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Abstract: Dissolved gas analysis (DGA) of transformer oil is considered to be the utmost reliable
condition monitoring technique currently used to detect incipient faults within power transformers.
While the measurement accuracy has become relatively high since the development of various off-line
and on-line measuring sensors, interpretation techniques of DGA results still depend on the level of
personnel expertise more than analytical formulation. Therefore, various interpretation techniques
may lead to different conclusions for the same oil sample. Moreover, ratio-based interpretation
techniques may fail in interpreting DGA data in case of multiple fault conditions and when the
oil sample comprises insignificant amount of the gases used in the specified ratios. This paper
introduces an improved approach to overcome the limitations of conventional DGA interpretation
techniques, automate and standardize the DGA interpretation process. The approach is built
based on incorporating all conventional DGA interpretation techniques in one expert system to
identify the fault type in a more consistent and reliable way. Gene Expression Programming is
employed to establish this expert system. Results show that the proposed approach provides more
reliable results than using individual conventional methods that are currently adopted by industry
practice worldwide.

Keywords: transformer diagnosis; condition monitoring; dissolved gas analysis; gene expression
programming

1. Introduction

Because power transformers are considered as the crux of transmission and distribution electricity
networks, utilities and other power network stakeholders around the globe are aiming to adopt reliable,
automated and non-invasive techniques for power transformer condition monitoring and diagnosis.
To avoid transformer catastrophic failures that may result in a significant loss of revenue and business
interruption due to electricity outages, incipient faults should be identified as soon as they emerge
and a proper remedial action should be taken. Dielectric oil within power transformer is regularly
tested using various chemical and electrical diagnostic techniques to detect developed transformer
internal faults at early stages [1,2]. Among current transformer diagnostic techniques, dissolved gas in
oil analysis (DGA) is widely accepted as a reliable tool to detect power transformer incipient faults [3].
DGA technique was developed based on the fact that different gases are evolved in transformer oil
as a result of the decomposition of the oil and paper insulation due to the high thermal and electric
stresses they are exposed to during transformer operational life [4]. These gases are formed at specific
temperature ranges as defined in the combustible gas generation temperature [5] and Hastead’s
thermal charts [6]. Gases produced due to oil decomposition are hydrogen (H2), methane (CH4),
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acetylene (C2H2), ethylene (C2H4) and ethane (C2H6). Carbon monoxide (CO) and carbon dioxide
(CO2) can be produced due to cellulose degradation, atmospheric leak or as a result of long term
oxidation of transformer oil [7]. The amount of produced gases and the rate of generation reflect the
general health condition of the transformer and can be used to identify various transformer internal
faults and can be employed along with other transformer condition monitoring parameters to estimate
the remnant operational life of the transformer [8–11]. Partial discharge activity produces H2 and CH4

while arcing generates all gases including traceable amount of C2H2 [12]. While DGA measurement
techniques are well developed in both real time and laboratory-based environments, the interpretation
of results remains a challenge research area that calls for further improvement to enhance the accuracy
of the current conventional interpretation methods as so far, there is no globally accepted technique
for DGA interpretation [1]. DGA interpretation techniques such as key gas method [3], Doernenburg,
Roger and IEC ratio methods [13,14] and Duval triangle method [15] are widely used by various
utilities for DGA results identification and quantification. These techniques depend on personnel
experience more than mathematical formulation. Hence, they may result in different conclusions for
the same oil sample [16].

Ratio-based methods such as Roger, Doerenburg and IEC which employ either four or three gas
ratios for DGA data interpretation are only usable if a substantial amount of the gas employed in the
ratio is present else the method leads to out-of-code ratio and will not be able to identify the type of
fault [6]. Therefore these methods can be used to identify faults rather than detecting it.

The key gas method employs combination of individual gases and total combustible gas
concentration for fault identification within the transformer [6,17]. While the application of this
method is a straightforward exercise, it is considered very conservative as a transformer may operate
safely even though this interpretation technique indicates imminent risk providing gas evolution rate
is not constantly increasing. For this reason, key gas it is not widely accepted as an effective tool for
evaluating power transformers DGA results [3].

Duval triangle is a graphical technique that employs the concentration ratio of three gases in a
triangle comprising different zones for thermal, partial discharge and arcing faults [18]. The main
drawback of this technique is that the proposed triangle does not encompass an area for normal DGA
results, hence similar to the ratio-based techniques, this method can only be used to identify the fault
type of faulty transformers.

Table 1 summarizes the methodology, pros and cons of the five DGA interpretation techniques
discussed above.

Due to the limitations of conventional DGA interpretation techniques and because of the
availability of DGA data, researchers were motivated to develop computer-based approaches for DGA
interpretation using artificial intelligent (AI) techniques with a main goal of overcoming the drawbacks
of the ratio-based methods in particular when multiple faults exist within the transformer [18–25].
As per [19] conventional DGA interpretation techniques are not consistent and they may result in
different interpretations for the same oil sample. To automate, standardize and enhance the accuracy
and consistency of the current DGA conventional interpretation techniques, a fuzzy logic model that
incorporates the key features of Doerenburg, Roger, IEC ratio methods along with key gas and Duval
triangle methods was developed and presented in [19]. However, the proposed model did not take
into account the rate of gas evolution and the automatic adaption of model’s rules based on data
history to enhance its accuracy.

Another attempt to enhance the DGA interpretation accuracy is presented in [26], in which 386 oil
samples were used to validate the proposed interpretation approach. However, the proposed technique
relies on the ratio of 5 gases with respect to total combustible gases without taking into account the
history of previous DGA data. Also, the accuracy of the proposed technique has not been widely
confirmed due to the lack of data it was verified against. A particle swarm optimization technique is
presented in [27] to classify various faults within power transformers based on DGA results. While the
technique revealed good accuracy, its practical application may not be an easy task, in particular
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for online DGA sensors. In [28], IEC ratio method is used to train a deep belief network in order to
enhance the accuracy of the DGA interpretation. However, as a ratio-based method, the accuracy of the
proposed model to detect incipient faults cannot be guaranteed. Transformer insulation health index is
quantified in [29] based on DGA data and other oil quality factors without investigating various DGA
interpretation techniques. While an adaptive neuro fuzzy inference system for DGA interpretation is
presented in [30] that facilitate adaptive learning, the model is developed based on ratio methods only
which makes the model suitable to identify faults with significant amount of gases used in such ratios
with limited accuracy in identifying incipient faults with minimum fault gas concentration.

Table 1. A comparison of the five DGA interpretation techniques.

Method Methodology, Pros and Cons Detected Faults Used Gases

Key gas concentration of all 7 key gases is required,
easy to implement, conservative.

partial discharge, arcing
thermal faults.

CO, CO2, H2, CH4,
C2H2, C2H4 and C2H6

Duval
Triangle

relies on graphical analysis, indicates detailed
faults, does not comprise normal zone

partial discharge,
low/high energy

discharge, thermal faults
at various temperatures

CH4, C2H2, and C2H4

Doernenburg
employs 4 ratios, gases should meet

minimum threshold limits, may lead to
out-of-code result.

thermal decomposition,
partial discharge, arcing

H2, CH4, C2H2, C2H4
and C2H6

Rogers

uses 4 ratios that were modified to three
ratios, gases used in the ratios should exceed

a minimum level, may lead to
out-of-code result.

partial discharge, arcing,
thermal faults at various

temperatures.

H2, CH4, C2H2, C2H4
and C2H6

IEC

same three ratios as in the revised Roger
method with different ratio ranges and

interpretations, may lead to
out-of-code result.

partial discharge,
low/high energy

discharge, thermal faults
at various temperatures.

H2, CH4, C2H2, C2H4
and C2H6

In this paper, a new expert system that takes the gas evolution rate into account and has the ability
of learning and tuning is introduced. This expert system is based on Gene Expression Programming as
briefly explained below.

2. Gene Expression Programming

Gene Expression Programming (GEP) is a learning technique that can find relationships between
variables and builds mathematical models revealing these relationships [31–35]. Like genetic algorithm
(GA) and genetic programming (GP), GEP selects populations of individuals based on their fitness and
presents genetic variation using one or more operator. However, the nature of individuals is different
in the three mentioned algorithms. While the individuals in GA are of linear strings of fixed length
(chromosomes), they are of nonlinear entities of different sizes and shapes (expression tree) in GP.
On the other hand, the individuals in GEP are encoded as linear strings of fixed length expressed as
nonlinear entities of different sizes and shapes. Hence, GEP comprises the key features of the GA
and GP. The main feature of GEP is the ability of formulating a mathematical expression between the
dependent and independent variables that performs well for all fitness cases. The GEP process as
shown in the flowchart of Figure 1 starts by creating a random generation of the chromosomes after
which the fitness of each individual is evaluated. The chromosomes are modified through genetic
operations (mutation, gene recombination, and transposition) to create a new generation. The process
is continued until a termination criteria; number of generations or least error is obtained. The gene
in GEP comprises head and tail. While the length of the head is selected based on the investigated
problem, the length of the tail depends on the length of the head and the number of independent
variables in the investigated problem.
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Figure 1. General Flowchart for GEP algorithm.

3. Proposed GEP Model

To establish a general DGA interpretation model, all possible transformer faults along with
the current conventional interpretation techniques are integrated as shown in Table 2. In this Table,
F2 represents thermal fault of various temperature ranges as per the codes of the five conventional
interpretation techniques shown in the Table. On the other hand F3 represents partial discharge and F4
is for arcing fault. The model is designed to provide a health index (h) between 2 and 8 that represents
the three faults listed in Table 2. A value between 0 and 2 is reserved for normal transformer operation
and is designated as F1 while F5 is assigned for invalid code in case of ratio methods (IEC, Roger and,
Doerenburg).

Table 2. Possible fault types within transformer oil samples.

Method
F2 (2 < h < 4)

Thermal Fault
Oil/Cellulous

F3 (4 < h < 6)
Electrical Fault

(Corona)

F4 (6 < h < 8)
Electrical Fault

(Arcing)

Roger
Thermal fault <150 ◦C;

150–300 ◦C;
300–700 ◦C; >700 ◦C

Low energy electrical
discharge

High energy electrical
discharge

IEC
Thermal fault <150 ◦C;

150–300 ◦C;
300–700 ◦C; >700 ◦C

Low energy electrical
discharge

High energy electrical
discharge

Doeren. Thermal decomposition Partial discharge Arcing

Duval Thermal fault <300 ◦C;
300–700 ◦C; >700 ◦C

Low energy electrical
discharge

High energy electrical
discharge

Key gas Thermal decomposition Low energy electrical
discharge

High energy electrical
discharge

Principal gas Oil (C2H4)
Cellulose (CO) H2 C2H2
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As stated above, there is no 100% consistency among the existing DGA interpretation techniques.
The proposed approach in [19], did not take into account the rate of gas evolution, self-tuning of the
developed rules based on the model’s output and for some DGA samples, the degree of criticality is
not correctly reflected. To overcome these limitations, this approach is amended to the one shown in
Figure 2. In the revised approach, the process starts by applying the key gas method to the measured
DGA data. As key gas is the most conservative method among all existing interpretation techniques,
the model reports normal analysis without any further investigations for oil samples comprising gases
concentration less than condition 1 specified by the standards of this method [3]. On the other hand,
if the key gas method detects abnormal analysis, the model performs further investigations on the
same DGA oil sample using Duval triangle and the three ratio-based methods. Where previous DGA
data for the same transformer are available, the rate of gas evolution is calculated by the model and is
used in Duval triangle analysis instead of the absolute DGA measurements. Availability of the rate of
gas evolution facilitates a proper asset management decision by the model. If any ratio-based method
results in out-of-code value, the model eliminates its contribution to the final decision. The overall
model output is identified based on the same weights provided in [19] however, these weights can
be continuously adapted based on the results of the model that are to be stored and assessed against
further oil analysis along with engineering judgment. The model also provides a more reliable health
index of which fault type and a proper asset management decision can be identified as proposed in
Table 3.

Figure 2. Flow chart of the proposed DGA interpretation approach.

It is to be noted that while [36] presented an application for GEP to ease the DGA interpretation
process, the proposed model did not combine all conventional techniques in one equation based on
their accuracy levels. Also, the transformer health index based on the proposed model is not provided.
Furthermore, in the aforementioned paper normal state is identified based on the IEC ratio method.
It is well known that all ratio methods (including IEC) are not suitable to identify normal condition as
these methods are only valid when a significant amount of the gases used in the proposed ratios exist
in the oil sample which makes them suitable for quantifying the fault type rather than identifying it.
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Table 3. Model output health index and corresponding proposed asset management decision.

Health Index Fault Diagnosis Asset Management Decision

0 ≤ h < 2 No fault. Continue normal operation.

2 ≤ h < 4 Thermal fault within Cellulose and/or oil
insulation.

Exercise caution.
Reduce loading.

Check gas generation rate monthly.

4 ≤ h < 6
Low energy discharge.

Low temperature thermal fault.
Cellulose insulation degradation.

Exercise caution.
Furan analysis is recommended.

Check gas generation rate monthly.

6 ≤ h < 8

High energy discharge.
Medium to high temperature thermal fault.

Cellulose insulation degradation.
Winding circulating current.

Significant cellulose degradation.
Excessive oil decomposition.

Exercise extreme caution.
Check gas generation rate weekly or daily.

Reduce loading (below 50%).
Further oil analysis must be conducted.

Oil must be degassed/filtered.
Plan for outage.

Input variables to the proposed model are the concentration of the seven key gases in parts per
million (ppm) and the output is divided into 4 sets including all health conditions that operating
transformers may exhibit as summarized in Tables 2 and 3. To investigate whether thermal fault
involving cellulose or not, the ratio CO2/CO is used. Although CO and CO2 can be found at normal
condition due to atmospheric leak or as a result of oil long term oxidation which makes this ratio not a
reliable indicator for paper degradation, it can be used as a flagship for further paper investigations
and testing such as furan analysis and degree of polymerization. GEP is used to build models for the
most popular DGA interpretation techniques that include key gas method, Roger, Doerenburg and
IEC ratio methods and Duval triangle method. The individual outputs of these methods are weighted
in accordance to [19] to calculate one health index between 0 and 8 as stated in Table 2.

All models are developed based on the method’s guidelines and standards. 660 DGA sample
data were collected from various operating transformers under different operating, age and health
conditions. The health condition of each transformer was confirmed through engineering judgement
along with other complimentary testing such as partial discharge, Furan contents, dielectric dissipation
factor, moisture contents and frequency response analysis [37]. 70% of the collected data were used to
train the proposed GEP model that was developed as per the flow chart in Figure 2. The remaining
30% of the collected data were used to validate the model. Figure 3 shows the health index returned
by the model along with the actual health index calculated based on practical confirmed faults for 198
DGA samples used during the validation stage. The root square error between transformer health
index calculated by the model and the actual health index is 0.38 with a correlation coefficient of 0.8
which reveals a satisfactory performance for the developed model. The main feature of the GEP model
is its ability to retune in order to increase its accuracy and its capability to estimate a mathematical
correlation between the dependent and independent variables which is an advantage for practical
applications. Figure 4 shows the genes along with the expression tree of the proposed GEP model.
In the generated genes and expression tree, parameters from d0 to d6 represent the input 7 key gases
to the model (CH4, C2H4, C2H2, C2H6, H2, CO2, CO) while c0 and c1 are constants generated by the
model. It is to be noted that the functions used in the expression tree are user-defined functions and
can be changed based on the nature of the investigated problem. In the model shown in Figure 4
functions such as arctangent (Atan), cube root (3RT), square root (sqrt) along with mathematical
operations; addition (+), subtraction (−), division (/) and multiplication (*) are selected to define the
mathematical correlation between dependent and independent variables. The expression tree shown
in Figure 4 is read similar to a text from top to bottom left to right to generate the corresponding
mathematical relationship.
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Figure 3. Performance of the developed GEP model.

Figure 4. Expression tree and genes for the proposed GEP model.
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4. Results and Discussions

The model is tested with DGA results of H2 (75 ppm), CH4 (87 ppm), C2H6 (58 ppm), C2H4

(40 ppm), C2H2 (10 ppm), CO (260 ppm), CO2 (950 ppm) as detected in a transformer oil sample using
DGA measurements. As the amount of all key gases and the total dissolved combustible gas are within
condition-1 of the IEEE standard [13], the model overall output is only based on the key gas method as
per the flow chart in Figure 2. Thus, the model reflects a health index h=1 i.e., normal condition.

The model output is h = 7 for inputs H2 (15 ppm), CH4 (335 ppm), C2H6 (15 ppm), C2H4 (13 ppm),
C2H2 (120 ppm), CO (53 ppm), CO2 (950 ppm). This high criticality is owing to the high amount of
C2H2.

For inputs H2 (15 ppm), CH4 (650 ppm), C2H6 (480 ppm), C2H4 (890 ppm), C2H2 (12 ppm),
CO (240 ppm), CO2 (3015 ppm), the model provides a health index of 5.8 which is attributed to the
high concentration of CH4 and C2H4.

For DGA sample of H2 (410 ppm), CH4 (350 ppm), C2H6 (70 ppm), C2H4 (130 ppm), C2H2

(27 ppm), CO (170 ppm), CO2 (940 ppm), the model provides a health index of 4.5 due to the high
values of the hydrocarbon gases. The CO2/CO ratio also indicates cellulose degradation.

4.1. Comparison with Other AI-based Models

As mentioned in the introduction section, a fuzzy logic-based DGA interpretation model is
presented in [19]. While this model integrates all conventional DGA interpretation techniques based
on pre-specified weighting factors, the model does not take into account the evolution rate of the
individual gases nor the dynamic change in weighting factors and adaptive learning of the model.
To assess the robustness of the new GEP-based model proposed in this paper, DGA data in [19] are
re-assessed using the developed GEP model and compared with the fuzzy logic results of [19] as listed
in Table 4.

Table 4. Comparison of the GEP model with the fuzzy logic model in [19].

Samples H2 CH4 C2H2 C2H4 C2H6 CO CO2
Output of the
Model in [21]

Output of GEP
Model (h)

1 2 7 0 0 0 0 132 No fault No fault (1)

2 54 0 0 4 0 106 1303 No fault No fault (1)

3 47 12 0 8 0 115 1113 No fault No fault (1)

4 80 619 0 2480 326 268 2952 Thermal Thermal (3)

5 231 3997 0 5584 1726 0 2194 Thermal Thermal (3.8)

6 507 1053 17 1440 297 22 2562 Thermal Thermal (3.5)

7 127 24 81 32 0 0 2024 Arcing Arcing (6.5)

8 441 207 261 224 43 161 1123 Arcing Arcing (7.6)

9 217 286 884 458 14 176 1544 Arcing Arcing (7.8)

10 160 10 1 1 3 - - Corona Corona (4.1)

11 240 20 96 28 5 - - Corona Arcing (6.4)

12 2587 7.88 0 1.4 4.7 - - Corona Corona (4.3)

In Table 4, the first 3 samples show normal condition because the concentration of all key gases
in these samples is below the fault limit of key gas method. Hence both models result in “no fault”
condition and the GEP provides a health index of 1. Samples 4, 5 and 6 comprise high concentration of
C2H4 and CH4 which reflects a thermal fault. Both models result in “thermal fault” and the GEP model
indicates a health index between 2 and 4 for the three samples. The high concentration of C2H2 in
samples 7, 8 and 9 indicates arcing fault. The two models outputs coincide with this analysis. Depends
on the severity of fault, the GEP model provides a health index ranges between 6 and 8 for these three
samples. According to Table 3, these units should be taken out of service for further investigation for
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the source of arcing. The high concentration of H2 in DGA samples 10 and 12 in Table 4 indicates low
energy discharge (corona) that both models result in. While the output of the fuzzy-logic-based model
in [19] reflects corona fault for DGA sample 11, the GEP model results in arcing fault. This is attributed
to the considerable amount of C2H2 in this oil sample.

To compare the proposed model with other artificial intelligent (AI)-based models published
in the literature, DGA results in [38] have been re-assessed using the proposed GEP model. In [38],
10 DGA samples are assessed using four AI-based models namely; artificial neural network (ANN),
support vector machine (SVM), extreme learning machine (ELM) and self-adaptive evolutionary
extreme learning machine (SaE-ELM). The authors in [38] divided possible faults into partial discharge
(PD), discharges of low energy (D1), discharges of high energy (D2), thermal fault less than 300 ◦C
(T1), thermal fault between 300 ◦C and 700 ◦C (T2) and thermal fault higher than 700 ◦C (T3). Table 5
shows the results of the 10 investigated DGA samples as published in [38] along with the result of the
GEP model proposed in this paper.

Table 5. Comparison of the GEP model with other AI-based models in [38].

Sample Number H2 CH4 C2H2 C2H4 C2H6
Outcomes of Various AI-based Models

ANN SVM ELM SaE-ELM GEP model (h)

1 58 13.4 0.2 1.8 0.8 D2 D2 D2 D2 No fault (1)

2 103 5.8 0.7 7.3 5 T1 T3 T1 T1 Corona (4)

3 45 29 0 15.7 8 D1 D1 D1 D1 No fault (1)

4 416 21 1 43.1 10.5 T1 T3 T1 T3 Corona (4.3)

5 59 53 0.8 60.3 17.7 T2 T2 T2 T2 Thermal (2.5)

6 10.5 4.8 2.2 4.8 5 D1 D1 D1 D1 No fault (1)

7 137 97 1.5 29 12 T2 T2 T2 T2 Corona (4.1)

8 89 73 5 6.8 6 D2 D2 D2 D2 No fault (1)

9 240 157 0.8 127 98 T2 T2 T2 T2 High energy
discharge (6)

10 116 104 0 51 36 T2 T2 T2 T2 Corona (4.1)

While other models show faulty cases for DGA samples 1, 3, 6 and 8, the proposed GEP model
results in “no fault”. This is attributed to the fact that the concentration of the key gases of these
samples are below the maximum normal limits provided in the key gas analysis standard. While other
models reflected thermal fault for samples 2, 4, 7 and 10, the GEP model suggests a corona fault due
to the high concentration of H2 in such samples. Due to the relatively high concentration of C2H4 in
sample 5, all models including GEP suggest thermal fault. Sample 9 comprises high concentration of
all gases except C2H2 which reveal thermal fault along with high energy discharge. All models in [38]
result in thermal fault and the proposed GEP model indicates high energy discharge.

4.2. Evaluation of the Model on Units with DGA History

The trend of gases evolution is investigated for some transformers with DGA history. Some of
these results are presented below.

DGA samples were collected yearly for a 28 MVA, 11/34.7 kV power transformer. Results during
the period 2013 to 2016 are shown in Table 6 (all gases concentrations are in ppm). The increment
increase in H2 and CO2 indicate thermal fault involving cellulose. The GEP model results in 4.5 health
index for such transformer. More frequent DGA samples are recommended and further oil assessment
should be conducted.
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Table 6. DGA history of transformer 1.

Gas Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

H2 296 110 444 1893 3894

CH4 2 4 3 5 8

C2H6 1 1 2 2 2

C2H4 1 1 3 3 2

C2H2 <1 <1 <1 <1 <1

CO 183 243 318 359 377

CO2 2257 3741 3826 4760 5310

Due to the high concentration of H2 in the first DGA sample of another power transformer shown
in Table 7, it was recommended to observe the gas evolution based on weekly samples and degas the
oil. After 4 weeks all key gas concentrations indicated normal operation as can be seen from sample 5
in the table. GEP model reflected a health index of 0.5 for such transformer.

Table 7. DGA history of transformer 2.

Gas Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

H2 1975 2931 1614 1904 <5

CH4 7 7 6 7 <1

C2H6 2 2 2 2 <1

C2H4 4 2 3 2 1

C2H2 <1 <1 <1 <1 <1

CO 445 412 480 285 14

CO2 3101 5096 6803 6653 192

While the CO2/CO in the DGA samples collected for a third power transformer (Table 8) indicates
normal cellulose aging, the trend increase in H2 indicates low energy electrical discharge and the GEP
model provided a health index of 4 for such transformer.

Table 8. DGA history of transformer 3.

Gas Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

H2 20 30 258 249 1233

CH4 2 3 4 4 5

C2H6 2 1 2 2 2

C2H4 16 11 21 25 27

C2H2 <1 <1 <1 <1 <1

CO 158 126 173 177 224

CO2 2386 1670 2898 2958 3425

4.3. Advantage of the Proposed Model Over Conventional Interpretation Techniques

To confirm that DGA is not an exact science and conventional interpretation techniques may lead
to different outcomes for the same oil sample, some DGA data are listed in Table 9 with the type of
fault revealed by the five conventional interpretation methods along with the fault type suggested by
the GEP model.
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The first 3 samples in Table 9 indicate normal operation by the key gas method. Other ratio-based
methods indicate either out-of-code or false interpretation. According to the flow chart in Figure 2,
the output of the GEP model will be only based on the key gas method and hence provides normal
operation for these three samples. It is to be noted that the CO2/CO ratio depends on the individual
concentration of the two gases and is significant when the concentration of CO2 and CO becomes
considerable. For example sample 3 in Table 9 indicates a ratio of 0.2 however, individual concentration
of both gases is not significant and hence normal operation can be confirmed. On the other hand while
the CO2/CO ratio in samples 1 and 2 is above 10, the high concentration of both gases should be
investigated and furan analysis is recommended.

The high concentration of the H2 in samples 4 indicates partial discharge activity. The high
concentration of CO and CO2 in this sample may be an indication for paper degradation even though
their ratio is far above 10. The developed GEP model integrates the results of the conventional
techniques based on their accuracy levels to provide an overall result (F3). As indicated in the flow
chart of Figure 2, in case of out-of-code result for a ratio-based method (e.g., IEC in this case), its
contribution to the overall result is eliminated.

The high concentration of C2H2 in sample 5 reflects an arcing fault which was resulted by 3
conventional techniques along with the developed GEP model.

Table 9. DGA samples with the five conventional interpretation techniques and the developed
GEP model.

Sample Number
Gas Concentration (ppm) Conventional Interpretation Methods Fault Type Revealed

by GEP ModelCH4 C2H4 C2H2 C2H6 H2 CO2 CO Key Gas Roger Duval Doernenb. IEC

1 0 0 0 2 51 9386 541 F1 F5 F5 F4 F5 F1

2 0 0 0 0 53 7030 537 F1 F3 F5 F4 F5 F1

3 27 4 1 49 1 53 254 F1 F4 F4 F4 F4 F1

4 68 0 0 0 1088 53,048 387 F3 F3 F3 F5 F5 F3

5 24 32 81 0 127 2024 0 F4 F3 F4 F4 F3 F4

While the above results show a good performance for the developed GEP model, there is
uncertainty of the health index reflected by the model. Also, accuracy of the model in detecting
multiple faults is limited. These limitations can be improved through training the model using wide
range of DGA data covering all types of faults. Also, as the model was built based on the weights
published in [19], the accuracy may be improved by adapting these weights using more DGA results.

5. Conclusions

This paper presents a gene expression programming-based model to analyze the dissolved gas
analysis data. The developed model takes into account the history of the transformer DGA and is easy
to adapt based on the obtained results. While the model shows satisfactory performance, its accuracy
can be improved further by considering more DGA samples. The implemented model reflects a
general health condition of the investigated DGA sample using five interpretation techniques that are
combined using specific weighting factors calculated based on a consistency analysis performed on
collect DGA samples from operating power transformers. These weighting factors are not stationary
and can be adapted through more DGA results. The developed model is easy to implement within
existing online DGA sensors to automate and standardize the interpretation process of the measured
characteristic gases.
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