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Abstract: Accurate identification of critical nodes and regions in a power grid is a precondition
and guarantee for safety assessment and situational awareness. Existing methods have achieved
effective static identification based on the inherent topological and electrical characteristics of the
grid. However, they ignore the variations of these critical nodes and regions over time and are not
appropriate for online monitoring. To solve this problem, a novel data-driven dynamic identification
scheme is proposed in this paper. Three temporal and three spatial attributes are extracted from their
corresponding voltage phasor sequences and integrated via Gini-coefficient and Spearman correlation
coefficient to form node importance and relevance assessment indices. Critical nodes and regions
can be identified dynamically through importance ranking and clustering on the basis of these two
indices. The validity and applicability of the proposed method pass the test on various situations
of the IEEE-39 benchmark system, showing that this method can identify the critical nodes and
regions, locate the potential disturbance source accurately, and depict the variation of node/region
criticality dynamically.

Keywords: critical node; critical region; spatio-temporal attribute fusion; node voltage trajectory

1. Introduction

With the development of modern power electronics, an increasing number of loads characterized
by high-power, nonlinearity, and randomicity are being connected to the power grid. The operating
point of the modern power system is approaching its limit [1], which raises the probability of the
occurrence of large-scale blackouts. Generally speaking, a power blackout begins with a node failure
and gradually radiates through a small area. If there are no appropriate responses to prevent it,
the whole regional power system will be affected, causing heavy economic loss. Therefore, it is
meaningful to do research on finding critical nodes and understanding their propagation mechanism.
This study is closely related to the safety assessment, prevention, and control of power systems,
attracting more and more scholars and researchers worldwide in recent years.

Essentially, a regional power grid can be regarded as a graph or network with edges and various
types of nodes. Its vulnerability depends largely on the critical nodes with increasing loads, strong
local connectivity, and failure-prone characteristics. The effective identification of these nodes requires
a proper node importance assessment measure. There have been many studies focusing on finding
such metrics. For example, the complex network theory [2] has been applied in different types of
network analysis such as social networks, information networks, etc., which more or less share some
common characteristics with the abstracted small world or scale-free network models [3], and power
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grids are no exceptions. Evidence in [4] shows that although there is no definitive answer to the
question for power grids regarding their memberships to typical complex network models, some
real world examples do own small world properties to some extent. The complex network theory
specializes in analyzing the topological structure of a network [5] and identifying critical nodes using
centrality measures like degree centrality, closeness centrality, and betweenness centrality [6]. In [7],
a semi-local centrality is proposed to reach a tradeoff among these commonly used centrality measures
for large network systems. In [8], the author points out that the PageRank (PR) algorithm for Google
search engine is based on the link structure between web pages, and this algorithm can be extended
for node rankings in power grid analysis. The correspondences of topology structure between the
web and the power grid are analyzed, and an improved PR algorithm application for the power
grid is given in [9]. It is noteworthy that—compared with other networks—power grids own some
special properties, namely their electrical characteristics (operational parameters, electric distance, etc.).
A complex power grid is composed of various electrical equipment, transmission lines, and information
equipment. Any connections should follow, and changes in any components may cause large scale
impact according to the principle of electrical engineering. Researchers have tried to take these
electrical characteristics into consideration [10]. In [11], the power load and supply are combined with
degree and betweenness centralities to form an effective assessment index. In [12], in order to evaluate
important nodes, some operational characteristics like power flow, load capacity, and power source
in the power grid are considered to make modifications for the improved hyper-text induced topic
selection algorithm. However, similar problems exist in the aforementioned methods, namely that
they are all single factor analyses, whereas the determination of important nodes in a power grid
requires information from various aspects. Consequently, information fusion techniques have been
adopted by many scholars to implement comprehensive node importance assessment. An example
in [6] concerns the combination of different topological indices in complex networks. The degree
centrality, efficiency, betweenness, and correlation centralities are fused based on information entropy.
A multi-attribute based method proposed in [13] synthesizes three different electrical indices including
feasible flow, power transmission efficiency, and electrical betweenness to achieve convincing node
importance assessment. This method uses Gini-coefficient to determine the weight of each single
index when they are integrated together. In [14], a criteria importance through intercriteria correlation
(CRITIC) based method merges seven topological and electrical indices using information entropy
and Spearman correlation score. The author compares this method with five existing methods of the
same kind. The demonstrated simulations for real power system show better performances than part
of the aforementioned single or multi-indices methods on discrimination ability and correctness of key
node identification.

Nodes in a regional power grid are not isolated—they are interdependent and correlated [15].
Any abnormities or failures may propagate along the grid structure. Therefore, it is not enough
to merely identify critical nodes; the relevance between them and the other nodes should also be
explored. Understanding the interconnection and identifying the sphere of influence of critical
nodes or critical regions are necessary for the improvement of power grid vulnerability analysis,
situational awareness, prevention, and control capabilities. The so-called relevance can be divided
into two categories—topological relevance and attribute relevance [16]. The first measures the spatial
relationship while the second measures the temporal relationship of various electrical properties
between nodes. For a typical propagation model, events start from a special node and radiate through
the whole network. Likewise, all nodes in the critical region should have strong attribute relevance on
the basis of fulfilling topological constraints. The critical region identification can be achieved through
clustering methods, and the relevance between nodes is equivalent to their similarity measurements.
In [17], a k-means clustering strategy is adopted to determine the voltage stability weak area, which
is closely related to the node relevance analysis. The node voltage magnitude, severity range index,
and clustering error index are used to determine similarities between nodes. In [18], the fast voltage
stability index (FVSI) is employed to evaluate line sensitivities in a power grid, and those sensitive
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lines are further clustered in a group. In [19], four node sensitivity indices are used to measure
similarities, and a fuzzy subtract clustering algorithm is implemented to identify weak voltage regions.
Experiments in a real power grid prove the validity of this method.

In summary, researchers around the world have proposed effective methods for identifying
critical nodes and regions in a power grid through assessing node importance and relevance. However,
most of the above-mentioned assessment indices are static, which means they do not depend on the
operating condition of a power grid. In fact, critical nodes and regions shift each time the power grid
changes, thus the dynamic identification method should be more suitable. Unfortunately, there are not
many studies on it. The problem is how to find suitable dynamic indices from the operating data of
key parameters (voltage, phase angle, active and reactive power, etc.) in a power grid. Node voltage
trajectories are easily accessible, and we believe that they contain abundant information reflecting the
operating condition of the power grid. Based on this hypothesis, a new data-driven method based on
spatio-temporal attribute fusion of voltage trajectory is proposed and discussed in detail. We employ
three fundamental temporal attributes and three spatial attributes from measured node voltage phasor
sequences. Two comprehensive indices are formed by attribute fusion to assess node importance
and relevance. The critical nodes are identified by importance ranking, and the critical regions are
identified by a density-based spatial clustering of applications with noise (DBSCAN) algorithm with
synthesized similarity measurement.

The rest of this paper is organized as follow: Section 2 introduces the main idea and the overall
framework of proposed method. Section 3 describes the specific types of spatial and temporal attributes
and the way to extract them from node voltage trajectories. Section 4 establishes node importance
and relevance assessment indices using information fusion techniques. Section 5 illustrates the critical
nodes/regions identification method in detail. Experiments and results analysis are in Section 6.
At last, Section 7 concludes this paper.

2. Dynamic Identification of Critical Nodes and Regions in Power Grid

A real power grid is never invariant—the operating conditions, key parameters, or even the
grid structure may change at any moment. Therefore, for practical application, any fixed assessment
indices for critical nodes and regions identification are inaccurate to varying degrees. Fortunately, with
the development of the wide-area measurement system (WAMS), a large number of synchronized
phasor measurement units (PMUs) were deployed on a power grid to enable real-time online data
acquisition [20]. On the basis of these measured data, we put forward a scheme for dynamic
identification of critical nodes and regions. The overall framework is shown in Figure 1.
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Figure 1. Overall framework of proposed scheme. Figure 1. Overall framework of proposed scheme.
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Our main idea was to extract useful attributes from the observed node voltage trajectories, merge
them into two indices for node importance and relevance assessment, respectively, then further
realize the dynamic identification of critical nodes and regions in the power grid. The kinematic
properties of node voltages could be drawn from their changing trajectories. Figure 2 demonstrates
a numerical example of some varying node voltage trajectories in a small regional power grid in
phasor representation. The data were acquired through a continuous power flow (CPF) simulation.
The arrow of the time dimension illustrates that voltage phasors move from right to left. Our research
was conducted based on the idea that the voltage phasors of critical nodes experience more drastic
variations in disturbance environment. Therefore, in Figure 2, considering that a voltage phasor
sequence in a time segment may contain more worthy information, we tried to measure the differences
between a target and a reference voltage phasor sequence, Ut and Ur, in a different time segment from
the identical node voltage trajectory (importance assessment) and between two sequences, Ut and
Uc, from two different node voltage trajectories in an identical time segment (relevance assessment).
The former determined the importance of each node and the latter determined the relevance between
any two nodes. At the beginning stage of the dynamic identification scheme, namely the parameter
setting step, the width of the voltage phasor sequence, the target time, and the reference time were
set according to experiences and actual data. Next, in the attribute extraction step, the process was
divided into two parts. The distance between the center of the target and the reference voltage phasor
sequences and their average velocity and acceleration differences for both real and imaginary parts
were extracted as temporal attributes. The differences in position, shape, and trend between the target
and another corresponding voltage phasor sequence in an identical time segment were extracted
as spatial attributes. Then, in the attribute fusion phase, temporal attributes were integrated into a
node importance assessment index via Gini-coefficient, and spatial attributes were integrated into
a node relevance assessment index via Spearman correlation coefficient. On this basis, the critical
nodes were identified by importance ranking, and the critical regions were identified by DBSCAN
algorithm with synthesized similarity measurement, which further merged both temporal and spatial
assessment indices.
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Figure 2. Node voltage trajectories.

The characteristic of a dynamic identification method lies in its capability to update. Therefore,
the target phasor sequence will slide along with the time dimension, repeating this scheme and
updating the identification results continuously to improve its reliability.

3. Attribute Extraction from Node Voltage Spatio-Temporal Trajectory

To quantify the variations of node voltage phasor sequences over time, their temporal and spatial
attributes were determined and extracted online based on the current and historical voltage phasors.
The temporal attributes were employed to measure differences between two sequences in two different
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time segments of an identical node, while the spatial attributes were employed to measure the similarity
between two sequences in an identical time segment of different nodes.

3.1. Node Voltage Temporal Attribute Extraction

Temporal attributes aim to describe the kinematic properties of a moving voltage phasor
sequence. Therefore, three fundamental physical quantities—distance, velocity, and acceleration—were
selected for attribute characterization. In this paper, a voltage phasor sequence with width W is
represented as

.
U =

[ .
u(1),

.
u(2), . . . ,

.
u(W)

]
, where u(i) is the effective value, ϕ(i) is the phase angle,

and
.
u(i) = u(i)∠ϕ(i).
The distance attribute is defined as the distance between the center point of the target and the

reference voltage phasor sequence, represented as
.

Ut and
.

Ur with same width W. The real and
imaginary parts of a voltage phasor can be computed as uR(i) = u(i) cos ϕ(i) and uI(i) = u(i) sin ϕ(i).
On this basis, the distance attribute Aψ

dis contains two parts:

Aψ
dis =

∣∣∣uψ
t (m)− uψ

r (m)
∣∣∣ (1)

where ψ represents letter R or I for this and all following attributes, uR
t (m) and uR

r (m) are values of
real parts belonging to the center points of

.
Ut and

.
Ur; likewise, uI

t (m) and uI
r(m) are center values of

imaginary parts. The value of center point can be computed as:

uψ
t (m) =

uψ
t

(
W
2 + 1

)
W = 2n + 1, n ∈ N[

uψ
t

(
W
2

)
+ uψ

t

(
W
2

)]
/2 W = 2n, n ∈ N

(2)

The velocity attribute is defined as the average velocity difference between
.

Ut and
.

Ur. A voltage
phasor sequence is composed of W continuous voltage phasors, the norm of the difference value
between two adjacent voltage phasors is regarded as velocity value. Same as above, the velocity
attribute Aψ

vel can be divided into real and imaginary parts, which are shown in the following equation:

Aψ
vel =

1
W

W

∑
j=1

∣∣∣[uψ
t (j)− uψ

t (j− 1)
]
−
[
uψ

r (j)− uψ
r (j− 1)

]∣∣∣ (3)

The acceleration attribute is defined as the average acceleration difference between
.

Ut and
.

Ur.
On the basis of the aforementioned concepts, acceleration can be obtained by computing the difference
value between two adjacent velocity values. Therefore, the acceleration attribute Aψ

acc is represented as:

Aψ
acc =

1
W

W

∑
j=1

∣∣∣[uψ
t (j)− 2× uψ

t (j− 1) + uψ
t (j− 2)

]
−
[
uψ

r (j)− 2× uψ
r (j− 1) + uψ

r (j− 2)
]∣∣∣ (4)

3.2. Node Voltage Spatial Attribute Extraction

Spatial attributes are employed to measure the similarity between two voltage phasor sequences
(

.
Ut and

.
Uc) in an identical time segment. Here in this paper, from three perspectives, we took spatial

attributes including position, shape, and trend into consideration. Figure 3 gives a visual illustration
of these three attributes.

The position attribute is depicted by the average Euclidean distance among all voltage phasors
in

.
Ut and

.
Uc. Owing to the propagation property of the power grid, the influences from other nodes

need to be considered, thus the grey relational degree [21] is introduced in this paper. It is appropriate
for both position and shape attributes measurement because of its ability to integrate local distance
and global maximum and minimum distance for phasor sequences. Suppose there are n + 1 nodes in a
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regional power grid, the computation of grey relational degrees r
( .

Ut,
.

Uc(i)
)

involves one
.

Ut and n
.

Uc, represented as
{

.
U

1
c ,

.
U

2
c , . . . ,

.
U

n
c

}
. We have:

Apos = r
(

.
Ut,

.
U

i
c

)
=

1
W

W

∑
k=1

r
(

ut(k), ui
c(k)

)
(5)

r
( .

ut(k),
.
ui

c(k)
)
=

minmin‖ .
ut(k)−

.
ui

c(k)‖2 + ξmaxmax‖ .
ut(k)−

.
ui

c(k)‖2

‖ .
ut(k)−

.
ui

c(k)‖2 + ξmaxmax‖ .
ut(k)−

.
ui

c(k)‖2

(6)

where Apos is the position attribute, and r
(

.
Ut,

.
U

i
c

)
is the grey relational degree between

.
Ut and

.
U

i
c. ξ

is the distinguishing coefficient that fulfills 0 < ξ < 1 and ξ = 0.5 generally, W is the width of sequence,
and

.
ui

c(k) represents the kth phasor in the ith sequence. The global minimum minmin‖ .
ut(k)−

.
ui

c(k)‖2

is computed in two stages. The local minimum min‖ .
ut(k)−

.
ui

c(k)‖2 is searched for all k firstly, then
the global minimum is searched for all i. The global maximum can be acquired in the same way.
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As is shown in Figure 3, the shape attribute Asha is defined as the grey relational degree with
cosine distance. It can be obtained directly by replacing the Euclidean distance into cosine distance in
Equations (5) and (6). To avoid repetition, their formulas are not given here.

The trend attribute measures the difference of trend variation between
.

Ut and
.

Uc. In [22], binary
direction vectors are employed to measure the trend similarity between 1D time-series. Trends of a
variation vector are divided into ascending type and descending type. However, this measurement is
rough and has a similar effect as the shape attribute to some extent. To avoid these drawbacks, Pearson
correlation coefficient (PCC) is employed to measure the trend difference between two entire voltage
phasor sequences. Traditional PCC is not able to depict the trend of 2D series, thus we computed
PCCs between

.
Ut and

.
Uc for their real and imaginary parts, respectively. Results were transformed

and multiplied to obtain a final value within the range of 0 and 1. The trend attribute can be obtained
through the following equations:

Atre =
[
ρR
( .

Ut,
.

Uc

)
+ 1
][

ρI
( .

Ut,
.

Uc

)
+ 1
]
/4 (7)
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ρψ
( .

Ut,
.

Uc

)
=

n
∑

i=1

[
uψ

t (i)− uψ
t (i)

][
uψ

c (i)− uψ
c (i)

]
√

n
∑

i=1

[
uψ

t (i)− uψ
t (i)

]2 n
∑

i=1

[
uψ

c (i)− uψ
c (i)

]2
(8)

where ρR
( .

Ut,
.

Uc

)
and ρI

( .
Ut,

.
Uc

)
are PCCs for real and imaginary parts, and ψ represents letter R or I.

4. Assessment Index Establishment Based on Attribute Fusion

The proposed temporal attributes and spatial attributes provide criteria for node importance
and relevance assessment in different ways with different preferences. To form a unique
comprehensive assessment index, both two types of attributes must be integrated. The key to
effective attribute fusion is to determine proper weights for all single attributes. On the basis of
their characteristics, two information fusion techniques were employed to integrate both temporal and
spatial attributes, respectively.

4.1. Temporal Attribute Fusion Based on Gini-Coefficient

Gini-coefficient [13] is initially proposed to measure the inequality in social income distribution
based on the Lorenz curve. This coefficient is between 0 and 1, and the bigger the value is, the larger
the gap between rich and poor. In computer science, Gini-coefficient is used to measure the impurity of
data. There are some famous applications like the classification and regression tree (CART) algorithm.
In brief, if the samples of a category of data distribute uniformly, this category is not discriminative.
If the distribution is uneven, it indicates that these samples own some sort of aggregation properties
and can be separated into several different classes. For temporal attribute fusion, the importance of
each kinematic attribute is uncertain, but the discriminative attribute should be given larger weight.
The temporal attribute fusion algorithm based on Gini-coefficient is shown in Algorithm 1. An attribute
matrix Mt ∈ <n×6 that contains all temporal attributes computed for all nodes should be formed,
represented as:

Mt =
[

AR
dis(p) AI

dis(p) AR
vel(p) AI

vel(p) AR
acc(p) AI

acc(p)
]

where p ∈ [1, n], n is the number of nodes, and the number in parenthesis designates the target voltage
phasor sequence.

Algorithm 1: Temporal attribute fusion based on Gini-coefficient

1. Input: Attribute matrix Mt, the number of attributes nA

2. S← ∅
3. Wt ← ∅
4. for i = 1 to nA do

sort Mt
∗,i in ascending order

Si ← ∑ Mt
∗,i

end for
5. for j = 2 to n do

Mt
j,∗ ← Mt

j,∗ + Mt
j−1,∗

end for
6. for k = 1 to nA do

Wt
k ← 1− 1

n

(
2×∑

Mt
∗,k

Sk
− 1
)

end for
7. Normalize Wt to the range of 0 to 1
8. Output: weight vector Wt
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The value of nA is set to 6. After calculating the weight vector Wt, the node importance assessment
index can be given as:

IT(i) =
nA

∑
j=1

Mt
i,jW

t
j , i ∈ [1, n] (9)

4.2. Spatial Attribute Fusion Based on Spearman Correlation Coefficient

Spatial attributes like position, shape, and trend attributes are not disconnected but instead contain
parts of information from each other. To achieve effective spatial attribute fusion, their relevance should
be reduced by appropriate weight determination. Accordingly, the more independent an attribute is,
the larger weight it is given. In this paper, the Spearman correlation coefficient (SCC) [23] is employed
to measure the independence of each attribute. Essentially, SCC computed the PCC of the rankings of
data between two ordinal variable sequences or transformed continuous variable sequences. For two
attribute sequences S1 and S2, they are sorted in ascending order, then the rankings of each element
form a two rank sequence. The SCC value rscc(S1, S2) between two attribute sequences is equal to the
PCC value between these two rank sequences. For m attribute sequences {S1, S2, . . . , Sm}, the weight
of Si is negatively correlated to the sum of the absolute value of SCC between Si and all others.

The spatial attribute fusion algorithm based on Spearman correlation coefficient is
shown in Algorithm 2. Likewise, an attribute matrix Ms ∈ <n×3 is formed as Ms =[

Apos(p) Asha(p) Atre(p)
]
, where the meanings of p and n remain unchanged.

Algorithm 2: Spatial attribute fusion based on Spearman correlation coefficient

1. Input: A attribute matrix Ms, the number of attributes nA

2. T← ∅
3. R← ∅
4. Ws ← ∅
5. for i = 1 to nA do

T← Ms

delete T∗,i
for j = 1 to nA − 1 do

Ri ← rscc

(
T∗,i, T∗,j

)
end for
Ws

i ← 1− 1
n ∑|Ri|

end for
6. Normalize Ws to the range of 0 to 1
7. Output: weight vector Ws

The value of nA is set to 3. After calculating the weight vector Ws, the node relevance assessment
index can be given as:

IS(i, j) =
nA

∑
j=1

Ms
i,jW

s
j , i ∈ [1, n] (10)

It is worth noting that values of IS(i, j) and IS(j, i) are a bit different due to the change of
reference nodes in grey relational degrees computation; their average value is used for the similarity
measurement in the next section.

5. Critical Node/Region Identification via Importance Ranking and Synthesized Similarity

After spatio-temporal attribute extraction and fusion, the importance of node and relevance
between any two nodes in a specific time segment can be depicted clearly. The critical nodes are
defined as those with a large importance score and thus can be identified directly by sorting the node
importance in descending order. Generally speaking, we could deem the top-N nodes as critical nodes
or set a threshold. For example, if the importance score of a node is larger than 0.7 (the score of the
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largest one is 1), it is considered critical. The critical regions are usually critical nodes’ centric areas
with nodes subjected to relative large and similar influences. Clustering is an unsupervised learning
technique that places similar data into identical groups [24]. It is a feasible approach to identifying
critical regions. One of the key problems is that there are several special types of nodes in a regional
power grid. For example, the voltage phasor of the only slack bus/node and the voltage amplitudes of
the generator node keep constant, but the voltage phasors of the critical node usually show stronger
mobility than other nodes. A promising clustering algorithm should have the ability to separate
these nodes, hence a so-called DBSCAN [25] was selected in this study because of its ability to find
arbitrarily-shaped clusters and isolate outliers. Another key problem in achieving effective clustering
is similarity measurement. Nodes in a critical region are expected to own large importance values as
well as strong linkages. Therefore, their similarities should be an integration of both temporal and
spatial attributes, represented as:

S
(
nodei, nodej

)
= |IT(i)− IT(j)|{1− [IS(i, j) + IS(j, i)]/2} (11)

Obviously, if two nodes are similar, the difference in their importance value approaches 0, and the
average of their relevance value approaches 1. DBSCAN sets a radius parameter, ε, and a threshold of
neighborhood density, Mpts. If the number of similar neighborhoods (S

(
nodei, nodej

)
< ε) of a central

node is less than Mpts, it is labeled as a special node. These special nodes form new clusters or merge
into other clusters according to the following rules:

• If the importance score of a special node is larger than the maximum score in the cluster with the
largest average score, it forms a new critical cluster.

• If the importance score of a special node is lower than the minimum score in the cluster with the
lowest average score, it forms a new non-critical cluster.

• If the importance score of a special node is between two above limits, it is assigned to the cluster
with the most similar average score.

The criteria of the critical region are the average importance scores among all nodes in a cluster.
In this paper, the final critical region is comprised of the aforementioned critical cluster and the cluster
with the largest average importance score.

The parameter setting of DBSCAN has a direct impact on the final results, and it is subjective.
Therefore, different situations should have different settings. The identification problem does not
have a fixed evaluation method, thus the knowledge and experience of the operator are important
references for acceptable settings. Generally speaking, larger ε and smaller Mpts merges some similar
clusters, leading to a large area of the critical region. If the ε decreases and Mpts increases, the area of
the critical region shrinks. The main critical region is not affected. In practical application, the operator
can set reference values with large ε and small Mpts, adjust these parameters, and narrow the area of
the critical region from large to small until a satisfying result is obtained.

6. Case Studies and Discussion

The IEEE-39 benchmark system is employed to validate the applicability of the proposed scheme.
This system represents a real regional power grid in New England, and its structure is shown in Figure 4.
IEEE-39 system contains 10 nodes with generators, 17 nodes with load, and 12 concatenation nodes.
The node numbered 31 is a slack bus, which means its voltage amplitude keeps unchanged, and its
phase angle is 0.

The continuation power flow (CPF) is used to generate experimental data. To simulate specific
changes of operating conditions in this power grid, loads on selected nodes increase at the same rate,
their power factors remain constant, and all electric generators contribute jointly to balance the load
increment [26].

In this part, three different cases were used for experiments. Samples for each case were simulated
using the MATPOWER CPF tool (Version 5.1, Power System Engineering Research Center (PSERC)
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at Cornell University, Ithaca, NY, United States) [27]. Voltage amplitude and phase angle for each
sample were extracted and represented as voltage phasors. The reference time could be set at any
time as a baseline. In the following cases, in order to enhance performance, we set it at the fifth
sample (any position near the starting point is acceptable) to maximize the variations. The width of the
voltage phasor sequence was determined according to the sampling rate of the data acquisition system.
In general, a wider voltage phasor sequence is more accurate but also needs longer computation time.
The node was set to 7 in the following case. Operators could select proper parameters according to
experiences and practical conditions to improve the accuracy and reduce the time complexity of the
proposed scheme.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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6.1. Case A: Load Increase on Node 7

In this case, node 7 was selected as the disturbance source. Its load active and reactive power
increased from 2.34 MW and 0.84 MVar to 17.04 MW and 6.12 MVar until the static voltage stability
margin was reached. A total of 96 samples for each node were simulated. To show the variation of the
identified critical nodes and regions, results for three target times T at the 25th, the 50th, and the 80th
samples are illustrated in Figure 5. The representative color of critical nodes are shades from red to
yellow and then to green. Likewise, clusters are divided into six levels (L1 to L6), from red to cyan
green (red for critical cluster and cyan green for non-critical cluster). Critical regions are comprised of
L1 clusters and clusters formed by special nodes with large importance scores. Table 1 lists the top
10 critical nodes with their importance scores in case A explicitly.

Generally, load increment in certain node results in voltage reduction and enlargement of phase
angle difference. These variations radiate from the center node along with grid structure. The range
of radiation is regarded as the critical regions, and the nodes in those regions are critical nodes with
different severities, which are measured by their importance scores.

In Figure 5a, at T = 25, critical nodes were mainly located on the left side of the grid. It was
obvious that the source was node 7, while node 8 and node 9 were critical nodes that suffered from
significant impact. Further, at T = 50, the rankings of nodes 2, 25, and 30 rose, indicating the
propagation direction of disturbances. Finally, nodes 26 and 28 at the upper right corner became two
of the top 10 critical nodes at T = 80. In Figure 5b, the critical region is identified and marked with
light orange background color. Members in the critical region were similar in temporal variation and
spatial distribution. It was easy to find out that the range of the critical region expanded over time
according to its propagation path from the left side to the right side. Although our method did not



Energies 2019, 12, 780 11 of 16

consider the grid structure, the above proved that the variation of the voltage phasor sequence fulfilled
these topological constraints naturally.Energies 2019, 12, x FOR PEER REVIEW 11 of 16 
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the critical regions.

Table 1. Top 10 critical nodes with their importance score in case A.

Rankings 1 2 3 4 5 6 7 8 9 10

T = 25 7(1.00) 8(0.87) 9(0.73) 39(0.58) 5(0.57) 1(0.56) 6(0.51) 4(0.51) 3(0.49) 2(0.47)
T = 50 7(1.00) 8(0.89) 9(0.82) 39(0.72) 1(0.69) 5(0.61) 25(0.60) 2(0.59) 30(0.58) 3(0.58)
T = 80 7(1.00) 9(0.95) 8(0.93) 39(0.90) 1(0.86) 25(0.76) 30(0.74) 2(0.73) 26(0.72) 28(0.70)

A stable power system always keeps a balance between power supply and demand. Therefore,
generators contribute power for demands in disturbance sources. The critical generator nodes, which
are marked in bold in Table 1 and all following tables, are the main power suppliers. Apparently,
during the early phase, node 39 made major contributions. Then, nodes 30 and 37 joined in after T = 50.
The final supplier team was mainly comprised of these three nodes.

6.2. Case B: Load Increase on Node 7 And 28

In this case, nodes 7 and 28 were selected as the disturbance sources, and their load demands
increased simultaneously. The load active and reactive power of node 7 increased from 2.34 MW
and 0.84 MVar to 12.50 MW and 5.79 MVar; the load active and reactive power of node 28 increased
from 2.06 MW and 0.28MVar to 8.41 MW and 1.13MVar. A total of 128 samples for each node were
simulated. The critical nodes and regions identification results for three target times T at the 20th,
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the 60th, and the 120th samples are illustrated in Figure 6. Table 2 lists the top 10 critical nodes in
case B.
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Table 2. Top 10 critical nodes with their importance score in case B.

Rankings 1 2 3 4 5 6 7 8 9 10

T = 20 28(1.00) 29(0.85) 38(0.71) 26(0.68) 27(0.59) 25(0.48) 17(0.47) 18(0.46) 7(0.44) 3(0.44)
T = 60 28(1.00) 29(0.92) 38(0.87) 26(0.69) 27(0.60) 25(0.52) 2(0.48) 17(0.48) 30(0.47) 18(0.47)

T = 120 28(1.00) 29(0.96) 38(0.95) 26(0.71) 30(0.68) 37(0.66) 25(0.65) 1(0.64) 39(0.64) 2(0.64)

At T = 20, from Figure 6a and Table 2, node 28 and its adjacent nodes had high importance scores.
The main power supplier was node 38. Although the power demand in node 7 kept increasing, its
voltage phasor changed slightly. This illustrated that node 7 was more robust than node 28. The critical
region in Figure 6a connected both disturbance sources. Later, at T = 60, the influence of node
28 moved left, node 30 supplied more power, and the severity of node 7 fell again. All of them
brought an upward shift to the critical region. At T = 120, more generator nodes became critical nodes.
Although the critical region seemed to shrink, the number of nodes in the L3 cluster grew, thus nodes
in the lower right corner tended to become critical.

6.3. Case C: Load Increase on All Load Nodes

In this case, all load nodes were selected as the disturbance sources. A total of 160 samples for
each node were simulated. The critical nodes and regions identification results for three target times T
at the 40th, the 90th, and the 140th samples are illustrated in Figure 7. Table 3 lists the top 10 critical
nodes in case C.
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Table 3. Top 10 critical nodes with their importance score in case C.

Rankings 1 2 3 4 5 6 7 8 9 10

T = 40 20(1.00) 28(0.98) 34(0.95) 29(0.94) 27(0.94) 26(0.93) 24(0.92) 19(0.91) 21(0.89) 16(0.89)
T = 90 34(1.00) 29(0.96) 28(0.95) 20(0.95) 39(0.95) 36(0.92) 35(0.91) 33(0.90) 19(0.90) 23(0.89)

T = 140 36(1.00) 38(0.99) 35(0.96) 34(0.96) 29(0.91) 33(0.91) 28(0.88) 22(0.87) 23(0.86) 20(0.84)

In the initial phase, namely T = 40, critical nodes distributed in the right half of the grid.
Compared with the above two cases, the downtrend of importance scores in top 10 critical nodes was
much slower. Starting from nodes 16 and 17, the severity of nodes rose along two paths—16 to 34 and
17 to 29. These two nodes played parts as concatenation nodes for two critical regions, which is quite
distinct in the first chart of Figure 6b. At T = 90, two critical regions split up. At T = 140, the upper
part extended left, while the lower part remained unchanged. The reason was explicable. From Table 3,
we know that there were five generator nodes in the top 10 critical nodes. Four of them were located
on the lower region. Thus, the demands in the upper region required extra suppliers.

In summary, three cases were tested and analyzed to validate the applicability of the proposed
method in different aspects. Case A simulated a situation where only one load node increased its
power demand. Results show that the proposed method could identify the source and depict the whole
propagation process accurately. In case B, two nodes increased their power demand simultaneously.
Their relative robustness could be determined by their critical rankings. In case C, all load nodes
increased their power demands. The correctness of identification results is proven by the principle
of the supply-demand balance. In short, based on the spatio-temporal attribute fusion of voltage
trajectory, our scheme could implement dynamic identification of critical nodes and regions quickly
and precisely for different situations.
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In practical application, the critical nodes and regions need to be identified online. Therefore,
the proposed method should meet the requirements of accuracy and efficiency. Two factors influence
the execution time severely—the width of the voltage phasor sequence and the size of the power grid.
The growth of the first factor increases the complexity of calculating the grey relational degree in
the spatial attribute extraction procedure, and the growth of the second factor enlarges the amount
of computation of the similarity matrix for DBSCAN. To investigate the impact of these two factors,
the computation time of each procedure should be recorded. Experiments were implemented on a
desktop PC with Intel Core i7-6700 CPU, 16GB RAM, and 3.40GHz clock speed for case C. Firstly,
the width of the voltage phasor sequence was set to seven. The computation time of temporal attribute
extraction, spatial attribute extraction, attribute fusion, and critical nodes/regions identification were
0.00364 s, 1.2936 s, 0.00725 s, and 0.00288 s. Next, if we changed the width from seven to 20, the time
became 0.00470 s, 3.3391 s, 0.00747 s, and 0.00254 s. Obviously, the first factor and the spatial attribute
extraction procedure were the main computation burdens. Further, the variation trend of the total
computation time along with the width of the voltage phasor sequence were explored and are shown
in Figure 8.
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In this figure, we can learn that the computation time grows linearly along with the width of the
voltage phasor sequence. Therefore, in real application, the width should be carefully selected to meet
the requirements.

7. Conclusions

In this paper, a novel method for dynamic identification of critical nodes and regions in a power
grid was proposed. Compared with existing research, this paper focused on the variation of and
similarity between node voltage phasor sequences, which is a section of voltage phasor trajectories
rather than the topological structure of a power grid. The proposed method could identify and
update critical nodes and regions dynamically according to acquired real-time data. Three temporal
attributes including distance, velocity, and acceleration were extracted and integrated to assess node
importance. Three spatial attributes including position, shape, and trend were extracted and integrated
to assess node relevance. The critical nodes were determined by their importance rankings, and the
identification of critical regions was realized by clustering nodes with similar importance and high
relevance. Case studies on the IEEE 39 benchmark system for different situations were tested and
analyzed, and results show that this method could locate disturbance sources, reveal propagation
mechanisms, and achieve effective and accurate dynamic identification. Future research will further
integrate the topological attributes, establishing a panoramic depiction of both static and dynamic
characteristics of all critical nodes and regions in a power grid.
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