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Abstract: Due to the coexistence of multiple types of reservoir bodies and widely distributed aquifer
support in karst carbonate reservoirs, it remains a great challenge to understand the reservoir flow
dynamics based on traditional capacitance–resistance (CRM) models and Darcy’s percolation theory.
To solve this issue, an improved injector–producer-pair-based CRM model coupling the effect of
active aquifer support was first developed and combined with the newly-developed Stochastic
Simplex Approximate Gradient (StoSAG) optimization algorithm for accurate inter-well connectivity
estimation in a waterflood operation. The improved CRM–StoSAG workflow was further applied
for real-time production optimization to find the optimal water injection rate at each control step
by maximizing the net present value of production. The case study conducted for a typical karst
reservoir indicated that the proposed workflow can provide good insight into complex multi-phase
flow behaviors in karst carbonate reservoirs. Low connectivity coefficient and time delay constant
most likely refer to active aquifer support through a high-permeable flow channel. Moreover,
the injector–producer pair may be interconnected by complex fissure zones when both the connectivity
coefficient and time delay constant are relatively large.

Keywords: capacitance-resistance model; aquifer support; inter-well connectivity; production
optimization; karst carbonate reservoir

1. Introduction

The hydrocarbon resources stored in carbonate reservoirs play an important role in new proven
reserves worldwide over the last decade. Based on the type of reservoir bodies and geological origin
and production response, carbonate reservoirs can be divided into three major categories, i.e., porous
type, fractured-porous type, and karst type. So far, many karst carbonate reservoirs have been found
in the northern Tarim basin, China. Compared with porous or fractured-porous carbonate reservoirs
which are mainly distributed in the Middle East, Central Asia, and North America, domestic karst
carbonate reservoirs are usually subjected to multiscale geological structures and strong heterogeneity.
The coexistence of matrix, fracture, and karst caves usually leads to extremely complicated multiphase
fluid dynamics in this type of reservoir. On the other hand, the lack of powerful techniques to
accurately evaluate reservoir dynamic connectivity while considering the impact of aquifer support,
further increases the uncertainty for finding an optimal waterflood development scheme. Therefore,
it is urgent to establish a practical methodology for inter-well connectivity estimation while coupling
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the effect of aquifer support and subsequent real-time injection production optimization in order to
improve waterflooding recovery as much as possible.

A typical workflow for analyzing waterflood performance involves a combination of reservoir
characterization, geological models, and numerical simulation engines for modeling multiphase
flow in porous media. This ab initio integrated type of model is useful for evaluating strategies
at the larger scale, but is not suited to discrete, localized waterflood operations in karst carbonate
reservoirs. Over the last decades, data-driven physics-based models have emerged as an attempt to
provide a simple picture of reservoir fluid dynamics, providing some vital information, e.g., inter-well
connectivity and advanced decision-making processes by scarifying part of the exact description
(e.g., evolution of the saturation field over time). Production history, well logs, and interventions
are common examples of hard data that are used to train a data-driven reservoir model to answer
specific questions. The data-driven models for inter-well connectivity estimation mainly include
capacitance-resistance (CRM) models [1–4], flow-network models [5], and inter-well numerical
simulation models [6–8].

As a powerful approach for effective analogy between source/sink terms in hydrocarbon
reservoirs and electrical conductors, the CRM only requires the most readily available production
history and producers’ bottom hole pressure (BHP) when available. In addition, the CRM can easily
handle dynamic boundary conditions such as new wells or shut-ins. Full-field history matching and
channeling detection can be carried out in minutes making it a suitable tool for real-time monitoring.
The CRM concept was initiated by the work of Albertoni and Lake [9]. Yousef et al. [1] advanced
the model by incorporating the tank material balance concept and derived the model to multiple
producers and injectors by applying superposition in space. Sayarpour et al. [2] further developed the
CRM equations to several types of reservoir control volumes: tank model (CRMT), producer-based
model (CRMP), and injector-producer pair based model (CRMIP). The CRM has also been integrated
with other analytical tools (e.g., rate-transient analysis, (RTA)) for screening or monitoring the
performance of various enhanced oil recovery (EOR) processes [10–15]. Recently, Mamghaderi and
Pourafshary [16] established an improved CRM to investigate the effect of layers using data from
production logging tools (PLTs). Zhang et al. [17,18] presented a system of multi-layer CRM models
for layered reservoirs by considering both BHP and crossflow. Holanda et al. [19] further introduced
the state-space (SS) theory to describe the dynamic behavior of CRMs as a multi-input/multi-output
system. Capacitance-resistance models were also incorporated with fractional flow models [20,21] to
allow the prediction of oil rates. It indicated that the Koval model proposed by Cao et al. [21] may not be
a good choice for mature waterfloods, but it is effective enough to revisit abrupt breakthroughs caused
by active aquifer support, which widely exist in karst carbonate reservoirs. During production of
karst reservoirs, large-scale fractured-vuggy units are usually treated as isolated targets for continuous
waterflood, thereby the previous CRM models should be modified to supply the aquifer influx rate as
needed with all contributing injection rates.

Owing to the fact that understanding reservoir fluid dynamics to achieve optimal decision-making
by grid-based reservoir models is computationally expensive and frequently require large volumes
of uncertain data to estimate petrophysical properties, full field-scale models are not easy for rapid
reservoir analysis to make reliable decisions. As a newly developed technique for optimal decision,
production optimization where a grid-based model is substituted by a useful yet tractable data-driven
model for waterflood systems was developed to find the optimal well controls that maximize
cumulative oil production or net present value (NPV). The constrained optimization we consider here
is essentially a non-linear, least-squares problem. The efficient optimization mostly depends on the
computations of gradients of objective function to control variables. Theoretically, gradient of objective
function can be accurately obtained using the adjoint method that requires only two simulations for
this calculation, no matter how many variables [22,23]. However, calculation of the adjoint gradient
by traditional reservoir simulation is inconvenient and code intrusive. Besides, it is not feasible to
compute finite difference gradient when the number of control variables is large.
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A viable alternative is approximation of the gradient by an ensemble optimization technique
known as EnOpt, which has received appealing attention over the past years by reservoir engineers
after the pioneering work of Chen et al. [24,25]. Using the deterministic or standard EnOpt,
hybrid constrained optimization problems were resolved by generalized non-linear programming
algorithms [7,26–28]. Do and Reynolds [29] analyzed the deterministic EnOpt and demonstrated
its close connection with other stochastic gradient algorithms. Stordal et al. [30] confirmed that
deterministic EnOpt can be treated as a special example of Gaussian mutation. Jafroodi and Zhang [31]
utilized the CRM model as an underlying reservoir proxy for ensemble-based production optimization
and used a power law relationship to predict oil productivity. In their work, The CRM equation was
only used to detect faults or low-permeability areas between wells, rather than acting as a proxy for
the simulator, with the advantage of using actual production and injection data. Hong et al. [32]
presented a proxy-model workflow where a grid-based model was supplemented by the useful yet
tractable CRM model as a proxy for waterflood operations. The results indicated that CRM models
have high potential to serve as a cogent proxy model for waterflooding related decision-making
and obtain robust results that result in a near-optimal solution. Recently, a novel ensemble-based
technique, stochastic-simplex-approximate-gradient (StoSAG), was developed by Fonseca et al. [33,34].
The StoSAG deals with reservoir simulator as a black box and approximates gradient through the inputs
and outputs of all the ensemble runs. Various theoretical analyses [35–39] showed that StoSAG can
yield a significantly higher NPV than that obtained with the standard EnOpt. However, there are few
proposals using the newly developed StoSAG for estimation of inter-well connectivity. We will explore
the possibility of using StoSAG for the case where two objectives are to assimilate the production
history data to infer inter-well connectivity when active aquifer support exists and to perform real-time
production optimization by maximizing the NPV or cumulative oil production under hybrid non-linear
constraints, respectively.

In this paper, an improved CRMIP model by coupling the effect of active aquifer support is
first proposed and integrated with the newly developed StoSAG optimization algorithm for better
understanding of inter-well connectivity in a waterflood operation. The improved CRM–StoSAG
workflow is further employed for real-time production optimization to find the optimal injection rate
at each control step by maximizing the objective function, i.e., net present value (NPV) of waterfloods
with regard to typical karst carbonate reservoirs. Finally, the conclusions of this work will be provided.

2. Methodology

This section discusses in detail the integrated workflow for inter-well connectivity estimation and
production optimization in a waterflood reservoir.

2.1. The Improved CRM–Koval Model

With regard to different CRM representations (e.g., CRMT, CRMP, and CRMIP), the two main
parameter of a CRM are connectivity coefficient and time delay constant if BHP data of producers are
not available. For an oil–water system, the time delay constant denotes how long a pressure wave
from injectors takes to reach a producer. Due to reservoir heterogeneity, time delays of displacing fluid
from adjacent injectors to a certain producer may differ from each other significantly. So, assuming
only a time delay constant for each producer, as in CRMP, may be unreliable. In such a case, it is
necessary to develop one continuity equation for every injector–producer pair, i.e., the CRMIP model.
However, the traditional CRMIP model is not suited to investigate the impact of aquifer support on
inter-well connectivity estimates, which are widely distributed in karst carbonate reservoirs. As shown
in Figure 1, when aquifer support is inevitable, the governing differential equation should be modified,
as follows

dqij(t)
dt

+
1
τij

qij(t) =
1
τij

[
fij Ii(t) + ewij

]
− Jij

dPw f ,j

dt
(1)
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where qij(t) is the liquid production rate of an injector–producer pair at time t, m3/d; τij is the time
delay constant, d; ewij is the water influx rate, m3/d; Ii(t) is the injection rate of injector i, m3/d; Jij is
the liquid production index of an injector–producer pair, m3/(MPa·d); Pw f ,j is the bottom hole pressure
of producer j at time t, MPa; fij is the inter-well connectivity coefficient between injector i and producer
j, ∈ [0,1].Energies 2019, 12, x 4 of 15 
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Figure 1. Schematic diagram of an injector–producer-pair-based control volume that is widely
distributed in karst waterflood carbonate reservoirs.

The semi-analytical solution of Equation (1) will be further derived using superposition in space,
which is stated as

qcal
lij (tk) = qcal

lij (tk−1)e
−( ∆tk

τ′ij/Mk
ij
)

+

1− e
− ∆tk

τ′ij/Mk
ij

ewij + fij·Ii
(k) − J′ij·τ′ij

∆p(k)w f ,j

∆tk

 (2)

According to superposition in time, Equation (2) has the following form

qij(tk) = qij(t0)e
−( tk−t0

τij
)

+
k
∑

s=1

[
(1− e

− ∆ts
τij )

(
ewij + fij Ii

(s) − Jijτij
∆p(s)w f ,j

∆ts

)
e
−( tk−ts

τij
)
]

(3)

For injector–producer pairs, the liquid production rate qj(tk) of producer j at time tk can be
given by

qj(tk) =

Ninj

∑
i=1

qij(tk) (4)

When aquifer support is active and BHP change of producer with time is negligible, there are
four unknown parameters for each injector–producer-pair based control volume, i.e., fij, qij(t0), τij and
ewij. The total number of unknown parameters for waterflood reservoir is equal to 4× Npro × Ninj.
Obviously, when the waterflood reservoir is not affected by aquifer support, the semi-analytical
solution Equation (3) can be simplified as the traditional CRMIP model. In order to guarantee a
reasonable balance between injection and production, the inter-well connectivity coefficient fij should



Energies 2019, 12, 816 5 of 15

satisfy inequality constraints. In many cases, the liquid production rate qij(t0) must be subjected to
some equality constraints as follows

Ninj

∑
i

fij ≤ 1, j = 1, 2, · · · , Npro (5)

Ninj

∑
i

qij(t0) = qj(t0) (6)

If the two-phase flow in each control volume can be regarded as steady-state flow, the Koval
model proposed by Cao et al. [21] will be used to compute the fractional flow of water in porous media
by considering the effect of local heterogeneity and viscosity ratio, which is given by

fw =


0 tD < 1

Kval

Kval−
√

Kval
tD

Kval−1
1

Kval
< tD < Kval

1 tD ≥ Kval

(7)

where Kval is the Koval factor, reflecting both reservoir heterogeneity and fluid–viscosity contrast.
A large Koval factor (greater than unity) usually implies either a high degree of reservoir heterogeneity
or a large oil-water viscosity ratio. tD is a dimensionless time denoting the cumulative water injection
in control volume.

tD =
∑k ∑i fij Ii

Vpj
(8)

where fij is the interwell connectivity coefficient, which can be estimated using the improved CRMIP
model to assimilate the production history; Vpj is the drainage volume of a injector–producer pair, m3;
Ii is the injection contribution to the producer at timestep tk, m3/d.

For oil–water two-phase system, the oil or water production rate of jth producer at timestep tk
can be easily obtained based on the physical meaning of fraction-flow equation, which can be written
as [21]

qwj(tk) = qj(tk) fwj(tk) (9)

qwj(tk) = qj(tk)
[
1− fwj(tk)

]
(10)

Using the improved CRM–Koval model for inter-well connectivity estimation, the six unknown
parameters for each injector–producer pair, i.e., connectivity coefficient, time delay constant, water
influx rate, liquid production rate at timestep t0, Koval factor, and drainage volume were estimated
with non-linear multivariate regression, the required least-squares objective function were finally
described as

minmize
u∈RNu

J(u) =
Nt

∑
k=1

Npro

∑
j=1

{[
qcal

j (tk)− qobs
j (tk)

]2
+
[
qcal

oj (tk)− qobs
oj (tk)

]2
}

(11)

Except for Equations (5) and (6), the objective function was also constrained by

τij ≥ 0, ewij ≥ 0, Kval,j ≥ 1 (12)

Npro

∑
j

Vpj ≤ VpField (13)

where the superscript obs and cal denote the observed and predicted production data, respectively;
VpField denotes the total pore (drainage) volume of a reservoir or block, m3.
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2.2. Waterflood Production Optimization

When the improved CRM–Koval model was used for a better understanding of reservoir fluid
dynamics including inter-well connectivity, aquifer influx rate, etc., the NPV of production was defined
as the objective function by having the proxy model serve as a precursor of a grid-based reservoir
model and finally maximized in order to find the optimal well controls (rate or pressure) under hybrid
non-linear constraints, which can be given as follows [22]

N(u) =
Nt

∑
n=1

{
∆tn

(1 + b)
tn

365

[
P

∑
j=1

(
ro·qn

o,j − cw·qn
w,j

)
−

I

∑
k=1

(
cwi·qn

wi,k

)]}
(14)

where u is a Nu-dimensional column vector containing all the well controls over the production lifetime.
For the problem of interest here, we treated the injection rate of each injector as the control variable;
ro is the oil revenue, USD/STB; cw and cwi, respectively, are the disposal cost of produced water and
the cost of water injection, USD/STB; b is annual discount rate; tn denotes the time at end of the nth
time step of the proxy model; ∆tn is the size of the nth time step; Nt is the total number of time steps;
P and I denote the number of producers and injectors, respectively; qn

o,j and qn
w,j respectively, denote

the average oil and water production rate at the jth producer, STB/day; qn
wi,k is the average water

injection rate at the kth injector, STB/day.
The generalized waterflood production optimization problem can be written as

max m ize
u∈RNu

N(u) (15)

Satisfying the following constraints

ulow
i ≤ ui ≤ uup

i , i = 1, 2, · · · , Nu (16)

ci(u) ≤ 0, i = 1, 2, · · · , ni (17)

ei(u) = 0, i = 1, 2, · · · , ne (18)

where N(u) is the objective function for waterflood optimization; Equations (16)–(18) denote the
boundary constraint, inequality, and equality constraints, respectively; ulow

i and uup
i are the lower and

upper limits of ith control variable ui, respectively; ni and ne denote the number of inequality and
equality constraints, respectively.

2.3. Ensemble-Based Optimization Method

The key to sequential data assimilation or robust optimization in large-scale non-linear dynamics
is to obtain the gradients of objective function and handle the hybrid inequality and equality constraints.
Due to the complexity of fluid flow in heterogeneous porous media, accurate computation of gradient
with the adjoint or finite difference method in a traditional reservoir simulation code is usually time
consuming and code intrusive. To overcome the drawbacks, an ensemble-based method, StoSAG
algorithm, was used to obtain the approximate gradient of least-squares objective function. The StoSAG
algorithm can treat the reservoir simulator or proxy model as a black box and approximates the gradient
of objective function through the inputs and outputs of all the ensemble runs efficiently. Moreover, the
augmented Lagrange method and log-transformation method will be integrated to handle the hybrid
nonlinear constraints.
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2.3.1. Augmented Lagrange Objective Function

For the kth control variable uk, an unbounded optimization problem can be obtained by applying
a log transformation method [23] to transform the original bound-constrained optimization problem,
which takes the form of

vk = ln

(
uk − ulow

k

uup
k − uk

)
(19)

where ulow
k and uup

k are the lower and upper bounds of the kth control variable uk, respectively; vk is
the log-domain kth control variable varying from −∞ to ∞.

The robust optimization is performed in log-domain, but the control variable uk can be obtained
with the inverse log-transformation after each iteration, which can be illustrated as

uk =
exp(vk)u

up
k + ulow

k
1 + exp(vk)

(20)

Using the log-transformation to eliminate the bound constraints, the following augmented
Lagrange objective function [15] will be ultimately established

La(u, λ, µ) = N(u)−
ne
∑

j=1
λe,j
[
se,j·ej(u)

]
+ 1

2µ

ne
∑

j=1

[
se,j·ej(u)

]2
−

ni
∑

i=1
λc,imax[sc,i·ci(u),−µ·λc,i]

+ 1
2µ

ni
∑

i=1
{max[sc,ici(u),−µλc,i]}

2

(21)

where λe,j and λc,i, respectively, denote the Lagrangian multiplier of equality and inequality constraints;
µ denotes the penalty parameter; se,j and sc,i, respectively, denote the scaling factors for equality and
inequality constraints. Note that the term N(u) in Equation (14) is substituted with La(u, λ, µ) for a
hybrid constrained optimization problem.

2.3.2. StoSAG Gradient Computation

To address the data assimilation problem of Equation (11) and waterflood optimization problem
of Equation (15), we used the steepest ascent algorithm [24] to compute the estimate of the optimal
control vector at the (k + 1)th iteration, which is given by

uk+1 = uk + ak

[
dk
‖dk‖∞

]
(22)

where u0 is the initial guess; uk is the optimal control vector at the kth iteration. ak is the step size;
dk denotes the search direction vector. For our study, it was a stochastic search direction.

The StoSAG algorithm proposed by Fonseca et al. [33] with the stochastic search direction,
described as following, was used to maximize the augmented Lagrange objective function La(u, λ, µ):

dk,sto = 1
Ne

Ne
∑

j=1

(
δŨk

j

(
δŨk

j

)T
)+

δŨk
j ·δLa

∣∣∣kj
= 1

Ne

Ne
∑

j=1

δŨk
j∥∥∥δŨk

j

∥∥∥2

2

·δLa

∣∣∣kj (23)

where δŨk
j = ũk

j − uk, and δLa|kj = La

(
ũk

j

)
− La

(
uk
)

. The superscript “+” on a matrix denotes the
Moore–Penrose pseudo-inverse. the superscript “T” denotes the transpose process for a vector or
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matrix. Note that, ũk
j denotes Ne ensembles of Gaussian random vector, where X~N

(
uk, I

)
(i.e., the

mean of ũk
j equals to uk and its covariance matrix I), and can be written as

ũk
j = uk + L·Zj, j = 1, 2, · · ·Ne (24)

where k is the iteration number of inner loop; uk is the optimal control vector at the kth iteration; L is
a lower triangular matrix obtained by Cholesky decomposition of the covariance matrix CU ; Zj is
the vector satisfying a Gaussian distribution N(0, I), and I is unit matrix with dimension of Nu × Nu.
Therefore, L·Zj denotes a (Nu × 1) Gaussian random vector, namely, L·Zj ∼ N(0, CU). The following
spherical covariance function is further adopted to compute the (i, j) entry of covariance matrix CU
by Ci,j,

Ci,j =

 σ2
[

1− 3
2

(
|i−j|
Ns

)
+ 1

2

(
|i−j|
Ns

)3
]

i f |i− j| < Ns

0 otherwise
(25)

Figure 2 displays the integrated CRMIP–StoSAG workflow for inter-well connectivity estimation
and waterflood optimization. This workflow was divided into two parts: data assimilation by
the CRMIP–Koval model (shaded in orange) and real-time waterflood optimization based on good
understandings of inter-well connectivity relationships (shaded in blue).
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3. Case Study for Karst Carbonate Reservoir

As previously mentioned, when the impact of aquifer support is negligible, the improved CRMIP
model will be simplified to the traditional CRM representation as described in Sayarpour et al. [2].
Accuracy of the improved CRM–StoSAG workflow and its feasibility for strongly-heterogeneous
waterflood reservoir was validated in our previous work [15], which will not be revisited here.
The following focuses on using the improved CRM–StoSAG workflow to infer the inter-well
connectivity relationship of karst carbonate reservoirs and subsequent waterflood optimization.

The typical karst carbonate reservoir we consider here is located in northern Tarim Basin, which is
subject to strong heterogeneity and contains multiple types of reservoir bodies in many cases, mainly
including karst caves, fractured-vuggy bodies, etc. [40]. As a matter of fact, karst caves are usually
regarded as the major reservoir spaces. Rapid drilling time drops, drilling rigs ventilation, overflow
and large mud loss often occurs. In addition, strong bead reflection, as shown in Figure 3a, can be
utilized to determine the karst cave systems. As for the fractured-vuggy reservoir bodies, the main
components are composed of dissolved pores and small caves. In addition to communicating the
dissolved pores and caves, a relatively high hydrocarbon storage is founded in high-angle tectonic
fractures with varying conductivities. The main seismic amplitude for this type of reservoir body is
strong flake and weak messy reflection, see Figure 3b.
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In addition, due to the complex distribution patterns of active aquifer support in karst carbonate
reservoir, water influx behaviors observed mainly conform to abrupt watered-out and fluctuation
or staircase rise characteristics, as shown in Figure 4. Moreover, the lack of efficient techniques to
replenish formation void age may further result in a relatively low recovery efficiency and high natural
decline rate of oil production. On the other hand, the majority of previously-used mathematical models
are based on Darcy’s flow, and the coexistence of porous and free-flow domains over a wide range of
scales usually lead to sophisticated fluid flow dynamics in karst carbonate reservoirs. The traditional
percolation theory and reservoir simulators are not adapted to represent the coupled flow dynamics in
this type of waterflood reservoir.
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Figure 4. Schematic diagram of typical water influx behavior patterns: (a) abrupt watered-out;
(b) fluctuation or staircase rise in water cut.

According to the problems of rapid production decline and low recovery rate caused by weak
natural energy and rapid rise of water cut, pilot tests of sequential waterflooding have been carried
out for some potentially interconnected injector–producer pairs, which are sorted out according to
tracer surveillance and interference well testing. But with the amount of water injection increasing,
oil yield effect gradually becomes worse, and much of the remaining oil is still unexploited around
producers. For this study, typical injector–producer-pairs, Pro_1, Inj_1, and Pro_2, corresponding to the
same large-scale fractured-vuggy unit, was screened for application for the improved CRM–StoSAG
workflow. Using the liquid and oil production data of Pro_1, Inj_1, and Pro_2 with a relatively stable
production scheme for history matching, the control variables for inter-well connectivity including
connectivity coefficient, time delay constant, water influx rate, Koval factor, and drainage volume of
each injector–producer pair were ultimately estimated and summarized in Table 1. The CRMIP oil
production match results of Pro_1 and Pro_2 are shown in Figures 5 and 6, respectively. The iteration
procedure of the least-squares objective function using the improved CRM–StoSAG workflow for
inter-well connectivity estimation is illustrated in Figure 7.
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Figure 5. CRMIP oil production match for Pro_1.
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Figure 6. CRMIP oil production match for Pro_2.
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Figure 7. Iteration procedure of objective function based on the CRM–Koval model.
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Table 1. The estimated control variables of CRMIP–Koval model.

The Estimated
Control Variables

Inj_1

Connectivity
Coefficient

Time Delay
Constant (d)

Water Influx
Rate (m3/d) Koval Factor Drainage

Volume (m3)

Pro_1 0.433 230.34 0.36 4.22 1.54 × 105

Pro_2 0.037 39.40 9.59 4.45 1537.6

It demonstrates that, the estimated results of connectivity coefficient and time delay constant
between Pro_2 and Inj_1 was far less than those between Pro_1 and Inj_1, suggesting that the injected
water makes little contribution to oil production, which is mainly influenced by active aquifer support,
and the most likely geological structure between Pro_2 and Inj_1 was high-permeable flow channel.
Moreover, the estimated water influx rate of Pro_1 was lower than 1.0 m3/d, indicating no active
aquifer support from Inj_1. The remarkable oil yielding effect was mainly dependent on water
injection. It is inferred that Pro_1 and Inj_1 are interconnected with a complex fissure zone, which is in
good agreement with the understandings obtained from interference well testing. When performing
production optimization for Pro_1, Inj_1, and Pro_2 pairs, water injection for Pro_1 needs to be properly
increased along with real-time adjustment of operation parameters, e.g., nozzle size, shut-off, etc.,
in order to prohibit too-early water breakthroughs from nearby injectors.

Based on the accurate estimation of inter-well connectivity relationships, water injection rates of
Inj_1 at each control step were regarded as unknown control variables, and the NPV of oil production
with regard to this large-scale fractured-vuggy unit was maximized using the StoSAG optimization
method in order to find the optimal well control variables. Figure 8 displays the optimized distribution
of water injection rate at each timestep. Comparison of well group cumulative oil production prior
to and after optimization is shown in Figure 9. The result indicates that, when cumulative volume
of water injection is assumed constant, the cumulative oil increase of this well group after real-time
injection-production optimization in karst carbonate reservoir was equal to 1290.2 m3, indicating
a remarkable oil yielding effect. Obviously, the proposed workflow can provide good insights
into accurate estimation of dynamic connectivity and subsequent waterflood optimization in karst
carbonate reservoirs with aquifer support widely existing.
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4. Conclusions

We develop an improved CRMIP model by coupling the effect of active aquifer support and
integrated it with the newly developed StoSAG optimization algorithm for accurate evaluation of
reservoir dynamic connectivity in a waterflood operation. Then, the improved CRM–StoSAG workflow
was employed for real-time waterflood production optimization in order to find the optimal water
injection rate at each control step by maximizing the objective function, i.e., net present value (NPV)
of production.

Case studies showed that the proposed workflow can provide good insights into accurate
estimation of inter-well connectivity and subsequent waterflood optimization. With regard to typical
karst carbonate reservoirs, low connectivity coefficient and time delay constant most likely refer to
active aquifer support through a high-permeable flow channel. The injector–producer pair may also
be interconnected by complex fissure zones when both the estimated connectivity coefficient and time
delay constant are relatively large.
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