1−

2CTij

(rxij/rrij)2

r2
xij

2
−

n

∑
i=1

m

∑
j=1

r2
xij

2

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(31)

which can be expressed by the following simple equation:

−
n

∑
i=1

m

∑
j=1

1−

√√√√1−
CTij

2

(
rrij

σij

)2
 σ2

i

= −
n

∑
i=1

m

∑
j=1

r2
xij

4
+

n

∑
i=1

m

∑
j=1

r2
xij

4

√
1−

2CTij

(rxij/rrij)2

n = 1, 2, · · · , N; m = 1, 2, · · · , N

(32)
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or also

n

∑
i=1

m

∑
j=1

1−

√√√√1−
CTij

2

(
rrij

σij

)2
 σ2

ij

=
n

∑
i=1

m

∑
j=1

r2
xij

4
−

n

∑
i=1

m

∑
j=1

r2
xij

4

√
1−

2CTij

(rxij/rrij)2

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(33)

Now, we can deduce the following results from Equation (33):

n

∑
i=1

m

∑
j=1

σ2
ij − σij

√
σ2

ij −
CTijr2

rij

2


=

n

∑
i=1

m

∑
j=1

r2
xij

4
−

n

∑
i=1

m

∑
j=1

r2
xij

4

√
1−

2CTij

(rxij/rrij)2

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(34)

which leads to

n

∑
i=1

m

∑
j=1

[
σ2

ij −
r2

xij

4

(
1−

√
1−

2CTij

(rxij/rrij)2

)]

=
n

∑
i=1

m

∑
j=1

σij

√
σ2

ij −
CTijr2

rij

2

n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(35)

Now, by squaring the two sides of Equation (35), we obtain:

n

∑
i=1

m

∑
j=1

[
σ4

ij −
r2

xij

2
σ2

ij

(
1−

√
1−

2CTij

(rxij/rrij)2

)

+
r4

xij

16

(
1−

√
1−

2CTij

(rxij/rrij)2

)2


=
n

∑
i=1

m

∑
j=1

σ2
ij

(
σ2

ij −
CTijr2

rij

2

)
n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(36)

By arranging the different terms, we obtain:

n

∑
i=1

m

∑
j=1

[
−

r2
xij

2

(
1−

√
1−

2CTij

(rxij/rrij)2

)
σ2

ij +
CTijr2

rij

2
σ2

ij

]

=
n

∑
i=1

m

∑
j=1

− r4
xij

16

(
1−

√
1−

2CTij

(rxij/rrij)2

)2


n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(37)
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which gives the following equality:

n

∑
i=1

m

∑
j=1

σ2
ij =

n

∑
i=1

m

∑
j=1


−

r4
xij
16

(
1−

√
1− 2CTij

(rxij/rrij)2

)2

−
r2

xij
2

(
1−

√
1− 2CTij

(rxij/rrij)2

)
+

CTijr2
rij

2


n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(38)

which can be rewritten as:

n

∑
i=1

m

∑
j=1

σ2
ij

=
n

∑
i=1

m

∑
j=1

−
r2

xij
4 ×

r2
xij
4

(
1− 2

√
1− 2CTij

(rxij/rrij)2 + 1− 2CTij
(rxij/rrij)2

)
−

r2
xij
2 +

r2
xij
2

√
1− 2CTij

(rxij/rrij)2 +
CTijr2

rij
2


n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(39)

which is equivalent to:

n

∑
i=1

m

∑
j=1

σ2
ij

=
n

∑
i=1

m

∑
j=1


r2

xij
4

(
−

r2
xij
2 +

r2
xij
2

√
1− 2CTij

(rxij/rrij)2 +
CTijr2

rij
2

)
−

r2
xij
2 +

r2
xij
2

√
1− 2CTij

(rxij/rrij)2 +
CTijr2

rij
2


n = 1, 2, · · · , N; m = 1, 2, · · · , N.

(40)

Then, we deduce

n

∑
i=1

m

∑
j=1

σ2
ij =

n

∑
i=1

m

∑
j=1

r2
xij

4
, n = 1, 2, · · · , N; m = 1, 2, · · · , N, (41)

which gives, for the real σi, the following value

n

∑
i=1

m

∑
j=1

σij =
n

∑
i=1

m

∑
j=1

rxij

2

=
n

∑
i=1

m

∑
j=1

r0ij + αijxij

2

=
n

∑
i=1

m

∑
j=1

r0ij

2
+

αij

2
xij,

n = 1, 2, · · · , N; m = 1, 2, · · · , N,

(42)

where rxij = r0ij + αijxij, αij and r0ij can be given and estimated empirically from

n

∑
i=1

m

∑
j=1

αij =
n

∑
i=1

m

∑
j=1

0.5
ln(zhij/z0ij)

, n = 1, 2, · · · , N; m = 1, 2, · · · , N (43)
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and

n

∑
i=1

m

∑
j=1

r0ij =
n

∑
i=1

m

∑
j=1

4
5

r2ij, n = 1, 2, · · · , N; m = 1, 2, · · · , N (44)

in [44], respectively. Finally, Equations (9), (23), (24) and (42) constitute the FGNDWM.

4. Comparisons and Analysis of Two Different Wake Models for OSWFs

In this section, we will give the definition of Wind Speed Deficit (WSD) and further discuss the
relationship between FGWM and FGNDWM. Usually, comparing WSD is a very important approach
in different Wake Models. The WSD of OSWFs is expressed as by the following equation:

∆vij

v0ij
=

v0ij − vxij

v0ij
, i = 1, 2, · · · , N; j = 1, 2, · · · , N. (45)

Firstly, the WSD of FGWM is derived by Equations (7) and (45):

∆vFGWMij =
v0ij − vxij

v0ij

=

v0ij −
{

1− 1
2

[
1−

√
1− 2CTij

(rxij/rrij)2

]}
v0ij

v0ij

=
1
2

[
1−

√
1−

2CTij

(rxij/rrij)2

]
,

i = 1, 2, · · · , N; j = 1, 2, · · · , N.

(46)

Meanwhile, we obtain the WSD of FGNDWM. With the condition: rij = 0, the WSD of FGNDWM
on the axis is interpreted based on Equations (24) and (45):

∆vFGNDWMij =
v0ij − vxij ,rij

v0ij

=

v0ij −
{

1−
[

1−
√

1− CTij
2

( rrij
σij

)2
]

exp
(
−

r2
ij

2σ2
ij

)}
v0ij

v0ij

= 1−

√√√√1−
CTij

2

(
rrij

σij

)2

= 1−

√√√√√1−
CTij

2
(

σij
rrij

)2 , i = 1, 2, · · · , N; j = 1, 2, · · · , N.

(47)



Energies 2019, 12, 863 16 of 32

Substituting σij =
rxij
2 into Equation (47), we obtain

∆vFGNDWMij =
v0ij − vxij ,rij

v0ij

= 1−

√√√√1−
CTij

2

(
rrij
rxij
2

)2

= 1−
√

1−
2CTij

(rxij/rrij)2 ,

i = 1, 2, · · · , N; j = 1, 2, · · · , N.

(48)

The ratio of the WSD from FGWM to FGNDWM is calculated by Equations (46) and (48):

∆vFGWMij

∆vFGNDWMij

=

1
2

[
1−

√
1− 2CTij

(rxij/rrij)2

]
1−

√
1− 2CTij

(rxij/rrij)2

=
1
2

, i = 1, 2, · · · , N; j = 1, 2, · · · , N.

(49)

We can find out the WSD of FGWM is half as small as that of FGNDWM on the axis.

5. Experimental Comparisons and Analysis of Two Different Wake Models for OSWFs

In this section, we collect and use data of five cases to confirm the different characteristics between
FGWM and FGNDWM. Usually, using miniature WT with the Large-Eddy Simulation (LES) data was
known as the standard case in the literature.

The main data and parameters of the five cases (OSWFs in Yangshan port, Shanghai) are shown
in the following Table 1, in which zhij is the height of the Hub, and z0ij is the rate of surface sea or
roughness. These roughness lengths shown for Cases(b− e) in Table 1 are representative of different
sea surface types, including very rough terrain, for instance, islands with different sizes (z0ij = 0.1 m),
sea surface with reefs, rocks and shoal rocks (z0ij = 0.01 m), sea surface with medium waves and large
waves (z0ij = 0.001 m), and sea surface with small waves (z0ij = 0.00001 m). drij is the diameter of the
rotor, αij is the axial induction factor, r0ij is the downstream rotor radius, CTij is the thrust coefficient,
and v0ij is cut-in wind speed. Here, i and j are row vector and column vector for Wind Turbine in
large-scale offshore Wind Farms, respectively.

LES are applied in many fields of flow simulations. The initial conditions have a very significant
influence on the LES results. xij/drij = 3 and ∆vij/v0ijmax = 0.5 were chosen as the initial conditions
used for LES simulation conducted in this study.

Table 1. Different experiments and Large-Eddy Simulation (LES) case to validate the Generalized
model of OSWFs in Yangshan port, Shanghai.

Cases drij (m) zhij (m) v0ij (m/s) CTij z0ij (m) αij r0ij (m)

Casea 0.15 0.125 2.2 0.4194 0.00003 0.119 0.066
Caseb 66 65 6 0.3916 0.1 0.11 38.08
Casec 66 98 6 0.2944 0.01 0.08 40.48
Cased 82 75 6 0.2256 0.001 0.06 43.52
Casee 70 65 6 0.2256 0.00001 0.062 41.12

Note: Casea represents the Large-Eddy Simulation (LES) data; Caseb represents OSWF-b in Yangshan port,
Shanghai; Casec represents OSWF-c in Yangshan port, Shanghai; Cased represents OSWF-d in Yangshan port,
Shanghai; Casee represents OSWF-e in Yangshan port, Shanghai.
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Using some given data in Table 1, we conduct the simulation experiments with FGWM and
FGNDWM. By analyzing Figures 5–9, from simulations and experiments, we can find the WSD of
FGWM are half times smaller then that of FGNDWM on the axis. These simulations validate the results
obtained in the last sections.

If the length of the near wake region x1i is taken into consideration and the parameters are selected
according to Table 1, the result is shown in Figure 5. The FGNDWM appeared superior to FGWM.
The problem was that FGWM did not take x1i into consideration, whereas the FGNDWM took it into
consideration. In addition, the characteristic width of the FGNDWM was obtained by fitting the LES
data in the experiment of this study.

It can be seen from Figure 8 that the accuracy of the FGNDWM and the FGWM is better than that
in Figures 7 and 9. The maximum Wind Speed Deficit (WSD) of this FGNDWM can be proved to be
twice as large as that of the FGWM; if αij and r0ij are estimated by (43) and (44), respectively, the result
is shown in Figure 9. As previously stated, (43) is not applicable to case a and case e. As a result, the
accuracy of the FGNDWM and FGWM in Figure 6 is worse than that in Figures 5 and 7–9.
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Figure 5. The portrait of the maximum Wind Speed Deficit (WSD) in Casea (fitted by LES data,
i = 1, 2, · · · , N; j = 1, 2, · · · , N).
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Figure 6. The portrait of the maximum Wind Speed Deficit (WSD) in Caseb (fitted by LES data,
i = 1, 2, · · · , N; j = 1, 2, · · · , N).
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Figure 7. The portrait of the maximum Wind Speed Deficit (WSD) in Casec (fitted by LES data,
i = 1, 2, · · · , N; j = 1, 2, · · · , N).
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Figure 8. The portrait of the maximum Wind Speed Deficit (WSD) in Cased (fitted by LES data,
i = 1, 2, · · · , N; j = 1, 2, · · · , N).
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Figure 9. The portrait of the maximum Wind Speed Deficit (WSD) in Casee (fitted by LES data,
i = 1, 2, · · · , N; j = 1, 2, · · · , N).
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6. Analysis and Enlightenment of Wind Rose, Wind Weibull Probability Density Distribution
and ELM Prediction

Based on the actual situation in OSWFs in Yangshan port, Shanghai, this section summarizes and
describes the analysis of wind rose, wind Weibull probability density distribution and ELM prediction.
We obtain the real-time and actual data from this website [45]. The WE cases are analyzed and studied
based on mathematical models, and WRs are abstracted through the variable wind directions and
wind speeds in OSWFs in Yangshan port, Shanghai. These data of WE resources are collected and
shown in the following figures.

From 22 August 2017 to 22 August 2018, the portraits of wind direction and wind speed (m/s) in
OSWFs of Yangshan port, Shanghai are shown with the wind rose in Figure 10. From the southwest
direction, most of the wind mean speeds in a whole year are greater than 6 m/s, whereas, from the
northwest direction, a small part of wind mean speeds are close to 6 m/s in a whole year.

From 22 August 2016 to 22 August 2017 with a whole year in OSWFs of Yangshan port, Shanghai,
we keep obtaining the real-time and actual data from this website [45]. The wind speeds are collected
and their Mean Wind Speed (MWS) is 3.4934 m/s. The details of them are shown in Figure 11.

From 22 August 2016 to 22 August 2017 with a whole year in OSWFs of Yangshan port, Shanghai,
the rose portraits of Wind Direction (WD) and Average Wind Direction (AWD) are shown in Figure 12.
Among them, the north direction is 0 degrees (North = 0 °C) . The probabilities of most of the parts of
WDs from the southwest direction are greater than 5% and are close to 6%. Meanwhile, a small part of
WD from the northeast direction is greater than 5% and close to 6%.

Wind Rose
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Figure 10. Rose portrait of WD (North = 0) and speed (m/s) in off-shore wind farms (OSWFs) in
Yangshan port, Shanghai from 22 August 2017 to 22 August 2018.
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Figure 11. The portraits of wind speed time series and mean speed (v̄ = 3.4934 m/s) in OSWFs in
Yangshan port, Shanghai from 22 August 2017 to 22 August 2018.

Figure 12. Rose portrait of WD (North direction = 0◦) in OSWFs in Yangshan port, Shanghai from
22 August 2017 to 22 August 2018.

In Figure 13, the wind rose shows the portraits of wind mean speed (m/s) in OSWFs of Yangshan
port, Shanghai from 22 August 2017 to 22 August 2018 with a whole year. The majority of the wind
mean speeds from the southwest are greater than 5 m/s, whereas, a small amount of wind mean
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speed from the northwest is approximate to 5 m/s. Therefore, WTs should adjust the direction to the
southwest in OSWFs of Yangshan port, Shanghai throughout the summer, for even more periods.

Figure 13. Rose portrait of Wind Mean Speed (m/s) in OSWFs of Yangshan port, Shanghai from
22 August 2017 to 22 August 2018.

Figures 14–16 show all the wind situations, including the time series of air relative humidity,
wind direction and wind temperature in OSWFs in Yangshan port, Shanghai from 22 August 2017
to 22 August 2018, respectively. In this period, the mean air relative humidity is 82.0978%, the mean
wind direction is 169.4492◦(North direction = 0◦), and the mean wind temperature is 10.0367 °C.

ELM is a learning algorithm, initially introduced to train a Single Layer Feedforward Neural
network [46]. In ELM theory, the input weights are randomly generated according to any continuous
distribution function, while the output weights are analytically computed by the minimum norm
solution of a linear system.

Here, as shown in Figure 17, the proposed ELM can be seen as three hidden layer neural networks,
trained using the ELM algorithm. ELM is applied to wind direction and wind speed prediction in
OSWFs in Yangshan port, Shanghai from 22 August 2017 to 22 August 2018. The wind direction
and wind speed of OSWFs are relevant to local air relative humidity and local wind temperature.
Some simulation results show the corresponding rationality. Figures 18 and 19 show the portraits of
comparison of wind direction and wind speed forecasting results with ELM in OSWFs in Yangshan
port, Shanghai from 22 August 2017 to 22 August 2018, respectively. Here, the number of forecast data
pieces is 2248. Figures 20 and 21 show the portraits of comparison of wind direction and wind speed
forecasting results with ELM in OSWFs in Yangshan port, Shanghai from 22 August 2017 to 22 August
2018, respectively. At the same time, the number of forecast data pieces is 500.
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Figure 14. The portraits of air relative humidity in OSWFs in Yangshan port, Shanghai from 22 August
2017 to 22 August 2018.

Figure 15. The portraits of wind direction (north direction = 0◦) in OSWFs in Yangshan port, Shanghai
from 22 August 2017 to 22 August 2018.
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Figure 16. The portraits of wind temperature in OSWFs in Yangshan port, Shanghai from 22 August
2017 to 22 August 2018.

Figure 17. The proposed Extreme Learning Machine (ELM) can be seen as a three hidden layer neural
network trained using the ELM algorithm.
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Figure 18. The portraits of comparison of wind speed forecasting results (ELM) in OSWFs in Yangshan
port, Shanghai from 22 August 2017 to 22 August 2018 (number of predicted data pieces is 2248).
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Figure 19. The portraits of comparison of wind direction forecasting results (ELM) in OSWFs in
Yangshan port, Shanghai from 22 August 2017 to 22 August 2018 (number of predicted data pieces
is 2248).
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Figure 20. The portraits of comparison of wind speed forecasting results (ELM) in OSWFs in Yangshan
port, Shanghai from 22 August 2017 to 22 August 2018 (number of predicted data pieces is 500).
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Figure 21. The portraits of comparison of wind direction forecasting results (ELM) in OSWFs in
Yangshan port, Shanghai from 22 August 2017 to 22 August 2018 (number of predicted data pieces
is 500).

Through the study of the Weibull Probability Distribution of Wind Velocity Data in OSWFs in
Yangshan port, Shanghai, we obtain the following results. The cumulative distribution and linearized
curve are plotted and shown in Figure 22, Linearized curve and fitted line comparison are shown in
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Figure 23, Weibull probability density function and Cumulative Weibull probability density function
are shown in Figure 24. In light of wind tower, measuring data and plotted wind speed histograms, we
inferred and estimated two parameters of the Weibull distribution by maximum likelihood estimation
method, i.e., c = 3.7660, and k = 1.7153. The histogram of wind speed at hub height with the fitted
Weibull probability density distribution are plotted and shown in Figure 25. Wind speed at hub height
conforms to the Weibull distribution.
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Figure 22. The portraits of distribution and cumulative distribution extracted from the time series in
OSWFs in Yangshan port, Shanghai from 22 August 2017 to 22 August 2018.
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Figure 23. The portraits of linearized curve and fitted line comparison in OSWFs in Yangshan port,
Shanghai from 22 August 2017 to 22 August 2018.
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Figure 24. The portraits of Weibull and Cumulative Weibull probability density functions in OSWFs in
Yangshan port, Shanghai from 22 August 2017 to 22 August 2018.
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Figure 25. The portraits of wind speed histogram in hub height and the fitted Weibull probability
density distribution in OSWFs in Yangshan port, Shanghai from 22 August 2017 to 22 August 2018.

7. Conclusions

From this study, we found that the feature of FGWM is simple and intuitive, while the feature of
FGNDWM is complex and precise. The accuracy of the FGNDWM is inherently better than that of the
FGWM. When describing the relationship between FGNDWM and FGWM, Equation (42) can reflect
the essential characteristics of FGNDWM, whereas Equation (7) reflects the basic characteristics of
FGWM. Equation (42) is more accurate than (7) in expressing the characteristics of the large off-shore
wind farms. By taking x1i into consideration, the accuracy of the FGNDWM and the FGWM can be
improved. Their accuracy depends on the axial induction factor αij. The maximum Wind Speed Deficit
(WSD) of this FGNDWM can be proved to be twice as large as that of the FGWM if αij and r0ij are
estimated by (43) and (44), respectively.

Currently, the experiments show that the accuracy of ELM predictions needs to be improved
based on the actual situation in OSWFs in Yangshan port, Shanghai. In future research, we will work
on hybrid wake models for near wakes and far wakes and improve the ELM predictions accuracy of
large off-shore wind farms. The data assimilation and reduced order modelling will be provided in a
future paper concerning induced large off-shore wind farms dynamics.
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The following abbreviations are used in this manuscript:

OSWFs Off-Shore Wind Farms
WT Wind Turbine
ELM Extreme Learning Machine
WP Wind Power
LES Large-Eddy Simulation
EEA Extended Exergy Accounting
WP Wind Power
HAWTs Horizontal Axis Wind Turbines
WF Wind Farm
WE Wind Energy
DFIG Doubly-fed Induction Generator
PMSG Permanent Magnet Synchronous Generator
FSIG Fixed-Speed Induction Generator
WTPGS Wind Turbine Power Generation System
FGWM Frandsen Generalized Wake Model
FGNDWM Frandsen Generalized Normal Distribution Wake Model
WSD Wind Speed Deficit
WD Wind Direction
AWD Average Wind Direction
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