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Abstract: Cybersecurity is an emerging challenge for power systems, as it strongly affects their
reliability and the whole energy system cost. The paper uses several Unit Commitments (UC) models,
applying different methods to tackle renewables’ uncertainty. The selected power system is IEEE
RTS 96. The UC models are used to assess the impact of different cybersecurity threats. The focus
is to assess their impact on the total operating cost and the power grid adequacy to handle them.
The comparison between the UC models shows that more robust UC models lead to higher total
operating costs. The cost, unit dispatching, and energy mix evolution have a non-linear trend,
depending on the power system characteristics and the cyberattacks types. However, the paper
provides evidence of considerable price signals in the case of the examined cyberattacks. Each
Transmission System Operator (TSO) should examine combinations of cyberattacks and operating
conditions to identify crucial cases for system stability and power system cost operation. The applied
methodology would also require substantial developments or supplementary approaches to assess
cyberthreats at the distribution level.
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1. Introduction

Power systems are among the most complex and critical infrastructures of a modern digital
society, serving as the backbone for its economic activities and security. It is therefore in the interest of
every country to secure their operation against cyber risks and threats [1], as stated in the report of
the European Commission’s Smart Grids Task Force, as well as in the ‘Cyber Security in the Energy
Sector’ report [2] published in 2017 by the Energy Expert Cyber Security Platform (EESCP), stressing
the need for addressing the major challenges of cyber threats in the energy sector as well as providing
the requirements for addressing appropriately cybersecurity. Potential cybersecurity threats could
have cascading effects, leading to damage and power outages, as well as personal data breaches [3].

Over the last few decades, the power system has been modernized. This modernization concerns
(i) market aspects, due to its liberalization, (ii) organizational aspects, due to the change of roles from
the utilities, where central planning is replaced by decentralized operation with active participation of
final consumers, as well as (iii) operational aspects, due to the evolution of smart technologies and
communication protocols. Novel Internet of Things (IoT) nodes and smart meters are introduced
in various parts of the energy grid, while existing SCADA systems are used for monitoring and
control operations that are widely dispersed in case of energy transport and distribution networks.
Furthermore, distributed control systems (DCS) are used for single facilities or small geographical
areas, while remote terminal units (RTU) and programmable logic controllers (PLC) monitor system
data and initiate programmed control activities in response to input data and alerts. Figure 1 provides
the typical structure of a modern power system [4], as well as the communication among the different
assets of the power system, in generation, transmission, distribution, and consumption.
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Cyber threats are evolving at a tremendous pace, exploiting capabilities created by the
modernization of the power systems, as stated in the ENISA Smart Grid Threat Landscape report [5].
This is related to the transition from a centralized power system, based on large power stations and
vertical integrated utilities, to a decentralized power systems model [6], as well as the complementary
evolution of more advanced communication and digital systems. Modern power systems are becoming
increasingly dependent on communication systems for their operations, and as a result increasingly
susceptible to cyberattacks. As stated in the NIST report for Guidelines for Smart Grid Cybersecurity [7],
while integrating information technologies is essential to building the smart grid and realizing its
benefits, the same networked technologies add complexity and introduce new interdependencies and
vulnerabilities to potential attackers and unintentional errors.

However, the development of smart power systems creates critical challenges, especially related
to tackling rapidly evolving cybersecurity issues. This affects the capability of the Transmission and
Distribution System Operators (TSOs and DSOs) to guarantee resilience, reliability, stability, security
of supply, and power quality for the final users of electricity.

• Essential power system functions at risk from cyberattacks include:
• Electricity supply (generation) stability and reliability;
• Electricity transmission and distribution stability and reliability;
• Communication between systems or equipment;
• Information on the operating conditions of generation, transmission or distribution equipment;
• Black start capability;
• Equipment performance and ability to recover (backup systems).

Cyberattacks could affect not only system operators, but also market participants. For example,
demand aggregators create billing systems for issuing invoices to their final consumers. Those systems,
either using desktop computers, cloud services, or blockchain technology, are in danger of cyberattacks,
which could considerably affect cash flows and finally the viability of market participants. Similar
threats exist for participants that use peer-to-peer trading services. Although such types of threats
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are possible and can have important effect, the threats that affect grid stability are considered more
challenging due to their cascading effects.

A crucial issue in the assessment of cybersecurity threats is the identification of their impact on
power systems’ reliability and the whole energy system cost. This paper uses different unit commitment
models, implementing different levels of robustness to tackle uncertain renewables generation, to
assess the impact of the cybersecurity threats on the power systems. It provides price signals on
the impact of the threats on the wholesale marginal prices and on the whole energy system costs.
It identifies cases where black-out events are inevitable, estimating the overall cost of the interruption
in energy service. The paper provides useful insights to the TSOs, as it provides price signals of the
cyberthreats, enabling the identification of benchmark values for relevant equipment costs and tariff
policies for producers and end users.

Sun et al. [8] provide a review of cyber systems in a smart grid, summarizing the cyber protection
and cyber-physical system testbeds. The paper proposes a methodology for the detection of coordinated
cyberattacks, which, however, is not holistic as there are unsolved cyber vulnerabilities that require
further research. Mrabet et al. [9] provide a review of the cybersecurity requirements in smart grids,
describing different types of severe cyberattacks. The paper proposes a cybersecurity strategy to detect
and counter these critical attacks. Jarmakiewicz et al. [10] describe a cybersecurity protection approach
for power grid control systems, by identifying key elements of the power system and their importance
to power grid security. Shi et al. [11] provide a review of models, methods, and applications for the
cyber-physical interaction in power systems. Poudel et al. [12] present a real-time cyber-physical
system testbed for power system security and control, focusing on voltage stability and generation loss.
Hammad et al. [13] present an offline co-simulation testbed for studies of power systems’ cybersecurity
and control verification. Liu et al. [14] present a novel model for the evaluation of the validity of active
cyber-physical distribution system. The paper quantifies the impact of cyber faults on functionality
validity during distribution automation.

The previous paragraph shows that the literature on cybersecurity issues in power systems is
rapidly increasing. However, the papers mainly focus on the identification of security threats, rather
than on the assessment on the actual operation and cost of the power systems. There are also a
growing number of research papers on specific aspects of the power systems. Part et al. [15] focus
on the implementation of cybersecurity strategy for safety systems of nuclear facilities. Gunduz and
Jayaweera [16] provide a reliability assessment of a power system with cyber-physical interactive
operation of photovoltaic systems. They present a probabilistic reliability model, concluding that
impacts of cyber threats are considerable. However, they do not provide relative price signals but
suggest that a relative quantitative assessment is required. Sundararajan et al. [17] provide a survey
of challenges and solutions for distributed generation cyber-physical security. The paper identifies
the key vulnerabilities, attacks and potential solutions for solar and wind units at the protocol level.
Tellbach and Li [18] examine cyberattacks on smart meters in residential customers, concluding
that integrity and confidentiality attacks cause monetary effects on the power grid, while availability
attacks—besides monetary effects on the power grid—mainly aim at delaying or stopping the operation
of smart meters. Ye et al. [19] provide a quantitative vulnerability assessment of cybersecurity for
distribution automation systems. Potential physical consequences of cyberattacks are analyzed at
two levels: the terminal device level and the control center server level. A game theory-based
approach is used to examine the relationships among different vulnerabilities by introducing a
vulnerability adjacency matrix. The results in a relatively small system demonstrate the reasonability
and effectiveness of the proposed methodology. Venkatachary et al. [20] provide a review of the
economic impacts of cybersecurity in the energy sector. However, the analysis is done in a top-down
manner, without applying a detailed robust methodology that assesses the impacts of specific threats
to the power system. Liu et al. [21] examine the impact of cyberattacks on the economic operation
of power systems. Liu et al. [22] estimate the impact of three different possible cyber events on a
physical power grid, using an integrated cyber-power modeling and simulation testbed. Poudineh
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and Jamasb [23] examine the impact of electricity supply interruptions in case of the Scottish economy.
They provide the sectoral interdependencies as well as the cost of energy not delivered. Considering
that those interruptions could result from cyberattacks, the paper provides insights into related
price signals.

Cybersecurity is affected by the structure of power systems, as well as by communication protocols
and standards. Leszczyna [24] provides a review of standards with cybersecurity requirements
for the smart grid. The paper assesses 17 standards, which are described from a cybersecurity
requirements perspective and refer to the IEC smart grid architecture. Moreover, the relationships
between cybersecurity requirements in different standards are analyzed and visualized. The role of
communication standards is important, as shown in a paper that provides a technical overview and
benefits of the popular IEC 61850 standard for substation automation [25]. Jarmakiewicz et al. [26]
describe a cybersecurity protection approach for power grid control systems. The paper also discusses
the verification process of the functionality provided by an implemented cybersecurity system.
Cybersecurity is a challenge for different systems and applications, leading to the development
of cybersecurity assessment models. A recent paper [27] describes a cybersecurity risk analysis model
using fault tree analysis and fuzzy decision theory in order to evaluate cybersecurity risk of particular
applications. Zarreh et al. [28] describe a game theory-based cybersecurity assessment model for
advanced manufacturing systems. The literature review revealed that cybersecurity in power systems
is a challenging issue. Relevant papers are rapidly disseminating; however, they mainly focus on
the identification of relevant threats and vulnerabilities, rather than on the quantification of their
impact on the power system operation and cost. This gap is the focus of this paper, namely, to provide
a quantitative assessment of the impact of cybersecurity threats. Towards providing robust price
signals, robust methodologies must be selected. This is the reason that a Unit Commitment (UC)
model has been chosen for this analysis. The aim of a UC algorithm is to determine which units will
produce energy in each hour of a day to meet demand. The UC problem is complex as it incorporates
several techno-economic constraints related to the production units and the transmission lines. The UC
problem identifies the power units’ dispatch, considering their operational and maintenance costs, their
ramping capacity, their capability to provide ancillary services, and other techno-economic criteria.
The UC problem is formulated as a Mixed Integer Linear Programming (MILP) problem, which is
adequate to handle such complicated problems. The problem is solved in such a way that the overall
fuel cost is minimized with respect to the system’s and unit’s constraints.

The applications of unit commitment models are also extended, as they are considered robust
approaches to simulate the power systems operation. UC models examine—in most cases—a national
power system or a small power system, providing insights into different challenges it faces. However,
to our knowledge, there has been no attempt to quantify the impact of cybersecurity threats on power
systems. Moreover, there are few cases providing a comparison among different UC models, which
would be a useful step towards revealing the required level of detail for robust solutions and the
impact of uncertainties on key variables. The Energy and Environmental Policy laboratory at the
University of Piraeus has extensive experience in developing and extending UC models, but its work
mainly concerns the Hellenic power system [29–31]. Considering that the assessment of cybersecurity
threats is a challenging issue, the application of a common power system such as the IEEE RTS 96 with
increased penetration of renewables has been selected, as this represents a large but more commonly
used power system in the international community. This has led to the application and extension of
UC models by the Renewables Energy Analysis Lab at the University of Washington [32].

The paper contributes to the literature by applying different UC models, differentiated by
tackling uncertain renewable electricity generation, to estimate the impact of cybersecurity threats in a
commonly used power system. The highlights of the paper are: (i) integration of cybersecurity threats
in the Unit Commitment problem, (ii) comparison of different UC models on the IEEE RTS 96 power
system, tackling differently the uncertainty of renewable electricity generation, (iii) assessment of the
impact of cybersecurity threats in the power system cost and scheduling; and (iv) provision of useful
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insights into the effects of cybersecurity threats on the total operating cost of a power system and its
adequacy to handle them.

The rest of the paper is organized: Section 2 provides the methodology applied. Section 3
examines potential cyberattacks on the power system, identifying scenarios that will be described,
simulated, and discussed in Section 4. Finally, Section 5 provides the main conclusions and highlights
of the paper.

2. Methodology

The Renewables Energy Analysis Lab at the University of Washington has developed five different
implementations of the Unit Commitment problem [33], where the basic formulation is described in
Appendix A. The application of the UC models concerns the IEEE RTS-96 power system, shown in
Figure 2. This power system includes, apart from thermal production units of various fuel (nuclear,
coal-fired, diesel, natural gas) with 10,215 MW total installed capacity, renewable energy generation
units from wind, whose power production is uncertain compared to other renewable technologies
such as photovoltaics [33]. The whole system can be seen in the following layout.
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Renewable energy sources introduce uncertainty, due to the stochastic nature of the wind and the
weather conditions in general. Transmission system operators must forecast the real generation from
those renewable sources, affecting the stability of the power system, the strategy of energy market
participants. We did not consider other renewable technologies, such as photovoltaics, as their power
output can be forecasted with much higher accuracy, so the introduction of photovoltaics would lead to
an upgrade of the net load at each bus rather than an introduction of uncertain renewables production.
Photovoltaics, aside from the sunset effect, which affects the unit commitment problem and enhances
the need for flexible ramping capacity, does not increase uncertainty in the dispatch of power units, as
the uncertain power output from wind farms is doing.

The models developed by the Renewables Energy Analysis Lab, used for this paper, are the
following: Deterministic unit commitment, Stochastic unit commitment, Improved interval unit
commitment, Interval unit commitment, and Robust unit commitment. Each of those models uses a
different mathematical procedure to forecast the anticipated renewable production. Some of them are
more conservative than others. Consequently, those models are committing more thermal units, and
the stability of the system is increased but with a higher total economic cost.
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The UC models require a considerable amount of input data, which are described in Appendix B.
The modelers have the option to change some constants in the data input program. Through those
options, we can modify the penetration of the renewable sources, the variable cost, and ramping
capabilities of thermal units, the capacities of the transmission lines, the wind profile and a penalty
factor in the case of spilled wind production or unserved loads. In our research, we choose to have 30%
of energy from wind power units, which is much higher than the current state of most power grids and
a possible future power system of the next decades. Another decision is to go with the unfavorable or
favorable wind profile. We have chosen the unfavorable wind profile.

2.1. Differences between the UC Models

2.1.1. Deterministic Unit Commitment Model (DUC)

This model uses only one forecast for the wind production, resulting from the elaboration
of historical data. This model provides either conservative or very inefficient solutions in certain
conditions. Therefore, the incapability of the model to tackle uncertainty of renewables production,
leads to solution with limited robustness.

2.1.2. Stochastic Unit Commitment Model (SUC)

The stochastic model, instead of using a fixed forecast calculates the unit commitment for
10 different wind scenarios, assigning a weight on them based on the probability of each scenario.
The model captures a certain level of unhedged uncertainty, which is quantified concerning expected
unserved loads and spilled production [34].

2.1.3. Interval Unit Commitment Model (IUC)

This model implements a simplified representation of renewables uncertainty. The deterministic
scenario is used a basis, on which an upper and a lower bound scenario for the wind energy production
are identified. The model uses upper and lower bound forecasts in order to estimate the ramp-up and
ramp-down limits for the thermal units, which leads to the commissioning of more power units and
increase of the overall energy cost.

2.1.4. Improved Interval Unit Commitment Model (IIUC)

The Improved Interval Unit Commitment Model (IIUC) is an enhanced version of the previous
model, where the upper and lower bounds are replaced by four scenarios. The two new scenarios
incorporate more realistic slopes for the ramping capability of the thermal units. This approach is
much more realistic because the previous extreme transition values are not possible in the real world.
As a result, we anticipate that the IIUC solution will be less expensive than IUC.

2.1.5. Robust Unit Commitment Model (RUC)

The objective function of the model is the following, as presented in [35]:

T

∑
t=1

I

∑
i=1

(α·xi(t) + suci(t)) + max

{
B

∑
b=1

kb·gi,b(t)

}
∀ t ≤ T, i ≤ I (1)

The nomenclature for all UC models are provided in Appendix A. The objective function includes
the startup cost and fixed production cost of the power units, as well as the variable production cost
in the worst-case scenario, which stands as the main difference with the other models. The model is
considered as a conservative unit commitment model with increased robustness, as it is based on the
worst-case scenario. The model initially decides which units to be committed, based on their fixed
and start-up costs. Then the output power of the power units is calculated to meet the reserves for the
worst-case scenario [35].
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2.1.6. Comparison of UC Models

Considering the theoretical model differences, a recent work [36] confirms those results. Figure 3
summarizes the differences between the models. Figure 3 shows that more robust UC models, being
more “conservative” in constraints, led to the commitment of more power from dispatching units.
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3. Cyberattacks on the Power System

The UC models will be demonstrated on dry-run scenarios of the IEE-RTS96 power system.
The prototype will provide a set of different scenarios concerning cybersecurity threats. This section
describes potential threats for the power systems. In order to identify the threats, it is important
to describe the different Information and Communication Technologies (ICT), integrated within the
power systems, with special focus on the TSO, which is responsible for the reliable operation of the
transmission system.

Cybersecurity threats affect the capability of the Electrical Power System Operators to guarantee
resilience, reliability, stability, security of supply, and power quality to the final users of electricity.
Essential system functions at risk of cyberattacks for this demonstration include:

• electricity supply (generation) stability and reliability;
• electricity transmission stability and reliability;
• communication between systems or equipment;
• information on the operating conditions of generation, transmission equipment;
• black start capability.

More specifically, potential cybersecurity threats are:

• smart meters may be used by hackers as entry points into the broader power system;
• unauthorized interference on the measurement of electricity consumption (end-users);
• trip a power-generating unit or modify its schedule;
• cause a blackout in a big area of the grid;
• attack on the electricity market;
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• disrupt the proper functioning of the system;
• attacks through the power system on civil infrastructure.

TSOs are responsible for the operation, maintenance, and expansion of the transmission systems.
TSOs use Supervisory Control and Data Acquisition System (SCADA) for the high-level process
supervisory management of transmission system facilities. SCADA systems are vital for system operators
to monitor and control the electricity network. The fact that SCADA/EMS systems are now being
interconnected and integrated with external systems creates new possibilities and threats. Those issues
have been emphasized in the CIGRÉ joint working groups (JWG) D2/B3/C2.01 and D2.22 [37,38]. As part
of the JWG efforts, the various interconnections of a substation were investigated [39]. An emerging
challenge of the Transmission System Operators (TSOs) is to identify the vulnerabilities in the power
systems, as well as how each cybersecurity threat affects independently and cumulatively those aims.
This will help with the design of adequate security measures to ensure a cyber-secure system, which
concerns the design of appropriate procedures and policies to tackle each threat, considering the relevant
clauses of the ISO/IEC 27032:2012 and ISO 27001 standards.

The power units have installed Remote Terminal Units (RTU), using PLCs for their communication
with the system operator. The communication protocols are based on international standards
IEC60870-101 and IEC60870-104. The international standard IEC61850, which defines communication
protocols for intelligent electronic devices at electrical substations, is an innovative standard, especially
as it tackles multi-vendor interoperability [25]. The renewable units’ RTUs communicate through
ISDN or PSTN telecommunication services. Distributed generation units, such as photovoltaic units,
are usually obliged to install a GSM/GPRS modem for communication purposes, while wind parks
have an RTU for their communication with the dispatcher. Although the renewables do not participate
in real-time dispatching in the same way with conventional thermal units, due to their stochastic
nature, their rapidly growing share raises issues about the scaling-up of potential cybersecurity threats
that could affect power systems reliability, security, and overall costs. Therefore, the identification
of cybersecurity threats for relevant technologies for the main energy carriers of the future power
system, namely natural gas, wind, and solar energy, is an important challenge. The same concerns are
relevant in the identification of threats on indicative customers from different consumer types, using
different telemetering devices (mainly for billing and profile patterns aims, rather than for dispatching
purposes). The structure and communication protocol of power systems identify the potential threats.
In case of the evolution of power line communication as a dominant communication method, or the
transformation of a power system as an Internet-of-Things place, every device, plug, or connection
point of the grid becomes vulnerable to potential cyberattack. This further enhances the importance of
cybersecurity as a major challenge for a power system, as the threat is distributed at many levels and
points, compared to the top-down consideration of cybersecurity that mainly focuses on attacks on
power plants, central control systems, and high-voltage substations. The approach implemented in
this paper, using the unit commitment model for assessing cyberthreats, can be robust for tackling
top-down threats that affect system stability; however, the consideration of threats in a distributed
manner would require considerable model improvements or use complementary approaches to tackle
those challenges in more detail.

The communication of the thermal power plant with the central dispatching of the TSO is done
through special software, called Real-Time Dispatching (RTD), providing instruction every 5 min, and
the Automatic Generation Control system (AGC), which enables the provision of the required ancillary
services in seconds, as depicted in Figure 4. The thermal units also have a Digital Control System
(DCS), which provides several checks concerning its operation and communication with the substation
and the dispatching center.

Several types of cyberattacks can take place. This work focuses on attacks on big plants that are
dispatched by the Transmission System Operator (TSO), monitored through SCADA systems, and
linked to the TSO-operated Automatic Generation Control system (AGC). The examined scenarios are
described and discussed in the next section.
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4. Results and Discussion

This section provides the results from the simulations. The examined scenarios focus on providing
a comparison among the different UC models and secondly on the comparison among the different
cybersecurity attacks.

Firstly, the different UC models have been run without any cyberattack, leading to baseline
scenarios, entitled DCU_BAS, SUC_BAS, IIUC_BAS, and RUC_BAS for the deterministic, stochastic,
improved internal, and robust UC models, respectively.

Secondly, we examined a Cyberattack 1 case with cyberattacks on three thermal units, 400 MW
each, so 1200 MW in total. All three units have been scheduled to operate with the baseline scenarios,
while the cyberattack was set to take place in the first hour of day, not enabling those units to operate
for the whole examined day. A comparison among the first and second set of scenarios enables the
provision of price signals on the cost of cyberattacks, as well as a comparison among the different UC
models, incorporating a different level of robustness for tackling the stochastic and uncertain nature of
the renewables.

Thirdly, another set of scenarios was examined using the RUC model, which is a robust model
enabling the provision of price signals in cases where the transmission system operator (TSO)
adopts a more conservative approach toon tackling uncertainties in the power system. This set of
scenarios, Cyberattacks 1–4, examines different cases of cyberattacks. More specifically, the following
cyberattack cases where examined: (1) cyberattacks in three thermal units, with 1200 MW total capacity,
(2) cyberattacks in six thermal units, with 2400 MW total capacity, (3) cyberattacks in three wind farms,
with 1200 MW total capacity, (4) cyberattacks in three thermal units, of 1200 MW, and three wind
farms, of 1200 MW, with 2400 MW total capacity. In all cases, the thermal units and wind farms were
scheduled to operate in the baseline scenarios. Figure 5 provides the evolution of hourly demand in
the examined day, deviating between 4.3 and 7.4 GW.

Therefore, the examined cybersecurity attacks concern a considerable share of the generating
capacity that is unable to meet the load. However, the examined system has 10.2 GW installed thermal
plants, as well as 6.9 GW of wind farms; therefore, the examined cyberattacks are crucial to the power
system stability and operating costs, but there is still spare capacity, with flexible ramping capability to
meet such events. However, considering that the cyberattacks take place on dispatched thermal and
RES plants, those attacks lead to increased operating costs, due to a change in the energy mix, as well
as to start-up and shutdown costs for switching off the cyberattacked units and switching on new and
more expensive units.
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Table 1 shows the evolution of the overall cost, as optimized in the objective function. The comparison
among the different models shows that the incorporation of more technical constraints, as in the robust
and stochastic models, compared to the deterministic solution, leads to a considerable increase in
the cost. Through the implementation of the cyberattacks—in the case of Cyberattack 1 scenario,
with attacks on three thermal units—the cost is further and considerably increased for all scenarios,
especially for the stochastic and robust UC models. Results are from the interval UC models, as those
models experienced difficulty in finding feasible solutions. The examined scenarios have also led to a
considerable increase in the total computational time, especially in the case of the stochastic UC model.
This has led the author to increase the convergence gap, which has led to a possible local minimum
solution, rather than a global optimum, as can be seen in the increased cost compared to the robust
UC model.

Table 1. Objective function cost (in USD) for different scenarios.

Objective Function Cost

DUC_BAS 1,019,770
SUC_BAS 2,056,180
RUC_BAS 2,056,184

DUC_Cyber1 1,276,210
SUC_Cyber1 2,548,230
RUC_Cyber1 2,423,626
RUC_Cyber2 2,952,878
RUC_Cyber3 2,207,915
RUC_Cyber4 2,548,225

We further focused on the RUC model, examining different cyberattacks’ scenarios. Table 1 shows
that cyberattacks on thermal plants lead to considerably higher costs compared to attacks on wind
plants. This is attributed to the fact that the attacked thermal plants were set to operate at their nominal
capacity, due to their comparable cost, constituting base load plants. The enforced switching-off of
those units, with a high capacity factor compared to renewables, led to the need for dispatching further
units, as well as increasing the operation of more expensive units. Dispatching of units does not take
place only for generating purposes, but also for providing the requested ancillary services for the
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system stability. Especially in more robust UC models, such constraints lead to higher costs, as shown
in Table 1, where Cyberattack 1, in the case of the deterministic model, is considerably less costly
compared to the robust and stochastic UC models. Table 2 shows that different cyberattacks affect the
dispatched units, leading to a different number of units that operate each hour. The importance of
thermal plants is depicted in Figure 6, which shows the limited power generation from wind plants,
which can justify the limited effect on the operational cost, compared to the thermal plants. However,
in the case of different renewables generating profile, i.e., with photovoltaics that operate at peak hours
with a high capacity factor and create a sunset effect, cyberattacks on their inverters could lead to
considerable ramping needs.

Table 2. Number of thermal units dispatched for different scenarios using the RUC model.

Units Committed

RUC_BAS RUC_Cyber1 RUC_Cyber2 RUC_Cyber3 RUC_Cyber4
1 30 27 26 31 29
2 11 12 17 16 16
3 9 10 17 13 15
4 7 12 15 8 13
5 7 15 16 10 14
6 14 20 23 15 20
7 31 32 41 32 36
8 35 44 45 41 42
9 42 46 46 42 47

10 43 46 53 43 47
11 43 48 58 45 48
12 43 46 51 43 47
13 43 46 53 43 46
14 43 46 56 43 46
15 43 46 52 43 46
16 43 46 53 43 46
17 44 46 56 46 47
18 45 50 56 46 47
19 47 56 64 46 49
20 45 46 51 46 47
21 34 44 45 38 44
22 25 28 36 26 30
23 11 17 21 21 23
24 7 7 12 9 13

Therefore, cyberattacks on thermal units affect both start-up and shutdown costs, as well as
generating and ancillary services costs. However, we cannot provide a generic conclusion that
cyberattacks always have a higher impact on total operating costs, as renewables have a low operating
cost, and therefore the decommissioning of those units might lead to a more expensive energy mix.
However, the examined cases quantitate a higher impact on attacks on thermal units. Moreover,
the examined cases using the RUC model show that they also affect the energy mix,—not only the
dispatching of thermal plants but also the curtailment of wind plants. This is depicted indirectly in
Table 3, which shows that the energy mix is changed as the curtailment of wind production changes.
This can also be seen in Figure 7, which shows small but evident changes in the energy mix. However,
those changes also depend on the topology of the network, the nodes of the cyberattacked units,
their operating condition, and the interconnections among different nodes. Therefore, the operating
cost, unit dispatching, and energy mix evolution show a non-linear trend on the effect of different
scenarios. A clear outcome from the analysis is that each TSO should examine different combinations
of cyberattacks with different operating conditions to identify cases that are more crucial for the system
stability and the overall power system cost operation. The examined attacks show an increased cost
for the power system operation and reveal the importance of base load plants. However, in the case of
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power system operation in marginal conditions, namely with limited available capacity, the importance
of flexible units with high ramping capacity might be more important.
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5. Conclusions

This paper aims at assessing the impact of cybersecurity attacks on power systems. It uses different
mixed-integer linear programming unit commitment models, which apply different methodologies to
incorporate high levels of renewable energy production. The UC models, applying different methods
to integrate the uncertainty from the renewables, are further extended to integrate cybersecurity
threats, aiming to compare the UC models but also the effect of cybersecurity threats on different
power capacity mixes and reliability uncertainty. Our focus is on the effects on the production side,
hence the total operational cost, the average energy cost, the dispatch of power units, as well as the
power grid adequacy to handle the cybersecurity threats. The selected power system is IEEE RTS 96.

The examined scenarios focus on providing a comparison of the different UC models and the different
cybersecurity attacks. The comparison between the UC models confirmed our theoretical assumptions
that more robust UC models mean higher total operating costs, due to the more conservative approach to
tackle uncertain renewable electricity generation and the consideration of ancillary services. The examined
cyberattacks take place on dispatched thermal and RES plants, leading to increased operating costs. This
is attributed to the commissioning of more expensive units as well as the increased start-up and shutdown
costs, due to the switching on new and more expensive units and the switching off the cyberattacked
units. Moreover, the scenarios lead to an increase in the total computational time for finding the optimum
solution. The results show that cyberattacks on thermal units affect both start-up and shutdown costs,
as well as generating and ancillary services costs, leading to a higher impact compared to attacks on
wind plants. However, the paper cannot provide a generic conclusion that cyberattacks on thermal plants
always have a higher impact on total operating costs, as renewables have a low operating cost, and
therefore the decommissioning of those units might lead to a more expensive energy mix.

The effects depend on the topology of the network, the nodes of the cyberattacked units, their
operating condition, the interconnections among different nodes, and the ramping capacity of the
available units. The cost, unit dispatching, and energy mix evolution have a non-linear trend that
depends on the power system characteristics. The examined cases lead to considerable price signals
on the potential effects of cyberattacks. However, each TSO should examine different combinations of
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cyberattacks in different operating conditions to identify cases that are more crucial for the system
stability and the overall power system operational costs. The approach implemented is useful for
assessing cyberattacks at a system level. However, unit commitment modeling cannot quantify threats
at the distributed level, unless considerable model developments are made and/or more detailed
approaches are elaborated. This creates challenges for further research at the distribution level, which
could be scaled up to be integrated at system level.

Funding: This work has been supported by the Horizon 2020 research project INTERFACE: TSO-DSO-Consumer
INTERFACE architecture to provide innovative grid services for an efficient power system (Project Grant
Agreement No. 824330).
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Nomenclature

A. Sets
B Index of generating unit cost curve segments, 1-B
I Index of generating units, 1-I
J Index of generating unit start-up cost, 1-J
L Index of transmission lines, 1-L
S Index of bus bars, 1-S
T Index of hours, 1-T
B. Parameters
ai Fixed production cost of unit i ($)
Bsm Admittance of transmission line between nodes s and m (S)
ds(t) Load demand at bus s (MW)
gdown

i Minimum downtime of unit i (h)
gup

i Minimum up time of unit i (h)
gdown,init

i Time that unit i has been down before t = 0 (h)

gup,init
i Time that unit i has been up before t = 0 (h)

g0
i Output of unit i at t = 0 (MW)

gmax
i Rated capacity of unit i (MW)

gmin
i Minimum output of unit i (MW)

gmax
i,b Capacity of segment b of the cost curve of unit i (MW)

gon−o f f
i Onoff status of unit i at t = 0, equal to 1 if gup,init

i > 0, otherwise 0
ki,b Slope of the segment b of the cost curve of unit i ($/MW)
lmax
sm Capacity of the transmission line between nodes s and m (MW)

Ldown,min
i Length of time that unit i has to be off at the start of the planning horizon (h)

Lup,min
i Length of time that unit i has to be on at the start of the planning horizon (h)

M Large number used for linearization
rampdown

i Ramp-down limit of unit i (MW/h)
rampup

i Ramp-up limit of unit i (MW/h)
succost

i,j Cost steps in start-up cost curve of unit i ($)
suclim

i,j Time steps in start-up cost curve of unit i (h)

C. Variables
Ci(t) Operating cost of unit i at time t ($)
countdown

i Unit i downtime period counter
gi(t) Output power of unit i at time t (MW)
gi,b(t) Output power of unit i on segment b at time t (MW)
suci(t) Start-up cost of unit i at time t ($)
wi,j(t) Binary variable equal to 1 if unit i is started at time t after being out for j hours, otherwise 0
xi(t) Binary variable equal to 1 if unit i is producing at time t, otherwise 0
yi(t) Binary variable equal to 1 if unit i is started at the beginning of time t, otherwise 0
zi(t) Binary variable equal to 1 if unit i is shutdown at the beginning of time t, otherwise 0
θs(t) Voltage angle at bus s (rad)
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Appendix A. Basic Formulation of the REAL UC Models

Formulation

The aim is to minimize the total generation cost of the thermal power plants, which is described in the
following objective function [33]:

∑T
t=1 ∑I

i=1 Ci(t). (A1)

Equations (A2) and (A3) describe the binary logic. Specifically, Equation (A3) prohibits a unit starting up
from being simultaneously shut down. Equation (A2) implements the logic that if a unit is starting up at time t, it
cannot be on at time t - 1.

yi(t)− zi(t) = xi(t)− xi(t− 1), ∀ 1 ≤ t ≤ T, i ≤ I (A2)

yi(t) + zi(t) ≤ 1, ∀ t ≤ T, i ≤ I (A3)

Equation (A4) defines the total cost for each unit i. The total cost is the summation of the startup cost of the
units (if needed), the fixed cost, and the variable cost:

Ci(t) = α·xi(t) +
B

∑
b=1

kb·gi,b(t) + suci(t), ∀ t ≤ T, i ≤ I. (A4)

The total unit output is equal to the sum of the generation in each segment of the cost curve:

gi(t) =
B

∑
b=1

gi,b(t), ∀ t ≤ T, i ≤ I (A5)

Minimum unit output must be higher than the minimum output of unit i:

gi(t) ≥ gmin
i ·xi(t), ∀ t ≤ T, i ≤ I. (A6)

Unit output for each generation level:

gi,b(t) ≤ gmax
i,b ·xi(t), ∀ t ≤ T, i ≤ I, b ≤ B. (A7)

Minimum up time constraints:
Lup,min

i

∑
t=1

(1− xi(t)) = 0, ∀ i ≤ I (A8)

t+gup
i −1

∑
tt=t

xi(tt) ≥ gup
i ·yi(t) ∀ Lup,min

i + 1 ≤ t ≤ T − gup
i + 1, i ≤ I (A9)

T

∑
tt=t

(xi(tt)− yi(t)) ≥ 0 ∀ T − gup
i + 2 ≤ t ≤ T, i ≤ I, (A10)

where Lup,min
i = max

{
0, min

{
T,
(

gup
i − gup,init

i

)
·gon−o f f

i

}}
Minimum downtime constraints:

Ldown,min
i

∑
t=1

xi(t) = 0 , ∀ i ≤ I (A11)

t+gdown
i −1

∑
tt=t

(1− xi(tt)) ≥ gdown
i ·zi(t) ∀ Ldown,min

i + 1 ≤ t ≤ T − gdown
i + 1, i ≤ I (A12)

T

∑
tt=t

(1− xi(tt)− zi(t)) ≥ 0 ∀ T − gdown
i + 2 ≤ t ≤ T, i ≤ I, (A13)

where Ldown,min
i = max

{
0, min

{
T,
(

gdown
i − gdown,init

i

)
·
(

1− gon−o f f
i

)}}
Ramp-up and ramp-down constraints:

− rampdown
i ≤ gi(t)− gi(t− 1) , ∀ 2 ≤ t ≤ T, i ≤ I (A14)
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rampup
i ≥ gi(t)− gi(t− 1) , ∀ 2 ≤ t ≤ T, i ≤ I (A15)

− rampdown
i ≤ gi(t1)− g0

i , ∀ i ≤ I (A16)

rampup
i ≥ gi(t1)− g0

i , ∀ i ≤ I. (A17)

Equations (A18)–(A20) impose the constraints and calculate the startup cost of each unit i. Specifically,
Equation (A18) sets the limitations for the calculation of the value of variable wij(t), taking into account the
initial conditions.

wi,j(t) ≤ ∑
min{t−1,suclim

i,j+1−1}
tt=suclim

i,j
zi(t− j) + 1 IF

{
j ≤ J − 1

∧
suclim

i,j ≤ gdown,init
i + t−

1 < suclim
i,j+1

}
+ 1 IF

{
j = J

∧
suclim

i,j ≤ gdown,init
i + t− 1

}
, ∀ t ≤ T, i ≤ I, j ≤ J

(A18)

J

∑
j=1

wi,j(t) = yi(t), ∀ t ≤ T, i ≤ I (A19)

suci(t) =
J

∑
j=1

succost
i,j ·wi,j(t), ∀ t ≤ T, i ≤ I, (A20)

where symbol IF represents logical IF and symbol
∧

symbolizes logical AND.
Equations (A21)–(A24) provide the transmission constraints of the power system. Equation (A21) defines

the power balance in the electrical system. Equation (A22) provides the line flow limits. Equation (A23) provides
the limits of the voltage angles, while Equation (A24) sets the voltage angle to zero at the reference bus.

I

∑
i=1

gi(t)− ∑
{s,m}∈L|m〉s

Bsm·(θs(t)− θm(t))− ∑
{s,m}∈L|m<s

Bsm·(θm(t)− θs(t)) ∀ t ≤ T, s ≤ S (A21)

− lmax
sm ≤ Bsm·(θs(t)− θm(t)) ≤ lmax

sm , ∀t ≤ T, {s, m} ∈ L (A22)

− π ≤ θs(t) ≤ π, ∀t ≤ T, s ≤ S (A23)

θs(t) = 0, ∀t ≤ T (A24)

Appendix B. Input Data for the IEEE-RTS96 System

All five models use the same Excel file as a data input file. That file includes all the tables needed for the
calculations. GAMS read the input data through a small program, which provides the users with options to
change some parameters before running the unit commitment model. In the following paragraph, we present
briefly the options available and the data loaded from the Data input code (Renewable Energy Analysis Lab
Library, 2017).

The following tables show the form of the input data as they are inserted into the model.
Thermal unit data:

Table A1. Units map gen_map(i,s): includes the position of each unit in the power system.

s101 s102 s103 s104 s105

i1 1 0 0 0 0
i2 1 0 0 0 0
i3 1 0 0 0 0

Table A2. The capacity of segment b of the cost curve of unit i (MW): g_max(i,b).

Output Block (MW):

b1 b2 b3
i1 6.666667 6.666667 6.666667
i2 6.666667 6.666667 6.666667
i3 25.33333 25.33333 25.33333
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Table A3. The slope of segment b of the cost curve for unit i ($/MW): k(i,b).

Cost ($/MW):

tr4
b1 28.967
b2 29.243
b3 29.703
b1 28.957
b2 29.233
b3 29.693

Table A4. Cost steps in start-up cost curve of unit i ($) suc_sw(i,j).

Start-up Cost ($):

tr4
j1 25
j2 28
j3 31
j4 34
j5 37
j6 40
j7 43
j8 46
j1 25
j2 28
j3 31
j4 34
j5 37
j6 40
j7 43
j8 46

Table A5. Time steps on start-up cost curve of unit i (h) suc_sl(i,j).

Start-up Blocks (h):

j1 j2 j3 j4 j5 j6 j7 j8
i1 1 2 3 4 5 6 7 8
i2 1 2 3 4 5 6 7 8
i3 1 2 3 4 5 6 7 8

Table A6. Time periods that unit i has been down before t = 0 (h): count_off_init(i).

Count “off” Init (h)

column1
i1 0
i2 0
i3 0
i4 1
i5 17
i6 4
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Table A7. Time that unit i has been up before t = 0 (h): count_on_init(i).

Count “on” Init (h)

column1
i1 1
i2 400
i3 220
i4 0

Table A8. Fixed production cost for unit i ($): a(i)

No Load Cost ($)

tr4
i1 454.572
i2 454.562
i3 263.419

Table A9. Ramp-up limit of unit i (MW/h): ramp_up(i).

Ramp-Up Limit (MW/h)

tr4
i1 30.5
i2 30.5
i3 38.5

Table A10. Ramp-down limit of unit i (MW/h): ramp_down(i).

Ramp-Down Limit (MW/h)

tr4
i1 70
i2 70
i3 80

Table A11. Minimum time unit i has to be shut down (h): g_down(i).

Min. Down Time (h)

tr4
i1 1
i2 1
i3 2

Table A12. Minimum time unit i has to be up (h): g_up(i).

Min. Up Time (h)

tr4
i1 1
i2 1
i3 3

Table A13. Minimum output capacity of unit i (MW): g_min(i).

Min. Output (MW)

tr4
i1 4.0
i2 4.0
i3 15.2
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Table A14. Output power of unit i at t = 0 (MW): g_0(i).

Output at t = 0 (MW)

column1
i1 20
i2 20
i3 70
i4 0
i5 0

Transmission line data

Table A15. Admittance of transmission line between nodes s and m (S): admittance(l).

1/X

column1
l1 7142.8570
l2 473.9336
l3 1176.4710

Table A16. Line map, line_map(l,s).

s101 s102 s103 s104 s105

l1 1 −1 0 0 0
l2 1 0 −1 0 0
l3 1 0 0 0 −1
l4 0 1 0 −1 0

Table A17. Capacity of transmission line between nodes s and m (MW): l_max(l).

Capacity

l1 175
l2 175
l3 175
l4 175

Demand load data

Table A18. Demand load on bus s (MW): d(t,s).

s101 s102 s103 s104

t1 63.98618 57.25079 106.0823 43.78002
t2 60.16611 53.83283 99.74907 41.16628
t3 57.30105 51.26936 94.99911 39.20598

Wind plants data

Table A19. Wind plants map w_map(w,s).

s116 s117 s118 s119

w3 1
w4 1
w5 1
w6 1
w7
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Table A20. Capacity of wind plants (MW): w_capacity(w).

Capacity

w1 300
w2 300
w3 600
w4 600

Table A21. Probabilities for each of the wind scenarios: prob(scen).

Capacity

scen1 0.020000
scen2 0.160000
scen3 0.107273
scen4 0.241818
scen5 0.107273
scen6 0.150000
scen7 0.086364
scen8 0.000909
scen9 0.125455

scen10 0.000909

Earlier we mentioned that we have the option to select between a favorable and an unfavorable wind profile.
The input data program selects the appropriate table each time according to our selection. The procedure is the
same for both wind patterns.

Table A22. w_det_pu_1(t,w): includes the available wind power for each unit i calculated in per unit values.

Favorable

Deterministic
Capacity 300 300 600 600 300 600

w1 w2 w3 w4 w5 w6
t1 0.086380 0.211012 0.153027 0.154525 0.026973 0.485740
t2 0.043697 0.139327 0.139853 0.131191 0.076886 0.431102
t3 0.089033 0.151854 0.154940 0.179127 0.095984 0.370302
t4 0.304660 0.299134 0.273481 0.249978 0.064053 0.176555
t5 0.396127 0.299414 0.343453 0.178707 0.025651 0.066776

Table A23. Lower and upper bound of wind production: wind_robust_pu_1(t,w,robust) per unit values.

UP DOWN

col1 col2
t1 w1 0.236872 0.000000
t1 w2 0.337008 0.109605
t1 w3 0.278299 0.042769
t1 w4 0.271115 0.030279
t1 w5 0.084981 0.000000
t1 w6 0.749222 0.254945
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Table A24. Stochastic ramp-up and ramp-down rates of wind production: w_stoch_max_1(t,w,robust).

STOCHASTIC RAMPS

UP DOWN
col1 col2

w1 0.000000 −0.089880
w2 −0.012230 −0.065270
w3 0.121853 −0.117670
w4 0.001779 −0.104180
w5 0.131416 0.003539
w6 −0.032410 −0.312890
w7 0.010194 −0.025100
w8 0.033926 0.000792

Table A25. Probability for each scenario for each wind unit: wind_scenarios_1(t,w,scen).

scen1 scen2 scen3 scen4 scen5 scen6 scen7

t1 w1 0.100862 0.072062 0.099023 0.080163 0.132368 0.061889 0.127721
t1 w2 0.181467 0.220213 0.187513 0.240498 0.191013 0.170966 0.213342
t1 w3 0.158785 0.121393 0.160644 0.144837 0.201459 0.128830 0.161325
t1 w4 0.169363 0.133267 0.176270 0.116373 0.163892 0.071113 0.171963
t1 w5 0.021053 0.000000 0.027147 0.000000 0.010517 0.000000 0.013856
t1 w6 0.488406 0.502584 0.442172 0.504939 0.484160 0.547880 0.481501
t1 w7 0.546199 0.593101 0.516420 0.615420 0.505618 0.549848 0.505922
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