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Abstract: The Lishui Sag is located in the southeastern part of the Taibei Depression, in the East China
Sea basin, where the sag is the major hydrocarbon accumulation zone. A three dimensional modelling
approach was used to estimate the mass of petroleum generation and accumulated during the
evolution of the basin. Calibration of the model, based on measured maturity (vitrinite reflectance)
and borehole temperatures, took into consideration two main periods of erosion events: a late
Cretaceous to early Paleocene event, and an Oligocene erosion event. The maturation histories of
the main source rock formations were reconstructed and show that the peak maturities have been
reached in the west central part of the basin. Our study included source rock analysis, measurement
of fluid inclusion homogenization temperatures, and basin history modelling to define the source
rock properties, the thermal evolution and hydrocarbon generation history, and possible hydrocarbon
accumulation processes in the Lishui Sag. The study found that the main hydrocarbon source for the
Lishui Sag are argillaceous source rocks in the Yueguifeng Formation. The hydrocarbon generation
period lasted from 58 Ma to 32 Ma. The first period of hydrocarbon accumulation lasted from 51.8 Ma
to 32 Ma, and the second period lasted from 23 Ma to the present. The accumulation zones mainly
located in the structural high and lithologic-fault screened reservoir filling with the hydrocarbon
migrated from the deep sag in the south west direction.
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1. Introduction

The Lishui Sag is one of the main exploration hotspots in the Taipei Depression, in the East China
Sea Shelf Basin. The exploration of the Lishui Sag started in the 1980s and six hydrocarbon-bearing
structures were discovered thus far [1,2]. Among these are WZ13, L35-B, and S1, which are oil-bearing
structures, whereas LF1, WZ26 are gas-bearing structures. The hydrocarbon bearing structures proved
the superior reservoir conditions and source rock core samples showed rich hydrocarbon generation
potential in the Lishui Sag. However, the LS36-A structure, discovered in 1997, is the only commercial
field, with potential geological reserves of around 5 billion m3 of gas. Previous studies show that the
LS36-A gas field is a complex trap controlled by the tectonic evolution and the low permeability Lower
Mingyuefeng Formation [3].

The Lishui Sag has low petroleum discovery due to the lithologic complexity of its potential
reservoirs. Numerous studies on the source rock and reservoir have been performed in the Lishui
Sag, mainly focused on the tectonic evolution and hydrocarbon-forming processes [3–9]. The main
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hydrocarbon generation period occurred during the Late Paleocene [7,10]. Tectonic analysis and
fluid inclusion homogeneous temperature tests are used to determine the petroleum filling periods.
The accurate petroleum charge periods are not clear because different scholars have reached different
conclusions. The burial temperature history of single wells constructed using BasinMod 1D indicates
three petroleum charge events which occurred at the end of the Paleocene, end of the Eocene and
during the Miocene [11]. Su et al. considered that three charge events occurred in the early Eocene
(54–52 Ma), late Eocene to early Oligocene (45–34 Ma) and during the Pliocene to present (5–0 Ma) [7].

Basin modelling is used to analyze the petroleum generation and accumulation through geologic
time with multiple input data [12,13]. The 1D and 2D basin modelling approached generally
neglect the critical factors that influence temperature and hydrocarbon migration that can only be
specifically addressed in three dimensions [14]. It is necessary to consider the petroleum evolution and
accumulation as a whole by constructing a detailed 3D numerical petroleum system model [15–18].
The lateral and vertical heterogeneity of lithology is strong in the Lishui Sag and the sand-shale ratio is
different for each formation. We tried to set reliable correlations for porosity vs. depth correlation and
porosity vs. permeability of each formation. Also, the distribution of sand-shale patterns was defined
to represent the horizontal petrophysical diversity. We stacked the sand-shale distributions of different
system tracts to represent the formation facies model. In this study, we constructed a 3D facies model
to simulate the hydrocarbon migration in cells with different physical properties.

2. Geological Settings

The Lishui Sag is located in the south-west corner of the East China Sea Shelf Basin, occupying
an area of 13785 km2 [19]. The sag is a typical Cenozoic rift depression developed on the Mesozoic
residual basin basement and formed by a half graben structure with faults in the east and overlapping
the uplift belt in the west [1,19,20]. The Lishui Sag trends NE-SW and can be divided into four tectonic
units: west sub-sag, east sub-sag, south sub-sag and the Lingfeng uplift zone. The west sub-sag and
east sub-sag are separated by the Lingfeng Uplift zone, a buried basement hill and the maximum
burial depth reaches nearly 8 km at the northern part of the west sub-sag (Figure 1).
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Figure 1. Location and geographic setting of the study area (Modified after Liu [9]). (A) Structural and
tectonic elements of the East China Sea Shelf Basin. (B) Structure division of the Lishui Sag and study
area outlined in the red box.

The Cenozoic strata from bottom to top include the Paleocene Yueguifeng Formation (E1y),
Lingfeng Formation (E1l) and Mingyuefeng Formation (E1m), Lower Eocene Oujiang Formation (E2o),
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Wenzhou Formation (E2w), Miocene, Pliocene and Quaternary [21] (Figure 2). The basement of the
Lishui Sag is Upper Cretaceous Shimentan Formation (K2s) igneous rock. Evidence of oil and gas could
be found mainly in the Paleocene series including the Yueguifeng Formation, Lingfeng Formation and
Mingyuefeng Formation, which is the target interval of this study.
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Figure 2. (A) Lithostratigraphy of the Lishui Sag and (B) the tectonic evolution in the Lishui Sag. The
petroleum system elements (PSE) including seal rocks (Seal), source rocks (SR) and reservoir rocks
(RR), as well as the general overview of the geologic and tectonic events are also shown. The wavy line
indicates the angular unconformity and the dash line indicates the parallel unconformity. The location
of section AA’ is shown in Figure 1B.

The Lishui Sag has underwent four tectonic phases from the end of the Mesozoic to the Quaternary
period [8,10,22–25] (Figure 2A): (1) The syn-rift phase (Late Cretaceous to Paleocene) formed the
NE-SW trending graben and half-graben depocenters on the base of the residual Mesozoic basin [9,19].
The NE-trending extensional faults indicate slab-pull forces which were correlated with the subduction of
the Western Pacific Plate beneath the Eurasian Plate. The Lishui Sag experienced a rapid sedimentation
period with intense fault activities (T100-T85). The Oujiang movement at the end of the Paleocene
terminated the fault-depression stage in the Lishui sag. (2) During the post-rift phase (Early Eocene to
Late Eocene) the extensional movements and deposition rate slowed down significantly [24]. Extensional
faults no longer controlled the subsidence centers. (3) During the uplift phase (Late Eocene to Late
Miocene) a regional erosion event occurred. The Lingfeng Uplift was buried and the sub-basins began to
be connected between Late Eocene and Early Miocene (Figure 2B). The Huagang movement contributed
to the regional uplift and erosion. The upper Eocene and the entire Oligocene are not represented in
the stratigraphic section [22]. (4) The regional subsidence phase (Late Miocene to Quaternary) occurred
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while the rift center moved towards the Okinawa Trough [26]. The Lishui Sag finally entered a uniform
subsidence stage.

3. Construction of the Model

In order to have a deeper understanding of the hydrocarbon generation characteristics and
reservoir forming process of the Lishui Sag, we carried out 3D petroleum system modelling of the sag
using the PetroMod 2015 software (Schlumberger, Oslo, Norway). 3D basin modelling can reveal the
sedimentation history, define the source rock maturation and hydrocarbon generation processes, and
identify the paths of hydrocarbon migration and areas of accumulation [21]. The essential processes to
constitute the model include deposition, compaction, denudation, source rock maturation, hydrocarbon
generation, expulsion, migration and accumulation. The basic concepts and rules used in the model
building have been discussed by Hantschel and Kauerauf [27].

The study area in this paper is a 3D seismic survey with an area of 2468 km2, which covered the
central part of the west sub-sag and part of the east sub-sag (the black box in Figure 1). There are three
sets of 3D seismic survey data, acquired in 2006, 2014 and 2015, respectively. The seismic data acquired
in different periods used the different techniques and we created a unified data set for the basin.
Eight main horizons were interpreted, including T20, T50, T80, T83, T85, T88, T90 and T100 [9,19,22].
The seismic data were combined with biostratigraphic and lithologic data from conventional cores
(Figure 2). There are 13 exploration wells distributed in the study area and the LS36-A gas field is also
included (Figure 1B).

In order to predict the petroleum migration path, use of a suitable migration algorithm in the
model is especially important [28–30]. There are a variety of algorithms for hydrocarbon migration.
We chose the hybrid model that combined both Darcy and flowpath methods as well as a simplified
percolation calculation [27]. Darcy flow is used in low permeability cells and flowpath analysis
works in high permeability cells. This method is faster than a pure Darcy flow model to estimate the
petroleum migration and accumulation. It is obvious that a model with high resolution would be more
specific and the tiny traps also could be described well. However, with the increase of the grid cells
included in the model the simulation time will grow rapidly. To balance the model precision and the
computing time, a grid cell size of 200 × 200 m was the best solution to fit our case.

3.1. Erosion Thickness

Four erosion events are considered in this study; the detailed information and thickness maps are
shown in Figure 3 and Table 1.
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Table 1. Lithology settings and petrophysical definitions for basin modelling. Gp. = Group, Fm. = Formation, fms. = formations, z = depth, por = porosity. The
Mingyuefeng Fm., Lingfeng Fm. and Yueguifeng Fm. each has two lithology types, the distribution of the different lithology types are shown in Section 3.2.

Age (Ma) Top Surface Formation Petroleum
System Elements Symbol Lithology Porosity (%) Functionvs.

Depth (km)
Permeability [log(mD)]

Function vs. Porosity (%)

2.6–0 Sea bed Donghai Gp. Overburden rock Q Siltstone (organic lean) 54*EXP(−0.51*z) 1.7142*ln(por)−6.3191
5.3–2.6 T0 Santan Fm. Overburden rock N2 Siltstone (organic lean) 54*EXP(−0.51*z) 1.7142*ln(por)−6.3191
23–5.3 T10 Liulang−Longjing fms. Overburden rock N1 Siltstone (organic lean) 54*EXP(−0.51*z) 1.7142*ln(por)−6.3191
32–23 Erosion event Erosion d

47.8–32 T20 Wenzhou Fm. Overburden rock E2w Sandstone (typical) 40*EXP(−0.31*z) 1.5934*ln(x)−1.8387
52–47.8 Erosion event Erosion c
56–52 T50 Oujiang Fm. Seal rock E2o Shale (organic lean, typical) 69*EXP(−0.83*z) 1.7569*ln(por)−8.5464

57.5–56 T80 Upper Mingyuefeng Fm. Reservoir rock Upper E1m Sandstone (arkose, quartz poor) 40*EXP(−0.37*z) 0.2184*por−3.4052
Seal rock Siltstone (organic lean) 49*EXP(−0.97*z) 1.9754*ln(por)−4.0093

59.2–57.5 T83 Lower Mingyuefeng Fm. Reservoir rock Lower E1m Sandstone (arkose, quartz poor) 40*EXP(−0.51*z) 0.1757*por−2.4609
Source rock Siltstone (organic rich, 2–3% TOC) 49*EXP(−0.86*z) 1.9272*ln(por)−3.9322

59.3–59.2 Erosion event Erosion b
60–59.3 T85 Upper Lingfeng Fm. Source rock Upper E1l Siltstone (organic rich, 2–3% TOC) 49*EXP(−1.03*z) 1.7305*ln(por)−4.8916

Reservoir rock Sandstone (clay rich) 40*EXP(−0.52*z) 0.1641*por−2.9967
61.6–60 T88 Lower Lingfeng Fm. Source rock

Lower E1l
Siltstone (organic rich, 2–3% TOC) 49*EXP(−0.91*z) 2.1441*ln(por)−4.9172

Reservoir rock Sandstone (clay rich) 40*EXP(−0.55*z) 0.0813*por−1.7413
62–61.6 Erosion event Erosion a
66–62 T90 Yueguifeng Fm. Source rock E1y Shale (organic rich, typical) 69*EXP(−0.83*z) 1.7569*ln(por)−8.5464

Underburden rock Sandstone (clay rich) 40*EXP(−0.5*z) 1.6492*ln(x)−2.8575
76–66 T100 Shimengtan Fm. Underburden rock K2s Granite - -
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Firstly, we used the normal working procedures such as acoustic time difference method and
vitrinite reflectance method [31,32]. However, we found out that the dataset did not fit the normal rules
well. We tracked the trend of the original strata on the seismic sections and calculate the denudation
thickness [33]. The main erosion event effecting the whole Lishui Sag occurred at the end of the Eocene
(erosion d). The average denudation thickness is 340 m and shows difference between the sub-sags.
Regional erosion events a, b and c correspond to the horizons T90, T80 and T50. The erosion event c
shows erosion mainly in the slope area of the west sub-sag. The erosion in event b is confined to the
SW part of the west sub-sag near the Well S1. The erosion event occurred primarily in the southern
part of the study area with a mean value of 350 m.

3.2. Lithology and Petroleum System Elements

The geological time scale of the formations in the Lishui Sag followed the International
Chronostratigraphic Chart [34]. We defined the lithology assignment of each stratum unit based
on the drilling cuttings and cores from 13 wells in the study area (Table 1). The K2s unit mainly consists
of tuff, red mudstone and mudstone with tide-flat lime mudstone developed at the top [1]. The E1y
unit was deposited in a warm and humid lacustrine environment and developed thick shale deposition
with good hydrocarbon potential with lake delta deposits. The E1l unit is dominated by a set of organic
rich marine siltstone. The E1m unit is mainly composed of delta-shore swamp deposits with coal seam
and thick sandstone [1]. The source rock in E1y, E1l and E1m units contribute to the hydrocarbon
generation in the Lishui Sag [7]. The reservoir rock in the E1l and E1m units is sandstone. The widely
distributed thick shale in the E2o unit performs as a highly effective regional seal for the Lishui Sag.
The siltstone in E1m and E1l can also be local seal rock. The widespread seal rock plays an important
role for the preservation of the gas storage.

The structure model, shown in Figure 4, was derived from depth maps interpreted from
seismic. We calibrated the depth of each horizon by the stratigraphic classification in single wells.
The gridded faults were created in PetrelTM (Schlumberger, Oslo, Norway) from seismic data (Figure 5).
The properties of the faults were based on the interpreted tectonic history, which results in the
properties of the main faults changing from open to closed after the Oujiang movement, as a result
in the change in stress field at that time. This means that hydrocarbons could migrate through faults
until around 56Ma, after which the faults would block hydrocarbon migration.
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unique colors are faults and the stratigraphic horizon refer to the top surface of Lower E1l.

Because of the lithologic variability of the mixed sandstone and mudstone reservoirs, uniform
compositions are inadequate for the accuracy required by the basin model. As shown in Table 2, the
physical properties of rock vary widely in the E1m and E1l, and there was also a significant difference
between the upper and lower layers. We used Athy’s Law [35,36] and core measured porosity data
to calibrate the porosity versus depth curve of Upper and Lower E1m and E1l and other formations.
The algorithms and formula of the porosity are listed in Equation (1) and Table 2. The calibrated curves
are shown in Figure 6 and the difference between sandstone and siltstone is clear. The correlations
between permeability and porosity were also established using the measured data from the Lishui Sag
(Table 1).

P = p
(

e−bx
)

(1)

where P is the porosity, p is the mean porosity of surface sediments, b is a constant, and x is the
burial depth.

Table 2. The reservoir physical property of the sandstone core samples from the study area.

Formation
Porosity (%) Permeability (mD) Sample

AmountMaximum Minimum Average Maximum Minimum Average

Upper E1m 25.10 1.30 16.88 236.91 0.01 34.35 131
Lower E1m 23.00 2.14 13.74 155.88 0.01 7.56 332
Upper E1l 14.00 2.60 11.01 1.53 0.01 0.13 137
Lower E1l 18.20 2.80 6.91 5.07 0.01 0.22 222

The lateral and vertical facies heterogeneities of each formation are considered in this model.
In order to distinguish the sandstone and siltstone in the reservoir layers, we calculated the RMS
amplitude using the 3D seismic data. The RMS attribute is obtained by calculating the root-mean-square
amplitude value of each sampling point in seismic trace analysis. It is very sensitive to amplitude
variation and is very effective at distinguishing different rock types in seismic bodies [37–39]. The sand
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and shale distribution is similar within the same systems tract, so we used stratal slices of the RMS
attribute to predict the sandstone distribution.Energies 2019, 12, x 8 of 20 
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in E1m and E1l (the curves for upper and lower layers are separated).

The division scheme of the systems tract of the study area followed the research of Zhang et al. [19]
and Liu [9]. The Upper E1m strata is divided into two systems tracts: highstand systems tract (HST)
and transgressive systems tract (TST). The Lower E1m is divided into four systems tracts: falling stage
systems tract (FSST), highstand systems tract (HST), transgressive systems tract (TST) and lowstand
systems tract (LST). The Upper and Lower E1l both consist of three systems tracts including HST, TST
and LST. Figure 7 shows the RMS attribute of the each systems tract. The warm color indicates the area
with higher sand content while the cool color represents the area with more mudstone. The distribution
maps of the sandstone and siltstone of each systems tract were worked out by sedimentary facies
maps. Then we adjusted the maps referring to the shale content in the drilling core samples (Figure 8).
We combined the layers with different distribution patterns of facies to construct the lithologic and
stratigraphic model (Figure 9). The migration path for hydrocarbons is dictated both by the spatial
variation of porosity and permeability and by the temporal variations of the fault properties.

3.3. Source Rock Properties and Kinetics Model

As introduced in the former section, the main source rock layers in the Lishui sag are E1m, E1l
and E1y. The vitrinite reflectance of Upper E1m is below 0.5% due to the shallow burial depth [1,7].
In Figure 10A, the atomic ratio of hydrogen to carbon is shown to be between 0.5 and 1.0, with the
atomic ratio of oxygen to carbon varying from 0.05 to 0.3. The source rock samples have typical
characteristics of type III kerogen. The samples from Lower E1m and Upper E1l have higher maturity.
Few samples from Lower E1l and E1y have lower maturity than the upper layers because the over
mature samples are not included in this figure. In Figure 10B, the sample samples cluster around
a value of Ro = 0.5, with the majority below the curve for type III kerogen. The source rocks from E1l
and E1y have low hydrogen indexes (less than 200 mg/g) and the pyrolysis peak temperature ranges
from 420 to 460 ◦C. Part of the samples from E1m belong to the type II2 kerogen but the major source
rock type is type III kerogen. In Figure 10C, the potential hydrocarbon generation amount (Pg) is the
summation of S1 and S2 measured in the pyrolysis and the values are between 0.5 and 6 mg/g. The
quality of the source rocks is fair to good, with a few of samples of very good source rock. In this study,
the source rock properties used in the model are the average value of the source rock layers listed in
Table 3. The thickness of source rock used in the model is calculated by the shale ratio in the layer.
The average source rock thickness of Upper and Lower E1m is 350 and 300 m, the thickness of E1y
is 250 m. The hydrocarbon generation was simulated using the Burnham kinetic model for type II
and III kerogen [40]. The oil and gas generation regularities in the Burnham’s model are similar to the
petroleum production data.
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Figure 7. Distribution maps of root-mean-square (RMS) amplitude of each system tract in the reservoir
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Table 3. The average value of source rock pyrolysis test data used in the model. TOC = Total organic
carbon, S1 = Free hydrocarbon components, S2 = Hydrocarbons generated by the pyrolysis, HI =
Hydrogen index, Tmax = Pyrolysis peak temperature.

Formation TOC (%) S1 + S2 (mg/g) HI (mg/g) Tmax (◦C) Sample Size

Upper E1m 1.31 2.41 148 397 51
Lower E1m 1.16 2.28 162 402 123
Upper E1l 1.15 2.34 152 414 109
Lower E1l 1.25 1.71 119 421 86

E1y 1.68 1.99 89 452 32
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3.4. Boundary Conditions

The boundary conditions of the model consist of paleo water depth, sediment water interface
temperature (SWIT) and heat flow. The paleo water depth trend was estimated based on the relative
sea level change and sedimentary thickness [43,44]. The water depth increased during the Paleocene
(66–56 Ma) and reach the maximum at end of the E1m. During the uplift and erosion period of
Oligocene (41–23 Ma), the sea level fall and water depth tend to be zero with the formation uplifting
(Figure 11). The sediment water interface temperature (SWIT) is the top boundary condition of
heat transmit in a sedimentary basin [45]. In this study, the SWIT is automatically calculated by the
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PetroMod software module based on the method of Wygrala [46]. It shows the variations of mean
surface paleo temperatures through geological times classified by the paleo latitudes of the sedimentary
basin [45]. Then a standard temperature at sea level over geological time was extracted with the given
geographic location and paleo latitude at present day. The SWI-Temperature curve used in the model
was also corrected by the paleo water depth changing (Figure 11).

The heat flow represents the lower boundary condition of the heat transfer input into
a sedimentary basin [45]. The thermal evolution in the study area is important to the source rock
maturation and hydrocarbon expulsion. The present-day temperature gradient measured by bore
hole temperature test data is around 2.99 ◦C/100 m. The heat flow measurements show that the
present-day heat flow in the East China Sea Shelf Basin (ECSSB) is around 58.6 mW/m2, varying from
56 to 88.6 mW/m2 [47]. The heat flow evolution after the Mesozoic was mainly influenced by the
lithospheric stretching activities. The heat flow evolution research of the ECSSB suggests that the paleo
heat flow was around 80 mW/m2 (67–93 mW/m2 for individual wells) at the end of the Paleocene
(56 Ma), at which time the strata experienced the maximum formation temperature before cooling to
the present [48]. As shown in Figure 12A, the heat flow trend is considered to vary by 13 mW/m2

around the nominal heat flow trend 2. We used different heat flow scenarios to construct the single
well model to simulate the temperature and vitrinite reflectance [49–51]. For example, we used three
heat flow scenarios for the Well LS36-A model, and the formation temperature and vitrinite reflectance
fit the heat flow trend 1 better (Figure 12B,C).Energies 2019, 12, x 10 of 20 
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Figure 10. Source rock evaluation plots of the main source rocks from the study area in the Lishui
Sag. (A) Kerogen type and maturation definition using van Krevelen diagram [41]. (B) Distribution
of hydrogen index (HI) with pyrolysis peak temperature (Tmax) [42]. (C) Variation of Rock–Eval Pg
(S1 + S2) with total organic carbon (TOC) content. In figure A and B the green dash line represents
Ro = 0.5, the yellow dash line represents Ro = 1.3, and the red dash line represents Ro = 2.0.
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refers to the minimum trend and heat flow 3 refers to the maximum trend. The heat flow uncertainty 
is estimated to be 13 mW/m2 above or below that of heat flow trend 2. (B) The vitrinite reflectance 
simulated using the three heat flow trends (curves with different colors) and measured data (dots). 
(C) The formation temperature calculated using different heat flow trends and measured data. 

In this way, five wells with formation temperature and vitrinite reflectance measured data (Well 
LS36-A, LS36-B, LS35-A, LS35-B and LF1) and four wells with one kind of calibration measured data 
(Well NP6, NP11, LS23 and S1) are used to define the heat flow trend for each well in the study area 
(Figure 12B,C, Figure 13B–I). The individual heat flow evolutionary trends are calibrated to plot the 
heat flow distribution maps and the heat flow at 0 Ma is shown in Figure 13A. Also, the heat flow 
maps at different age are separately calibrated and drawn. 

Figure 12. (A) The heat flow trends used to recover the paleo heat flow in the Lishui Sag. Heat flow 1
refers to the minimum trend and heat flow 3 refers to the maximum trend. The heat flow uncertainty
is estimated to be 13 mW/m2 above or below that of heat flow trend 2. (B) The vitrinite reflectance
simulated using the three heat flow trends (curves with different colors) and measured data (dots). (C)
The formation temperature calculated using different heat flow trends and measured data.

In this way, five wells with formation temperature and vitrinite reflectance measured data (Well
LS36-A, LS36-B, LS35-A, LS35-B and LF1) and four wells with one kind of calibration measured data
(Well NP6, NP11, LS23 and S1) are used to define the heat flow trend for each well in the study area
(Figure 12B,C, Figure 13B–I). The individual heat flow evolutionary trends are calibrated to plot the
heat flow distribution maps and the heat flow at 0 Ma is shown in Figure 13A. Also, the heat flow
maps at different age are separately calibrated and drawn.
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reconstruction (left). (B–I) The formation temperatures and vitrinite reflectance data for the 8 wells in 
the study area. The modelled formation temperature and vitrinite reflectance versus depth curve fit 
well with the measured data. The heat flow used in the simulation are shown in the map Figure 13A. 
The paleo heat flow evolution followed the trend in Figure 12. 

4. Study Results 

The combination of source rock, reservoir rock, seal rock and boundary conditions form the 
model. After the model simulation, we can get abundant results including the overall prospectivity 
of the basin and the detailed hydrocarbon distributions in each reservoir during the whole geological 
time. The maturity of the source rock layers are shown in Figure 14. In Figure 14A, the central part of 
the E1y reached the gas generation stage with Ro over 1.0%. The west slope of the west sub-sag and 

Figure 13. (A) Present-day heat flow distribution map based on the single well heat flow reconstruction
(left). (B–I) The formation temperatures and vitrinite reflectance data for the 8 wells in the study area.
The modelled formation temperature and vitrinite reflectance versus depth curve fit well with the
measured data. The heat flow used in the simulation are shown in the map Figure 13A. The paleo heat
flow evolution followed the trend in Figure 12.

4. Study Results

The combination of source rock, reservoir rock, seal rock and boundary conditions form the
model. After the model simulation, we can get abundant results including the overall prospectivity of
the basin and the detailed hydrocarbon distributions in each reservoir during the whole geological
time. The maturity of the source rock layers are shown in Figure 14. In Figure 14A, the central part
of the E1y reached the gas generation stage with Ro over 1.0%. The west slope of the west sub-sag
and southern part have lower maturity. The east sub-sag has lower maturity due to the less burial
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depth but still reach the oil-generating peak stage. The whole Lower E1l source rock entered the oil
generation threshold (Figure 14B) and the deep regions acquired higher vitrinite reflectance over 1.3%.
The high maturity areas are the sags at the west side of the Lingfeng Uplift. The maturity in Figure 14C
was more evenly distributed at main oil stage.

Energies 2019, 12, x 15 of 20 

 

southern part have lower maturity. The east sub-sag has lower maturity due to the less burial depth 
but still reach the oil-generating peak stage. The whole Lower E1l source rock entered the oil 
generation threshold (Figure 14B) and the deep regions acquired higher vitrinite reflectance over 
1.3%. The high maturity areas are the sags at the west side of the Lingfeng Uplift. The maturity in 
Figure 14C was more evenly distributed at main oil stage. 

Figure 15 shows the maturity and burial history of two typical wells in the west and east sub-
sags. The maximum burial depth at Well LS36-A was around 6500 m while the depth at Well NP6 
reached 4700 m. The source rocks enter the hydrocarbon generation threshold at burial depth of 2300 
m. The E1y entered the hydrocarbon threshold at 58 Ma, Lower E1l at 56 Ma, Upper E1l at 53 Ma 
(Figure 15, Figure 16A). Hydrocarbon source rocks transformation ratio (TR) is generally defined as 
the present hydrocarbon potential divided by the initial hydrocarbon generation potential. When the 
TR reach 100%, it means that hydrocarbon part in the source rocks completely supply the oil and gas 
generation, and the hydrocarbon generation potential has been exhausted. The TR of the source rock 
in the Lishui Sag rose quickly after the source rock entered the oil window. The kerogen from E1y 
and Lower E1l continued transforming into hydrocarbon until 48 Ma, before the deposition of 
Wenzhou Formation. The TR rose slowly from 53 Ma to present day and reached a high stage. The 
TR of the source rocks from E1y, Lower E1l and Upper E1l slowly increased to 77%, 62% and 22%. The 
high transformed E1y and Lower E1l formations are the main petroleum generating source rocks. 

 
Figure 14. (A) Modelled maturity maps at present day for the E1y; (B) Modelled maturity maps for 
the Lower E1l; (C) Modelled maturity maps for the Upper E1l. The higher maturities have been reached 
in the central part of the west sub-sag. The missing area between the sub-sags represents the Lingfeng 
Uplift. 

 
Figure 15. (A) Maturation and burial history of the Well LS36-A in the west sub-sag of the Lishui Sag. 
(B) Maturation and burial history of the Well NP6 in the east sub-sag of the Lishui Sag. 

Figure 14. (A) Modelled maturity maps at present day for the E1y; (B) Modelled maturity maps
for the Lower E1l; (C) Modelled maturity maps for the Upper E1l. The higher maturities have been
reached in the central part of the west sub-sag. The missing area between the sub-sags represents the
Lingfeng Uplift.

Figure 15 shows the maturity and burial history of two typical wells in the west and east sub-sags.
The maximum burial depth at Well LS36-A was around 6500 m while the depth at Well NP6 reached
4700 m. The source rocks enter the hydrocarbon generation threshold at burial depth of 2300 m.
The E1y entered the hydrocarbon threshold at 58 Ma, Lower E1l at 56 Ma, Upper E1l at 53 Ma
(Figures 15 and 16A). Hydrocarbon source rocks transformation ratio (TR) is generally defined as the
present hydrocarbon potential divided by the initial hydrocarbon generation potential. When the TR
reach 100%, it means that hydrocarbon part in the source rocks completely supply the oil and gas
generation, and the hydrocarbon generation potential has been exhausted. The TR of the source rock
in the Lishui Sag rose quickly after the source rock entered the oil window. The kerogen from E1y and
Lower E1l continued transforming into hydrocarbon until 48 Ma, before the deposition of Wenzhou
Formation. The TR rose slowly from 53 Ma to present day and reached a high stage. The TR of the
source rocks from E1y, Lower E1l and Upper E1l slowly increased to 77%, 62% and 22%. The high
transformed E1y and Lower E1l formations are the main petroleum generating source rocks.
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Figure 15. (A) Maturation and burial history of the Well LS36-A in the west sub-sag of the Lishui Sag.
(B) Maturation and burial history of the Well NP6 in the east sub-sag of the Lishui Sag.
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Figure 16. (A) Maturity evolution for each source rock according to vitrinite reflectance (solid lines)
and transformation ratio (dash lines). (B) The bulk generation mass evolution of three main source
rock: E1y, Lower E1l and Upper E1l (solid lines), and the petroleum filling saturation history in the
Upper E1m for Well LS36-A (dash line).

5. Discussion

5.1. Hydrocarbon Generation and Expulsion

The main hydrocarbon generation period can be figured out by the generation rate and mass of
the source rocks. As we can see, the generation mass has a positive relation with the transformation
rate and source rock maturation in Figure 16. In Figure 15 we can see the vitrinite reflectance didn’t
increase after the regional erosion event began at 32 Ma. The generation mass of E1y source rock is
significantly larger than the Upper and Lower E1l source rock. The generation of hydrocarbon from
source rocks last from 58 Ma to 32 Ma. The first hydrocarbon filling history began from 56 Ma and
lasted until the erosion event started at 32 Ma (Figure 3, Table 1 and Figure 16B). The second filling
period started from 23 Ma after the erosion and continued to nowadays.

The fluid inclusion analysis technique is used widely in the orientation of hydrocarbon pool
forming and the homogenization temperature indicates the temperature of reservoir forming and fluid
injection [52]. The fluid inclusions analysis of six core samples from Well LS36-A and LS36-B Lower
E1m sandstone show the major distribution zone of homogenization temperature is between 85 ◦C and
95 ◦C. There were also a group of results gather around 125 ◦C and 135 ◦C (Figure 17A). However, on
the basis of geological temperature history simulation, the temperature of Lower E1m never reached
this high degree (Figure 17B). The higher homogenization temperature of fluid inclusions related to
local volcanic activities in the southern part of the west sub-sag, and the composition of gas inclusions
is mainly CO2. According to the formal researches, the volcanic activities mainly in the Late Miocene
which are unrelated to the petroleum generation [53,54].

When combined with the burial and temperature history map of Well LS36-A, the reservoir
forming period can be limited between 51.8 Ma and 32 Ma. The second filling process started from
18.2 Ma to now. The model simulation gave the filling process (petroleum saturation) through geologic
history, which is calculated by the 3D basin hydrocarbon generation, migration and accumulation.
The homogenization temperature and filling time recovery focused on the 1D single well burial and
temperature history. They are two different perspectives to solve the problem. The reservoir forming
time figured out by model simulation (Figure 16B) and inclusion homogenization temperature method
(Figure 17) draw the similar conclusion which confirmed the accuracy of the result. The long term
hydrocarbon filling history has positive effect to the gas reservoir forming.

This study find out that the first phase of filling is from the early Eocene to the early Oligocene,
the second phase is from the early Miocene to the present. In the former literature, scholars support
the idea of three petroleum charge periods [7,10,11]. The diverse charging time intervals worked out
by different scholars put the high homogenization temperature (>120 ◦C) into consideration. In fact,
after the heat flow calibration we discover that the maximum formation temperature the E1m reached
is 100 ◦C.
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5.2. Hydrocarbon Migration and Accumulation

The hydrocarbon migration path from source to reservoir in three dimension was simulated in
the 3D basin model, which is unavailable using 1D and 2D modelling. The hydrocarbon can be both
accumulated in the sandstone and siltstone reservoir due to the horizontal cap of the E2o Formation.

From the plot of the simulated hydrocarbon expulsion direction (Figure 18A) it can be seen that
the E1y source rock generated oil (green arrow). As the burial depth increased rapidly, formation
temperature also rose sharply, and the original oil cracked into gas, so that subsequent hydrocarbon
generation formed wet and dry gas (red arrow). The main hydrocarbon generating zones located at
the east of the Lingfeng Uplift. The upward migration of oil and gas moved into Upper and Lower
E1m Formation reservoir. As shown in Figure 18B, the migration path follows the fluid potential and
affected by faults and physical properties. The main migration direction is from the site of source rock
kitchen to the slope zone. The gas zones occur in the anticline and faulted anticline structures. The
oil zones occur in the lower structures and lithologic traps. The LS36-A structure is a good anticline
structure for petroleum accumulation and preservation.
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6. Conclusions

We constructed a detailed 3D model of the basin with several wells and seismic data to get the
inner evolutionary process of the basin, which is the key for petroleum exploration. The simulation
could be made more accurate with additional analytical data and refined boundary conditions for the
model. In this research, reservoir physical properties and multiple lithology distribution modelling
were used to improve the accuracy of lithological hydrocarbon reservoir modelling. The heat flow
calibration and detailed boundary condition settings contributed to the refined petroleum system
modelling and verified the accuracy of the results.

3D petroleum system modelling of the Lishui Sag indicates that the major hydrocarbon source
rocks is argillaceous shale in the Yueguifeng Formation. The peak hydrocarbon generation period is
from 58 Ma to 50 Ma, the petroleum generation period lasted until 32 Ma when the regional erosion
event occurred. The main hydrocarbon generating zones located at the east of the Lingfeng Uplift. The
main migration direction is from the site of source rock kitchen to the slope zone with the effect of
faults and lithology. The primary reservoir forming and petroleum charging event took place between
early Eocene and the end of Eocene (51.8 Ma–32 Ma). The second period of hydrocarbon accumulation
is from early Neogene to present (23 Ma–0 Ma). Because of the source rock properties along with
the high temperature and high pressure deposition environment, the hydrocarbon types of Lishui
Sag are mainly gas and gas condensate. Regional uplift and erosion, the location of the source rock
kitchens and fault-lithologic distribution play the important role in the petroleum pool forming in
the Lishui Sag. In the further research, the model of the whole basin can be established to get a more
macroscopic vision.
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