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Abstract: Although the penetration of electric vehicles (EVs) in distribution networks can improve
the energy saving and emission reduction effects, its random and uncertain nature limits the ability
of distribution networks to accept the load of EVs. To this end, establishing a load profile model of
EV charging stations accurately and reasonably is of great significance to the planning, operation
and scheduling of power system. Traditional generation methods for EV load profiles rely too much
on experience, and need to set up a power load probability distribution in advance. In this paper,
we propose a data-driven approach for load profiles of EV generation using a variational automatic
encoder. Firstly, an encoder composed of deep convolution networks and a decoder composed
of transposed convolution networks are trained using the original load profiles. Then, the new
load profiles are obtained by decoding the random number which obeys a normal distribution.
The simulation results show that EV load profiles generated by the deep convolution variational
auto-encoder can not only retain the temporal correlation and probability distribution nature of the
original load profiles, but also have a good restorative effect on the time distribution and fluctuation
nature of the original power load.

Keywords: electric vehicles; load profiles; data-driven; variational automatic encoder

1. Introduction

With the increasingly serious environmental and energy problems, electric vehicles (EVs) have
attracted more and more attention because of their enormous advantages in energy saving and emission
reduction. The stochastic nature of EVs has brought new challenges to the scheduling, operation,
and planning of distribution management systems. Since EV loads are strongly stochastic, how to
accurately model the uncertainty of EV loads has become a hot issue. Stochastic scenario generation is
a widely used approach to describe the uncertainties of EV loads. By considering a series of different
EV load profiles, the distribution management system can take uncertainty into account when making
decisions, such as safe operation of distribution network, optimal economic trade and cooperative
scheduling strategy.

Although scholars have proposed many methods for load profile generation of EV loads, there
are still many problems to be solved. For example, most of the proposed methods are based on
probabilistic models [1-4]. These models are not able to accurately describe the true data distribution
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of the EV loads. The sampling from the high-dimensional distribution leads to a complex process.
They are not able to take into account the time-varying, dynamic character and the complex temporal
correlation of EV loads. In addition, probabilistic models require a large number of sampling to
produce various load profiles. Common sampling methods include Monte Carlo sampling and Latin
hypercube sampling. In order to improve the sampling efficiency, some scenario reduction algorithms
such as backward reduction, forward selection, and scenario tree construction have been proposed [5].
However, these methods not only exacerbate the complexity of probabilistic models, but also limit the
diversity of generated load profiles.

Recently, as an important subsidiary of machine learning, the deep learning has become one of
the most active technologies in many research fields, including image recognition, fault detection,
load forecasting, data generation and so on. Especially, the variational auto-encoder (VAE), which
was originally introduced by Kingma et al [6], has received enormous attention in the realm of data
generation. Effective applications based on VAE have been reported in many areas such as noise
reduction [7], dimensionality reduction [8-10] and data generation [11,12]. At present, the application
of VAE in data generation mainly focuses on generating MNIST handwritten digits and face images.
To the best of our knowledge, there is no report about stochastic scenario generation of EV loads
profiles using VAE.

In this paper, it is aimed to overcome these difficulties of generating EV load profiles.
This approach has two key advantages: Firstly, the new approach is entirely data-driven. They
don’t need to sample the data in large quantities to fit the probability distribution, which greatly
improves the efficiency of EV load profiles generation. The generated EV loads is diverse, and they
preserve the temporal correlation between EV loads. Secondly, VAE belongs to unsupervised learning,
which does not require labelled large data manually. The rest of this paper is organized as follows:
Section 2 provides the background about EV load profile generation. Section 3 proposes and describes
the VAE model. Section 4 discusses the simulations and results. The conclusions are described in
Section 5.

2. Literature Review

In the past, many scholars have proposed different probability distributions to generate EV
loads based on some reasonable assumption. For example, Zhou et al. analyzed the charging
characteristics of different types of EVs and proposed a probability model to simulate charging
demand [13]. The proposed methods can take amount of charging time may affect the charging start
time. Simulation showed that the load on weekends is smaller than that on working days during
the day and night EV charging peaks. In [14], the authors assumed that the distance travelled by
all EVs was fixed every day. In [15], all EVs were allocated a certain percentage and a probability
distribution was built to simulate the power consumption of light-duty plug-in EVs under uncontrolled
and controlled charging scenarios. In [16,17], the proposed methods simulate load profiles according
to different driving patterns and vehicle usage data. Lopes et al. assumed that each EV travels a certain
distance and consumes the corresponding power load [18,19]. However, it is hard to capture the
time-varying and dynamic character of EV loads by first and second order statistics alone. Generally
speaking, these methods require that the travel habits of electric vehicles specify or fit the probability
distribution of EV load profiles. Whether the hypothesis of probabilistic model is reasonable or not is
directly related to the usability of the generated EV load profiles. Since daily routines and the lifestyle
are varied [20-22], there is generally no unique or canonical distribution type suitable for modeling
EV loads.

Another popular way to generate EV loads profile is to use time series. Amini et al. proposed
the probabilistic hierarchical EVs’ parking lot demand modeling and autoregressive moving average
model to forecast the EV loads [23]. A Time Series Model is applied to approximate the load profile for
a parking lot in [24]. In [25], time-series seasonal autoregressive integrated moving average (ARIMA)
models are used for modeling and generating EVs electrical loads. Despite simple to implement, these
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methods are easy to overfitting. Since they simply memorize the training data, the generated EV loads
is highly similar to historical data, making it difficult to generate many different types of load data.

Deep learning technology has been widely used to generate data in recent years. The generative
adversarial network (GAN) is designed to generate wind power data in [26]. The simulation result
shows that the generative adversarial network is able to generate realistic wind and photovoltaic
power profiles with full diversity of behaviors. Similarly, the Bayesian generative adversarial network
is applied to generate solar scenarios by using Bayesian probabilities in [27]. Wan et al. proposed a
VAE-based synthetic data generation method for imbalanced learning. The VAE has better performance
than the traditional synthetic sampling methods [28]. To extend reproduction of demonstration motion,
the VAE is applied to generate time-series data in [29,30]. Although GAN has shown great success in
the realistic data generation, the training is not easy. For example, it’s hard to achieve Nash equilibrium.
Compared with GAN, the training process of VAE is easier. In addition, VAE can directly compare the
difference between generated data and original data, but GAN cannot do so. VAE has been widely
used to generate two-dimensional data such as MNIST handwritten digits and face images, but the
applications on one- dimensional data generation are relatively limited.

Taking the above analysis into consideration, it is clear that though the predecessors have
made great success for load profiles generation of EVs. There are still some problems to be
solved. For example, how to design a new approach which can capture time-varying and dynamic
characteristics without specifying probability distribution manually? How to avoid constant sampling
and improve the efficiency of the algorithm? How to generate different types of EV loads instead of
simply remembering historical data?

In order to address these issues, a novel approach based on VAE framework is proposed
to generate stochastic scenario of EV loads profiles. The key contributions of this paper can be
summarized as follows:

(1)  New technique: It is the first time in this paper to explore the feasibility of VAE in the application
of load profiles generation for EVs. By employing VAE, we can generate load profiles which
capture the time-varying and dynamic nature of EV loads.

(2) Simple implement: Unlike traditional methods, the proposed approach can automatically learn
the inherent nature of the EV loads, without the need to manually specify the probability
distribution, which is suitable for generating EV loads of different time and space. In addition,
it does not require a large number of samples to fit the probability distribution, which improves
the efficiency of the algorithm.

(3) Conditional load profiles generation: The proposed approaches provide two ways to generate
conditional load profiles with specific characteristics. The first method uses the specified load
data as the VAE input to generate the conditional load profiles. Another method takes the normal
distribution data as the input of the decoder, and the decoder generates a large number of load
profiles. Then, the load profiles are classified according to the characteristics, so as to get the
required conditional load profiles.

3. Methodology

This part mainly introduces the following four sections: the principle of VAE, the method
of generating conditional load profiles, the basic steps of the approaches and the indicators for
evaluating results.

3.1. Variational Auto-Encoder

As one of the automatic encoders, the variational auto-encoder obtains a generator which can
generate similar data to the original load through limited training samples. The conventional automatic
encoder takes the original data as an input and compresses the input data by the encoder. Then,
the generated new data is acquired by the decoder. In other words, if a conventional automatic encoder
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wants to generate N load profiles, N original load profiles are required as inputs. In this case, the style
and number of generated data by the traditional automatic encoder are limited by the original data,
so it is difficult to generate different styles of data, and the structure of the generated data is single.
To overcome the shortcomings of traditional automatic encoder, the variational auto-encoder adds
noise data that satisfy normal distribution to the latent variable of the encoder, and then takes the two
variables as the input of the decoder to generate the new data.

Normally, the VAE is designed to learn the data distribution py(X) of original load profiles
according to power load time series X = {x!,..., x"}. Typically, this data distribution of EV loads is
decomposed as follows:

pe(X) = HPe(Xi) 1

The log function is utilized to address the numerical issues, and the mathematical formula is
as follows:

log [ Tpe(x') = [Tlog pe(x") @)
i=1 i=1

Each time series profile of EVs includes the so-called latent variable z, which explains the
generative process. We can rewrite Equation (1) for a single point as:

po(x) = / po(x,z)dz = /pg(z)pg(x|z)dz (3)

The generation process for EV loads profiles includes various steps. Firstly, the latent variable
z is drawn following the prior probability pg«(z). Secondly, an EV loads is generated based on the
posterior probability pg«(x|z ). However, we don’t know the prior py+(z) and the likelihood pg- (x|z).
In order to solve this problem, we need to know:

pe(x|z)pe(2) @)

pG(le) = pe(x)

Therefore, inference is difficult to carry out. We have to estimate this function approximately by
4y (z|x) and set of parameters ¢.

We need to approximate log py(x'), because the data that follow this distribution cannot be sampled
directly. To this end, we can combine the variational lower bound and the Kullback-Leibler divergence:

log po(x) = Dir (q¢(z]x) [ pe(zlx)) + L(6, ¢; x) 5)

Because we are calculating the difference between the true posterior py(z|x ) and the approximate
44 (z|x), considering that this divergence is bigger than 0, then term L(6, ¢; x) acts as a lower bound of
the log likelihood:

log pg(x) > L(6, ¢; x) (6)
L(6, §;x) = Eg, (o) [~ log 79 (z]x) + log py (x[z)] ?)

That could be written as:
L(6, §;x) = —Dk1.(q9(z|x)[[po(2)) + Eg(zx) [log po(x]2)] ®)

where the first term related to the KL-divergence constrains the function g4 (z|x ) to the shape of the
po(z). The second term can reconstruct the input with a given latent variable z that follows py(x|z).
Using this loss function, we are able to parameterize the model as follows:

q9¢(z|x) = q(z; f(x, $)) )
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pe(x|z) = p(x;8(z,0)) (10)

where f and g are deep neural networks with the set of parameters 6 and ¢, respectively. More details
can be found in the [31]. The back propagation algorithm can be used to re-parameterize the generation
of the vector z.

The key advantage of VAE that we can use some samples to train it in an unsupervised way, and
then encode EV load profiles in the latent space without any effort. Once the origin load profiles are
encoded, we can modify them in this space, and then reconstruct or decode the altered vector to get
some new load profiles. A standard structure of variational auto-encoder is shown in Figure 1.

mean vector

sampled
latent vector
P
Encoder ~ Decoder
= | Network = | Network |=p
Conv Deconv
~ ¥

variance vector

Figure 1. Structure of the VAE.

The encoder encodes the load profiles into the latent space and outputs two vectors describing
the mean and variance of the latent state distributions. Then, the decoder model will generate a latent
vector by sampling from these defined distributions and proceed to develop a reconstruction of the
original input.

3.2. K-nearest Neighbor Algorithms

The VAE trains the depth convolution network using the original power load profiles, and then
takes the random number obeying the normal distribution as the input of the decoder to get the new
power load. The types of load profiles generated are various, so we need to process them further to
obtain the label load profiles. In this paper, we will use the k-nearest neighbor algorithm (KNN) to
classify the generated load profiles, so as to get the conditional load profiles.

The k-nearest neighbor algorithm is a non-parametric method widely used for classification.
The input of KNN includes k closest training examples in the feature space and the output of KNN is
a class membership. An object is classified by a majority vote of its neighbors and the object will be
assigned to the class most common among its k nearest neighbors. The KNN can be implemented by
following the below steps:

(1) Load the data and initialize the value of k.

(2) Calculate the Euclidean distance between test load profiles and each row of training load profiles.
(3) Sort the calculated distances in ascending order based on distance values.

(4) Get top k rows from the sorted array.

(5) Get the most frequent class of these rows.

3.3. Indicators for Evaluating Results

Unlike load power forecasting, the generated power load is not required to be exactly the same as
the actual power load in each time interval. In order to evaluate the similarity between the generated
load profiles and the actual load profiles, this paper will verify the validity of the generated load
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profiles from four aspects: probability distribution of power loads, the temporal correlation of power
loads, duration of power loads and volatility of power loads:

(1) Probability distribution of power loads: The power load is divided into several intervals, and the
number of load data falling in each interval is calculated. Then, the ratio of the number of loads
in each interval to the total load is calculated, and the corresponding probability histogram or the
probability distribution of power loads is obtained by connecting the scattered points.

(2) The temporal correlation of power loads: Here autocorrelation function will be utilized to evaluate
the temporal correlation of power loads since it’s the most popular method. It is required that
the temporal correlation between the generated power load profiles and the original power load
profiles be consistent. The mathematical formula of autocorrelation function is as follows:

R(t) = E[(X; — #()T(zxtﬂ — 1) 1)
where y is the mean of X;; o is standard deviation; Tis the lag time.

(3) Duration of power loads: The duration of load power indicates the running time when the power
load is greater than a certain value. The duration of power load can be expressed as follows:

1,P; > P,,if P; > 0
0,P < P]‘,ifp]‘ >0

= i =1~nj=1~ 12
=Y Lp<p,ifp <0’ " " 12)
0, > Pyif P <0
n
=

where: P; represents item i of the power load time series; n represents the total length of load time
series; m is the number of intervals of load profiles; i is a variable used to count variables; tj is
the total time when the load is greater than P;.

(4) Volatility of power loads: In order to evaluate the volatility of power load, the absolute values of
the two adjacent power load differences are calculated first, and then the probability distributions
of these absolute values are calculated.

3.4. Procedures of Generating Load Profiles Based on VAE

According to the above analysis, the produce of EV load profiles generation using variational
auto-encoder is as follows:

(1) Data normalization: The data of load profiles needs to be normalized before the data is assigned
to the encoder, otherwise the loss function may not converge. In this paper, the min-max
normalization method will be used to transform the input data into the interval [0,1].

(2) Coding the load profiles: The encoder constructed by deep convolution network maps the input
data to the low dimensional vector space.

(3) Sampling data: According to the mean and variance of the encoder output, some random number
obeying the normal distribution is generated, and they will be used as the input of the decoder.

(4) Decoding data: Taking the data of the sampling layer as input, the new load profiles can be
obtained by the decoder composed of the deep transposed convolution network.

(5) Gradient back propagation: The loss function is calculated using the output data from the decoder
and the original load data. Then, the back-propagation method will be utilized to continuously
adjust the weights and thresholds.

(6) Generating load profiles: After the iteration, we can use the trained VAE to generate new load
profiles. The proposed approaches provide two ways to generate new load profiles. The first
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method uses the specified load data as the VAE input to generate the conditional load profiles.
Another way takes the normal distribution data as the input of the decoder, and the decoder
generates a large number of load profiles. Then, the load profiles are classified by KNN, so as to
get the required conditional load profiles.

4. Study Case

4.1. Parameters and Structure

It assumes that EVs mainly include the following five classes: Battery EV without demand
response (BEV_NODR), Battery EV with demand response (BEV_DR), Plug-in hybrid EV without
demand response (PHEV_NODR), Plug-in hybrid EV with demand response (PHEV_DR) and the
above four hybrid EVs (HYEV).

The modeling details of the load curves for these EVs are shown in [32-36]. It assumes that
they charge and discharge in a charging station. The typical load profiles of the 5 classes” EVs are
shown in Figure 2. The load profiles are recorded every 10 minutes, so there are 144 points per load
profiles. All approaches are implemented on a laptop with a 2.4 GHz Intel i3 processor and 6 GB of
memory using the Keras library with Theano backend. All weights of network are initialized from a
zero-centered normal distribution. The VAE is trained with mini-batch Adam with a mini-batch size
of 50. After testing the parameters of different structures and parameters, the optimal structure and
parameters are as follows:

0.8 1
506 5 05
§0.4 g 0
0.2 05
0 4l
0 2 4 6 8 10 12 14 16 18 20 22 0 0 2 4 6 8 10 12 14 16 18 20 22 0
Time/h Time/h
(a) BEV_NODR (b) BEV_DR
15 15
1
2 z
Sos 3
5 0 3
g 505
05
-1 0
0 2 4 6 8 10 12 14 16 18 20 22 0 0 2 4 6 8 10 12 14 16 18 20 22 0
Timel/h L 'y
(c) PHEV_DR (d) PHEV_NODR

2

Power loadikW
' o N

-2
0 2 4 6 8 10 12 14 16 18 20 22 0

Time/h

(e) HYEV

Figure 2. Typical load profiles of five classes EV.

The input load profiles consist of 144 values reconstructed into a 12 x 12 x 1 data matrix. We
construct four convolutional layers in the encoder network. The convolution kernel size of convolution
layer 1is 2 x 2 and convolution stride is 1. The convolution kernel size of convolution layer 2 is
2 x 2 and convolution stride is 2. The convolution kernel size of convolution layer 3 and layer 4 is
3 x 3 and convolution stride is 1. Each convolutional layer is followed by a batch normalization layer
and a ReLU activation function. In order to sample latent variable z and calculate the KL divergence
loss, two fully-connected layers for mean and variance are added to encoder. For decoder, we use 4
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transposed convolutional layers and a convolutional layer. The transposed convolution kernel size
of convolution layer 1 and layer 2 is 3 x 3 and convolution stride is 1. The transposed convolution
kernel size of convolution layer 3 is 3 x 3 and convolution stride is 2. The convolution kernel size of
convolution layer 1 is 2 x 2. We also use ReLU as the activation function and use batch normalization
to help stabilize training. The details of architecture are shown in Figure 3.
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Figure 3. Architecture and parameters of auto-encoder network. (a) Architecture and parameters of
encoder; and, (b) Architecture and parameters of decoder.

This section mainly consists of the following three points: (1) Visualizing the natural load profiles
based on the similarity of their latent representations. (2) The load profiles are generated, and
the similarity between the new load profiles and the original load profiles are evaluated by the
proposed indicators. (3) The conditional load profiles are generated by two ways, and the performance
is evaluated.
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4.2. Visualization of Latent Vectors

In addition to directly observing the results of the generated load profiles by using the proposed
four indicators, there is another way to evaluate the new load profiles. We can observe the empirical
distribution of generated load profiles by sampling latent vectors. The latent vectors are the encoding
representation of the natural load profiles. According the similarity of latent representations, we are
able to visualize the natural load profiles. The principle of the approaches is shown in Figure 4, and the
two steps to implement the approaches are as follows:

(1) It assumes that the dimension of the latent vectors is 2. Then, the generated load profiles are
mapped to 2-dimensional spaces, which make it more convenient to visualize.

(2) Since the dimension of the latent vectors is 2, we can sample a batch of data at equal intervals
from the two-dimensional space, which can represent the empirical distribution of the latent
vectors in the whole two-dimensional space. Then, the sampled data is processed by the decoder,
and the new load profiles can be obtained.

The visualization of 15 x 15 load profiles is shown in Figure 5.

Mean
Z|\Z|Z|Z|Z XXX [|X[X
Z|Z|Z|Z|Z XXX |X X
Decode
log var |7 |7 |Z |Z | Z HX X [X([X]X
Z|\Z|Z|Z|Z XXX |X X
2|2 |2 |2 |2 XXX |X[X
Z(dim=2) X(Load profiles)

Figure 4. Visualization of latent vectors.
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Figure 5. Visualization of 15 x 15 load profiles based on latent vectors.
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We can see that load profiles with similar shapes tend to be clustered as a group. A variety of
different classes of load profiles appear in this two-dimensional plane, and there are some transitional
regions between different classes of load profiles. The load profiles in the transition area have a variety
of load characteristics, and the profiles of these power loads are similar.

4.3. Generating Load Profiles

To verify the effectiveness of the proposed algorithm, we assume that there are 20-60 HYEV per
day at a charging station. Nine thousand (9000) load profiles are obtained through simulation. Among
them, 8000 load profiles are randomly selected as the training set, and the remaining data is used as the
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test set. To illustrate the effectiveness of the proposed approaches, we will compare the performance of
VAE and GAN networks. The parameters of GAN are as follows: the input of the generator is random
noise with dimension 50. The generator consists of three full-connected layers, and the number of
neurons is 48, 96 and 144, respectively. The discriminator also consists of three layers of full-junction
layers, with 94, 48 and one neuron, respectively. The performance of original load profiles and the
generated load profiles are shown in Figures 6-10.

—True load
—VAE load
—GAN load|

=y
(9]
o

-
o
(=]

Power load/kW
(%3]
o

o
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Figure 6. The true load profile and generated load profile.
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Power load/kW

Figure 7. Probability density functions of true load and generated load.

The load profiles generated in Figure 6 are randomly selected. Then, the dynamic time warping
distance between each load profile in the test set and the generated load profile is calculated. Finally,
the true load profile with minimum dynamic time warping distance is selected. It can be seen from
the Figure 6 that the generated load profiles are very similar to the true load profiles that did not
participate in the training process, which shows that the generated data are very close to the true
data. Figure 7 shows the probability density functions for 8000 training sets and the generated load
profiles drawn by ksdensite function in MATLAB2018a. Obviously, the probability of each power load
appearing is similar in the generated load profile and the original load profile, which shows that the
proposed methods can well fit the probability distribution of the original power load. In addition, it
can be found from above Figures that the load profiles generated by VAE is closer to the true profiles
than that generated by GAN.

In order to analyze the time characteristics of the generated load profiles, Figure 8 shows the
autocorrelation function of the load profile for a week that is randomly selected, and Figure 9 is the
duration of the power loads.
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Figure 8. The autocorrelation function of load.
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Figure 9. Duration of load profiles.
The autocorrelation functions of true load and generated loads are similar, which implies that the

generated load profiles have the same temporal correlation as the original load profiles. It can be seen
from Figure 9 that the generated load profile and the actual load profile and the area enclosed by the
y-axis are approximately equal, which indicates that the VAE well restores the power demand of the
EV charging station for one week.

Further, Figure 10 shows the probability density function of the load variation per hour. Obviously,
the fluctuation of the simulated load profile is almost the same as the real situation, which further
illustrates the effectiveness of the proposed approaches.

As far as the autocorrelation function, duration of load profiles, load variation and probability
density function are concerned, VAE can imitate the real load profiles well, which is slightly better
than GAN.

—True load
g 0.035 —VAE Load
= 003 —GAN load
= 0.025 1
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Figure 10. Probability density function of load variation.

4.4. Conditional Load Profiles Generation

The VAE offers two methods to generate conditional load profiles. The first method takes the
original loads as input and obtains new load profiles through the VAE model. Another method is to
take the data obeying the normal distribution as an input and obtain new load profiles through the
decoder model. To test the performance of these two methods, we assume that there are four classes’
electric cars per day at a charging station. In addition, it assumes that the number of BEV_NODR is a
random number ranges from 40 to 70. The number of BEV_DR is a random number ranges from 30 to
50. The number of PHEV_NODR and PHEV_DR are a random number ranges from 20 to 50. 9000
load profiles are obtained through simulation. Among them, 8000 load profiles are randomly selected
as the training set, and the remaining data is used as the test set. After many testing, the parameter k
of the K-nearest neighbor algorithms is assumed to be 30. The performance of original load profiles
and the generated load profiles are shown in Figures 11-14.
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Figure 11. Probability density function of BEV_NODR.
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Figure 13. Probability density function of PHEV_NODR.
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Figure 14. Probability density function of PHEV_DR.

Obviously, the probability density function of the load profiles generated by the first method is
highly consistent with the probability density function of the true load profiles, which shows that
the first method can produce the required label load profiles well. The number of new load profiles
produced by the first method is limited by the number of real loads. In other words, the number of
conditional load profiles generated is less than or equal to the number of original conditional load
profiles. In addition, the load profiles generated by the first method are highly similar to the input
load profiles, and the type of new load profiles is limited. There is a certain deviation between the
probability density function of the load profiles generated by the second method and that of the
original load profiles, because some transition state profiles are also divided into conditional load



Energies 2019, 12, 849 13 of 15

profiles. Compared with the first method, the type of conditional load profiles produced by the second
method is more abundant because of the existence of load profiles in transition state.

5. Conclusions

It is of great practical significance for the operation, optimization and management of power
systems to master the principle of potential load changes and generate data similar to historical loads.
In this paper, a novel machine learning technique, the variational auto-encoder, is proposed to generate
EV load profiles. The proposed approach can automatically learn the inherent nature of the EV loads,
without the need to manually specify the probability distribution, which is suitable for generating EV
loads of different time and space. Through simulation, we deduce the following conclusions:

(1) Traditional methods mainly fit the EV load distribution manually according to the driving habits
of electric vehicles. Since daily routines and lifestyle vary, there is generally no unique or canonical
distribution type suitable for modeling EV loads. The proposed approach can automatically
learn the inherent nature of the EV loads, without the need to manually specify the probability
distribution, which is suitable for generating EV loads of different time and space.

(2) By mapping the load profiles to 2-D space and sampling the latent vectors, it is found that
similar load profiles are grouped into a class. There are some transition spaces between the two
classes of load profiles, and the load profiles in the transition space have many characteristics of
load profiles.

(3) With the noise data obeying normal distribution as input, the load profiles similar to the original
data can be obtained by the trained decoder. By comparing the generated load profiles with the
real load profiles, it is found that VAE can not only accurately capture the temporal correlation
and probability distribution characteristics of the original load profiles, but also preserve the
volatility of the original load profiles. In addition, the power consumption of the generated load
profiles and that of the original load profiles are also consistent over a period of time.

(4) The proposed approaches provide two ways to generate conditional load profiles with specific
characteristics. The probability density function of the load profiles generated by the first method
is highly consistent with the probability density function of the true load profiles, which shows
that the first method can produce the required label load profiles well. Compared with the first
method, the second method can generate an infinite number of conditional load profiles, and the
conditional load profiles are also richer in style.
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