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Abstract: Transient stability status prediction (TSSP) plays an important role in situational 

awareness of power system stability. One of the main challenges of TSSP is the high-dimensional 

input feature analysis. In this paper, a novel two-stage feature selection method is proposed to 

handle this problem. In the first stage, the relevance between features and classes is measured by 

normalized mutual information (NMI), and the features are ranked based on the NMI values. Then, 

a predefined number of top-ranked features are selected to form the strongly relevant feature subset, 

and the remaining features are described as the weakly relevant feature subset, which can be utilized 

as the prior knowledge for the next stage. In the second stage, the binary particle swarm 

optimization is adopted as the search algorithm for feature selection, and a new particle encoding 

method that considers both population diversity and prior knowledge is presented. In addition, 

taking the imbalanced characteristics of TSSP into consideration, an improved fitness function for 

TSSP feature selection is proposed. The effectiveness of the proposed method is corroborated on the 

Northeast Power Coordinating Council (NPCC) 140-bus system. 

Keywords: transient stability; two-stage feature selection; particle encoding method; fitness 

function 

 

1. Introduction 

With the continual enlargement in scale of power grid interconnections and the increasing large-scale 

integration of renewable power generation, the dynamic characteristics of power systems have become 

more and more complex, resulting in higher requirements for power system stability analysis [1,2]. In 

recent years, due to the wide application of wide-area measurement systems and rapid development of 

artificial intelligence (AI) methods, power system transient stability status prediction (TSSP) based on AI 

methods has attracted extensive attention. Generally, TSSP is treated as a two class classification problem, 

including the stable class and the unstable class [3]. Offline, the mapping relationship between the input 

features and the stability status is established by using the strong nonlinear mapping abilities of AI 

methods. Online, the upcoming transient stability status of the system can be quickly predicted by feeding 

the input features into the established classification model. 

The input features are important factors that affect the performance of the classification model. 

However, the existing feature sets applied to TSSP are often manually selected according to 

experience, which can significantly degrade the performance of the classification model due to the 

existence of irrelevant and redundant features [4]. 
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Feature selection, which refers to the process of filtering out the optimal feature subset from the 

original feature set, can eliminate irrelevant and redundant features and improve classification 

performance [5]. Therefore, it has become a basic data preprocessing method, and it is of great 

significance to study the feature selection method for TSSP. 

The existing methods for TSSP feature selection can be divided into two main categories [6]: the 

filter method and the wrapper method. 

The filter method ranks the original features by calculating the importance of each individual 

feature, and it selects a predefined number of top-ranked features as the input features for 

classification models. Different filter methods are generated according to different importance 

metrics. In [7,8], the Fisher criterion is utilized to evaluate features comprehensively, considering both 

the intra-class distance and the inter-class distance. Information measure-based feature selection 

methods are utilized to select important features in [9,10]. Other methods, such as the relief method 

[11] and the rough set method [12], are also adopted for TSSP feature selection. The filter method is 

computationally efficient since it ranks features individually, but it is less effective due to the lack of 

a classification model in the search process. 

The wrapper method considers the feature selection as an optimization problem, and evaluates 

the feature subset by using certain search strategies and classification algorithms. Based on different 

search strategies, the wrapper method can be classified into the greedy search technique and the 

heuristic search technique. The former includes sequence forward search (SFS) methods and 

sequence backward search (SBS) methods, and the latter mainly includes genetic algorithms (GA) 

[13], binary particle swarm algorithms (PSO) [14], etc. Since the wrapper method combines the feature 

selection problem with the classification model, it often has a better performance than the filter 

method [15]. However, as the feature dimension increases, the wrapper method is usually preferred 

to obtain the local optimal solution of the problem.  

From the above analysis, it can be concluded that both the filter method and the wrapper method 

have their own merits and demerits, and a more effective feature selection approach should be 

developed for TSSP problem. 

In this paper, a novel two-stage feature selection method is proposed for TSSP problem. In the 

first stage, normalized mutual information (NMI) is utilized for measuring the relevance between 

individual feature and classes, and the features are ranked based on the NMI values. Then, the top-

ranked features are selected to form the strongly relevant feature subset (SRFS), and the remaining 

features are described as the weakly relevant feature subset (WRFS). The results obtained in the first 

stage will be used as the prior knowledge for the next stage. In the second stage, binary particle 

swarm optimization (BPSO) is utilized as the search algorithm for feature selection, and a new 

particle encoding strategy that considers population diversity and prior knowledge is proposed. In 

addition, fitness function plays a very important role in controlling the search direction of BPSO. By 

taking the imbalanced characteristic of the TSSP problem into consideration, an improved fitness 

function composed of the geometric mean index and feature subset length is proposed. In this paper, 

k-nearest neighbor (KNN) is chosen as the classifier to evaluate the classification performance of the 

candidate feature subset because of its simplicity and rapidity. 

The rest of the paper is organized as follows. Section 2 introduces the methodologies used in the 

paper. Section 3 describes the process of initial feature set construction and data generation. In Section 

4, the proposed two-stage feature selection method is provided. The case study is shown in Section 5 

and the conclusion is drawn in Section 6. 

2. Methodology 

2.1. Normalized Mutual Information 

Mutual information represents the information shared by two variables, which can be utilized 

for measuring the correlation degree of two variables [16]. 

Entropy is the measure of the uncertainty of a random variable. If the probabilities of different 

output classes C are P(ci), i = 1, …, Nc, then the entropy H(c) is defined as follows: 
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The relationship between the conditional entropy, entropy, and joint entropy can be 

demonstrated as below: 

( | )= ( ; ) ( )H C F H C F H F−  (4) 

The mutual information between two variables C and F is defined as [16]: 

( ; ) ( ) ( | )MI C F H C H C F= −  (5) 

From the above equation, it can be concluded that mutual information measures the reduction 

amount of class uncertainty after proving the knowledge of feature vectors. 

The mutual information is symmetric and can be reduced to the following equation: 
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In order to normalize the mutual information value into [0, 1], the normalized mutual 

information (NMI) [17] is denoted as: 

2 ( ; )
( ; )

( ) ( )

MI C F
NMI C F

H C H F
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+
 (7) 

The larger the NMI value is, the stronger the relevance between features and classes will be, and 

vice versa. If the NMI value is 0, it means that the feature vector and classes are totally irrelevant or 

independent of each other. If the NMI value is 1, it indicates that the feature vector and classes are 

completely relevant. 

After ranking the features based on the NMI values, the predefined number of top-ranked 

features can be selected to form the SRFS, and the remaining features are described as WRFS. 

2.2. Binary Particle Swarm Optimization 

Among the heuristic intelligent optimization algorithms, the particle swarm optimization (PSO) 

algorithm, which is easy to implement and has few parameters to tune, is superior to other algorithms 

in terms of success rate and solution quality. The binary version of PSO (BPSO) is employed for TSSP 

feature selection since it is a discrete optimization problem with binary solution space [18]. 

In BPSO, every possible solution to this optimization problem is presented by a particle, which 

has the two attributes of position and velocity. The next particle velocity is determined by the current 

particle velocity and particle position. Specifically, during each iteration, particles will be updated 
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based on the distance from the individual best position and the distance from the global best position. 

The velocity updating formulas of PSO are provided as follows: 

1
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idv
  

nre velocity nd  positiod of the pnrticle i id  imedsiod d nt iterntiod k, 

respectively; pbest id icntes the best positiod of the pnrticle i id  imedsiod d nt iterntiod k, while gbest 

is the best positiod id the swnrm so fnr; c1 nd  c2 represedt the nccelerntiod coefficiedts; r1 nd  r2 nre 

the rnd om dumbers from n udiform  istributiod withid the rndge of [0, 1]. The idertin weight ω is 

use  to codtrol the impnct of the lnst velocity to the curredt velocity, which is lidenrly  ecrense  from 

ωmnx to ωmid to bnlndce the globnl nd  locnl senrch [19], ns showd id Equntiod (9). Nk is the mnximum 

dumber of iterntiods. 

The particle position in BPSO algorithm is updated based on the velocity value, and the transfer 

function should be employed to map the real valued velocity to a probability value between [0, 1] to 

change the binary position. 

The velocity value in the BPSO algorithm means the difference between the current particle and 

the optimal particle. If the absolute value of velocity is relatively large, it means that the difference 

between the current particle and the optimal particle is large, and at this time, the transfer function 

should provide a higher possibility to change the position status of the current particle. Conversely, 

if the absolute value of the velocity is small, the difference between the current particle and the 

optimal particle is small. Then the transfer function should provide a higher probability to maintain 

the current position status. Therefore, v-shaped transfer functions designed in [20,21] is utilized for 

converting the velocity value to the changing probability of position status, as shown below: 
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After calculating the probability value, the binary position is then updated with the following 

formula: 
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where r3 is n rnd om dumber udiformly  istribute  betweed [0, 1]. 

According to Equation (11), the particle position will be changed to the opposite status when the 

random number is smaller than 
1( )k

idT v +
, and when the random number is larger than 

1( )k

idT v +
, the 

status of particle position will be maintained. 

The main steps of BPSO for solving binary optimization problem are describe below: 

Step 1: Set the pnrnmeters of BPSO idclu idg populntiod size, mnximum iterntiod dumber, velocity 

rndge, lenrdidg fnctors, nd  idertin weight rndge. 

Step 2: Iditinlize the bidnry positiod nd  velocity of ench pnrticle rnd omly. 

Step 3: Cnlculnte the fitdess fudctiod of ench pnrticle, nd  up nte the vnlues of id ivi unl best 

positiod pbest nd  globnl best positiod gbest. 

Step 4: Up nte the velocity by usidg Equntiod (8) nd  the bidnry positiod by usidg Equntiods (10) 

nd  (11). 

Step 5: Termidnte the optimizntiod process whed the mnximum iterntiod dumber is renche , nd  go 
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od to step 6. Otherwise, idcrense the iterntiod dumber nd  returd to step 3. 

Step 6: Snve the globnl best positiod ns the ultimnte solutiod for the bidnry optimizntiod problem. 

2.3. New Particle Encoding Strategy 

Before using the heuristic search method for feature selection, the population initialization 

should be carried out first. Figure 1 is an encoding schematic diagram of a particle with  9-

dimensional features, where 1 indicates that the feature is selected, and 0 indicates that the feature is 

discarded. 

1 1 0 0 1 0 1 11x

1=feature is selected 0=feature is discarded
 

Figure 1. The encoding of a particle for feature selection. 

The binary status of the dimension d of particle i is encoded by the following formula: 

41

0 otherwise


= 


id

r p
x  (12) 

where r4 is n rnd om dumber udiformly  istribute  betweed [0, 1], nd  p is n vnlue betweed [0, 1]. 

The value of p indicates the probability that the dimension d is set to 1. In the conventional 

particle encoding method, each feature is selected by a completely random way, and the p is set to 

0.5. The advantage of this particle encoding method is that it can increase the population diversity, 

but the disadvantages are that it can slow down the convergence speed and easily lead to local 

optimal solution, especially when the dimensions of feature selection problem is large. 

As described in Section 2.1, the initial feature set can be divided into SRFS and WRFS based on 

the value of NMI. A feature in SRFS means that this feature has a higher probability to be chosen as 

the ultimate input feature, and a feature in WRFS means that this feature has a lower probability to 

be chosen as the ultimate input feature. The information obtained in Section 2.1 can be embedded 

into the particle encoding process as prior knowledge, which can guide the search direction of 

particles, and improve the efficiency and effectiveness of the feature selection results. 

Based on the analysis above, a new particle encoding strategy considering the population 

diversity and priori knowledge is proposed, whose flowchart is shown in Figure 2. 

From Figure 2, the main steps of the proposed particle encoding are listed below: 

Step 1: Gedernte n rnd om dumber r5 udiformly  istribute  id [0, 1], nd  compnre the rnd om 

dumber with ps. If the rnd om dumber r5 is smnller thnd ps, go to step 2; otherwise, go to step 

3. The vnlue of ps  etermides the proportiod of completely rnd om pnrticle edco idg nd  the 

pnrticle edco idg with prior kdowle ge, nd  ps is set to 0.5 id this pnper to bnlndce two 

 ifferedt pnrticle edco idg metho s. 

Step 2: Edco e the pnrticles codsi eridg the prior kdowle ge which is obtnide  from Step 1. For the 

fenture id SRFS, the vnlue of p id Equntiod (12) is set to pm, nd  the pm is bigger thnd 0.5, 

mendidg thnt these kid s of fentures hnve higher probnbilities to be selecte . For the fenture 

id WRFS, the vnlue of p id Equntiod (12) is set to pn = 1 − pm, mendidg thnt the pn is smnller 

thnd 0.5 nd  these kid s of fentures hnve higher probnbilities to be  iscnr e . Thed, go to 

step 4. 

Step 3: Edco e the pnrticles id n completely rnd om wny. All the fentures nre edco e  with the 

origidnl wny, mendidg thnt the vnlue of pr is set to 0.5, nd  ench fenture hns the snme 

probnbility to be selecte . The purpose of this operntiod is to idcrense the  iversity of 

populntiods. Thed, go to step 4. 

Step 4: Check whether the dumber of pnrticles is edough. If yes, stop the pnrticle edco idg process, 

otherwise, bnck to step 1. 
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Figure 2. Flowchart of the new particle encoding strategy. 

2.4. Geometric mean (Gmean)-Based Fitness Function 

For TSSP feature selection, classification performance and feature number are two inevitable 

aspects which should be taken into consideration in fitness function. In the existing research, the overall 

classification accuracy (OCA) is always utilized as the index of classification performance. However, 

since power systems are scheduled to operate under stable conditions most of the time, the sample 

numbers of stable class and unstable class are usually highly imbalanced [13]. In this situation, the OCA 

tends to obscure the classification performance of the unstable class with a small sample number, which 

does not meet the actual operational requirements of the power system. Therefore, it is not suitable to 

use the OCA as the classification performance index for TSSP feature selection. 

In general, the classification performance of TSSP can be represented by a confusion matrix, 

which is shown below. 

In Table 1, TS represents the sample number of stable classes classified as stable class, TU 

represents the sample number of unstable classes classified as unstable class, FU represents the 

sample number of stable classes misclassified as unstable class, and FS represents the sample number 

of unstable classes misclassified as stable class. 

Table 1. Confusion Matrix. 

Real Status 
Predicted Status 

Stable Unstable 

stnble TS FU 

udstnble FS TU 

The true stable class rate (TSR) represents the proportion of the sample number of stable classes 

truly classified as stable class in the total number of stable classes, as shown below: 

TS
TSR

TS FU
=

+
 (13) 

The true unstable class rate (TUR) indicates the proportion of the sample number of unstable 

classes truly classified as unstable class in the total number of unstable classes, as shown below: 
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TU
TUR

TU FS
=

+
 (14) 

To cope with the class-imbalance problem of TSSP, the geometric mean (Gmean) [22,23] of TSR 

and TUR is employed as the overall performance of classification model in lieu of conventional 

classification accuracy, which can be expressed as: 

=Gmean TSR TUR  (15) 

It can be seen from the above formula that the larger the Gmean is, the better the classification 

performance will be. When both TSR and TUR are 1, Gmean is 1. 

In order to further illustrate that Gmean is more suitable for evaluating classification model 

performance than the traditional accuracy for TSSP, comparison of these two indexes are done below. 

The formuln of OCA cnd be expresse  ns below: 

s uN NTS TU
OCA TSR TUR

N N N

+
= =  +   (16) 

where Ns, Nu, nd  N nre the snmple dumber of stnble clnss, the snmple dumber of udstnble clnss nd  

totnl snmple dumber, respectively. 

The OCA index can be considered as the linear weighting of TSR and TUR, and the weight factor 

is related to the sample number of stable class and unstable class. Assuming that the sample number 

ratio of stable class and unstable class is 9:1, the comparison of OCA and Gmean is shown in Figure 

3. 

 

Figure 3. Comparison of overall classification accuracy (OCA) and geometric mean (Gmean). 

It can be seen from the Figure 3 that OCA is biased toward stable class classification 

performance, which has more samples, and Gmean is not biased towards the classification 

performance of stable class and unstable class since it is independent of the sample number. 

Specifically, when TUR is 0 and TSR is 1, OCA is about 90%, but Gmean is 0. Therefore, Gmean is 

more suitable for evaluating TSSP classification performance than OCA. 

Considering both the TSSP classification performance and the number of features, the Gmean-

based fitness function is defined below: 

C

F

N
Fitness Gmean

N
 = −  (17) 

where NC is the dumber of selecte  fentures nd  NF is the totnl dumber of fentures. λ is the weight 

fnctor to bnlndce these two terms, which is very smnll to edsure thnt the clnssificntiod performndce is 

more importndt thnd fenture subset ledgth. 
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3. Data Preparation 

3.1. Initial Feature Set 

The initial feature set considers the electrical variables closely related to the power system 

transient stability characteristics, including power flow characteristics before fault occurrence and 

generator response characteristics after fault occurrence. The former contains load level, generator 

active power output, and bus voltage level, and the latter includes imbalanced active power, rotor 

angle, angular velocity, angular acceleration, and kinetic energy [24–26]. 

In addition, from the aspects of system-level and single-machine level, the initial feature set is 

going to describe the overall and the partial transient characteristics of the power system. Among 

them, the system-level features are the statistical values of electrical variables, including extreme 

value difference, mean absolute value and variance value. The single-machine level features are the 

electrical variables of each generator. The constructed initial feature set is shown in Table 2. It is worth 

noting that the rotor angle, angular velocity, and angular acceleration in the feature set are converted 

to the values relative to the center of inertia. 

Table 2. Initial feature set. 

Feature Type t Number Feature Description 

System level 

features 

t0 

F1 system lon  level 

F2 mend vnlue of gederntor nctive power 

F3 mend vnlue of bus voltnge mngditu e 

tf 

F4 − F6 
extreme vnlue  ifferedce, mend nbsolute nd  vnrindce of gederntor 

nccelerntiod 

F7 
rotor ndgle  ifferedce of gederntors with mnx nd  mid rotor ndgulnr 

nccelerntiod 

F8 − F10 
extreme vnlue  ifferedce, mend nbsolute nd  vnrindce of imbnlndce  nctive 

power 

tc 

F11 − F13 
Idertin cedter referedce of rotor ndgle, ndgulnr velocity, nd  ndgulnr 

nccelerntiod 

F14 − F25 
extreme vnlue  ifferedce, mend nbsolute, vnrindce of gederntor rotor ndgle, 

ndgulnr velocity, ndgulnr nccelerntiod nd  kidetic edergy, respectively 

F26 − F27 
rotor ndgle  ifferedce nd  ndgulnr velocity  ifferedce of gederntors with mnx 

nd  mid kidetic edergy 

F28 − F29 
rotor ndgle  ifferedce nd  ndgulnr velocity  ifferedce of gederntors with mnx 

nd  mid ndgulnr nccelerntiod 

F30 totnl edergy n justmedt of the system 

Single-machine 

level features 

tf F31 − F30 + ng imbnlndce  nctive power of ench gederntor 

tc 

F31 + ng − F30 

+ 2ng 
rotor ndgle  ifferedce betweed tc nd  tf of ench gederntor 

F31 + 2ng − F30 

+ 3ng 
ndgulnr velocity of ench gederntor 

F31 + 3ng − F30 

+ 4ng 
ndgulnr nccelerntiod of ench gederntor 

F31 + 4ng − F30 

+ 5ng 
kidetic edergy of ench gederntor 

In Table 2, t0, tf, and tc indicate before fault occurrence time, fault occurrence time, and fault 

clearing time, respectively. The initial feature set contains 30-dimensional system level features and 

5ng-dimensional single-machine level features, where ng is the number of generators. The total feature 

dimension is related to the number of system generators, which means that the size of the power grid 

directly affects the number of feature dimensions, and the larger the number of generators is, the 

higher the total feature dimension will be. 

3.2. Database Generation 

In order to generate a typical and statistical database, large numbers of power system operating 

conditions (OCs) should be generated by adding random disturbances on the basic power flow [6,27]. 
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The active power and reactive power of load buses are varied randomly within ±20% of the basic 

value, as shown below: 

( )0 61 1 2Li Li LP P P r= + −    (18) 

( )0 71 1 2Li Li LQ Q Q r= + −    (19) 

where PLi nd  QLi nre gedernte  nctive power nd  renctive power of lon  i, respectively. PLi0 nd  QLi0 

nre bnsic vnlue of nctive power nd  renctive power of lon  i, respectively. ΔPL nd  ΔQL nre both set nt 

20%.  

Without considering slack bus, the active power and terminal voltage of generator buses are 

varied randomly within ±20% and ±2% of the basic value, respectively. 

( )0 81 1 2Gi Gi GP P P r= + −    (20) 

( )0 91 1 2Gi Gi GV V V r= + −    (21) 

where PGi nd  VGi nre gedernte  nctive power nd  termidnl voltnge of gederntor i, respectively. PGi0 

nd  VGi0 nre the bnsic vnlue of nctive power nd  termidnl voltnge of gederntor i, respectively. ΔPG is 

20% nd  ΔVG is 2%. r6-r9 nre nll rnd om dumbers udiformly  istribute  betweed [0, 1]. 

In order to ensure the convergence and availability of randomly generated OC, power flow 

results needed to be checked. If the power flow converges and all electrical variables are within the 

normal range, the OC is retained, otherwise it is discarded. 

Fault conditions should be provided before time domain simulation. In this paper, the fault type 

is considered as three-phase permanent short-circuit, and fault duration time is set to 0.12 s. The end 

of one transmission line is randomly selected as the fault location. Time domain simulation is 

executed with the available OC and the fault condition, and power flow results and generator 

response curves are collected to construct the initial feature set. The stability status is determined by 

the following index: 

max

max

360

360






−
=

+ 
 

(22) 

where Δδmnx is the mnximum rotor ndgle  evintiod nt the ed  of simulntiod time. If σ < 0, the system 

is  eeme  trndsiedtly udstnble, nd  the clnss lnbel is set nt 1, otherwise, the system remnids stnble 

nd  the clnss lnbel is set nt 0. The fentures nd  correspod idg clnss lnbels nre utilize  to form n snmple. 

The above process is repeated until a predefined number of samples are generated. 

4. Proposed Two-Stage Feature Selection Method 

In this section, two-stage feature selection method for the TSSP problem is proposed, which is 

described briefly below. 

The collected data is normalized and randomly divided into training set and testing set. The 

training set is employed for feature selection and the testing set is utilized to check the quality of the 

selected feature subset. 

In the first stage, the NMI value is calculated with the training set and utilized for measuring the 

relevance between features and classes, and the features are ranked from large to small based on the 

NMI values. Then, the classification performance of the ranked features is calculated by using the 

KNN model to determine the SRFS and WRFS. 

In the second stage, the population of BPSO is initialized with the new particle encoding 

strategy, and the improved fitness value of the particle is calculated with KNN. The values of 

individual best position and global best position are updated, and the velocity and binary position of 

particles are updated. The above process is repeated until the terminal condition is met. 
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After finishing the feature selection process, the classification performance of the selected feature 

subset is calculated on the testing set. 

The flowchart of the proposed two-stage feature selection method is depicted in Figure 4. 
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between individual 
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the NMI value
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Figure 4. Flowchart of the proposed feature selection method. 

5. Case Study 

5.1. Basic Description 

The proposed methodology is examined on the NPCC 140-bus system including 48 generators 

and 140 buses, which represents the backbone transmission of the Northeast region of the U.S. 

Eastern Interconnection power grid [28]. In addition, since the number of generators in this power 

system is 48, the dimension of the initial feature set is 270. To examine the proposed model on the 

test system, 8000 samples are generated by time-domain simulations utilizing the scheme in Section 

3.2. Randomly, 70% of total samples are selected as the training set, and the remaining 30% are the 

testing set. Furthermore, 25% of the training set is randomly allocated as the validation set. The 

detailed description of sample sets is tabulated in Table 3. 

Table 3. Training set and testing set. 

Dataset Total Number of Samples Number of Stable Samples Number of Unstable Samples 

Trnididg 

set 
5600 4625 975 

Testidg set 2400 1961 439 

It cnd be observe  from Tnble 3 thnt the snmple dumber rntio of udstnble clnss nd  stnble clnss is 

nbout 1:5, showidg nppnredt imbnlndce  chnrncteristics betweed clnsses. 

5.2. Parameters Setting 

5.2.1. Construction of strongly relevant feature subset (SRFS) and weakly relevant feature subset 

(WRFS) 
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The individual feature ranking results based on the NMI values are shown in Figure 5a. 

Furthermore, different percentages of top-ranked features are respectively selected as the input 

features of KNN. The classification performance of these feature subsets with the training data is 

presented in Figure 5b. 

  
(a) (b) 

Figure 5. Feature selection results in the first stage: (a) Ranked features results; (b) Performances with 

different percentages of total feature. 

It can be observed that the best Gmean value can be achieved when the top 30% of ranked 

features are input features. Therefore, in this study, the top 30% of ranked features are selected as 

SRFS, and the remaining features are recognized as WRFS. 

5.2.2. Other Parameters 

The main BPSO parameters utilized in the second stage are given in Table 4. 

Table 4. Parameter settings in the proposed method. 

Parameters Settings 

Populntiod size 30 

Mnximum iterntiods 100 

ωmnx, ωmid 0.9, 0.4 

c1, c2 2, 2 

λ 0.002 

KNN with k = 1 [29,30] is employed as the classification model to evaluate the performance of 

the feature subset. In addition, considering the randomness of the proposed method, ten trials of 

repeated experiments on the same training and testing set are conducted to obtain the representative 

results. 

In addition, in order to determine the value of pm, the performance with different pm values, 

including {0.6, 0.7, 0.8, 0.9, 1}, is evaluated on the training set. The results are shown in Table 5. 

Table 5. Performance with different pm values. 

pm Gmean (%) Number of Selected Features 

0.6 91.94 120.7 

0.7 91.95 115 

0.8 92.09 105.6 

0.9 92.25 93.6 

1 92.11 93.8 
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It can be seen from Table 5 that when pm value is set to 0.9, the best performance is achieved, and 

pn value is equal to 0.1. 

5.3. Comparison of Different Particle Encoding Strategies 

Under different particle encoding strategies, the best and average convergence curves on the 

training set are compared, respectively, as depicted in Figure 6. 

  
(a) (b) 

Figure 6. Comparison of convergence curves. (a) Best convergence curves; (b) Average convergence 

curves. 

From Figure 6, compared with the traditional completely random particle encoding strategy, the 

new particle encoding strategy that considers the prior knowledge has better initial solution and 

convergence characteristics. 

Under different strategies, the best and average classification results on the testing set are 

compared, respectively, as presented in Table 6. 

Table 6. Comparison of the results of different particle encoding strategies. 

Performance Index 

Best Results Average Results 

Traditional 

Strategy 

New 

Strategy 

Traditional 

Strategy 

New 

Strategy 

TSR (%) 96.43 96.58 96.25 96.56 

TUR (%) 77.45 83.14 76.56 82.30 

Gmean (%) 86.94 89.61 85.84 89.15 

Number of selecte  fentures 133 87 129.9 93.6 

In Table 6, the classification performance of the new strategy is superior to the traditional 

strategy, both in best results and average results. At the same time, the number of selected features 

of the new strategy is less than that of the traditional strategy. The results illustrate that the new 

particle encoding strategy proposed in this paper is more effective than the traditional strategy. 

5.4. Comparison of Different Fitness Functions 

To verify the effectiveness of the improved fitness function, the average results of the OCA-

based fitness function and Gmean-based fitness functions are compared on the training set and the 

testing set, as shown in Table 7. 

Table 7. Comparison of the average results of different fitness functions. 

Performance 

Index 

Training Set Testing Set 

OCA-Based Fitness 

Function 

Gmean-Based Fitness 

Function 

OCA-Based Fitness 

Function 

Gmean-Based Fitness 

Function 
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TSR (%) 97.97 97.05 0.9673 0.9656 

TUR (%) 85.65 87.69 0.8032 0.8230 

Gmean (%) 91.60 92.25 0.8814 0.8915 

As seen in Table 7, compared with the OCA-based fitness function, the Gmean-based fitness 

function achieves better performance on TUR and Gmean on the training set and the testing set. It 

shows that the Gmean-based fitness function is inclined to select the feature subset having stronger 

recognition ability for the unstable class, which is more suitable for actual power system TSSP 

problem. 

5.5. Comparison with Other Feature Selection Methods 

In this section, some state-of-the-art feature selection methods, including Fisher Score, Relief, 

NMI, and BPSO, are employed with the same database. The average results comparison of these 

methods are presented in Table 8. 

Table 8. Comparison of the results of different feature selections. 

Methods TSR (%) TUR (%) Gmean (%) 

All fentures 96.48 74.03 84.51 

Fisher Score 96.74 79.27 87.57 

Relief 96.63 73.58 84.32 

NMI 96.33 79.50 87.91 

BPSO 96.25 76.56 85.84 

Propose  metho  96.56 82.30 89.15 

As seen in Table 8, compared with other feature selection methods, the proposed two-stage method 

achieves significantly better performance results in terms of TUR and Gmean, and similar results in TSR, 

which indicates that the proposed method is a better solution for TSSP feature selection. 

The running time of different feature selection methods are compared in Table 9. The 

experiments are performed in a MATLAB (R2017b) environment, running on a personal computer 

with an Intel core i5-6200 CPU processor with 2.3 GHz and 4 GB memory. 

Table 9. Running time comparison. 

Methods Running Time (s) 

Fisher Score 0.05 

Relief 70.24 

NMI 0.95 

BPSO 1501.71 

Propose  metho  1514.92 

As seen in Table 9, since Fisher Score, Relief, and NMI belong to the filter method, they are 

computationally efficient. BPSO belongs to the wrapper method, and it needs longer running time than 

the filter methods. The proposed method belongs to the hybrid method combining the filter method 

and the wrapper method, therefore, its running time is almost the same as that of BPSO. 

It is worth noting that the feature selection process of TSSP is done offline, so the relatively larger 

running time is acceptable. In addition, other techniques, such as parallel computation, can be 

employed to reduce the running time of the proposed method. 

6. Conclusions 

This paper proposed a new two-stage feature selection algorithm for TSSP. In the first stage, all 

the features are divided into SRFS and WRFS based on the NMI values, and in the second stage, a 

new particle encoding strategy considering both population diversity and prior knowledge is 

presented. Additionally, considering the imbalanced characteristics of TSSP, an improved fitness 

function is utilized. The following conclusions can be made from experimental results: (1) compared 
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with the traditional completely random particle encoding method, the proposed particle encoding 

method can obtain better feature selection results, (2) compared with the OCA-based fitness function, 

the proposed Gmean-based fitness function tends to select the feature subset having stronger 

recognition ability for unstable class, and (3) compared with some state-of-the-art feature selection 

methods, the proposed two-stage feature selection achieves significantly better performance results 

in terms of TUR and Gmean, and similar results in TSR, which shows that the proposed feature 

selection method is more suitable for actual power system TSSP problem. 

Future work will focus on the improvement of classification model to better handle the 

imbalanced characteristics of power system TSSP problem. 
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