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Abstract: High demand for batteries with a wide operating temperature range is on the rise with the
development of wearable electronic devices, especially electric vehicles used in cold regions. Al–air
batteries for electric vehicles have triggered worldwide interest due to their excellent theoretical
energy density and safety. In this study, the low-temperature performance of Al–air batteries is
tested for the first time. The effects of temperature and electrolyte concentrations on the discharge
performance are then studied in detail. The discharge voltage is significantly influenced by the
temperature. The low temperature could significantly depress the hydrogen evolution reaction of Al
anodes. The Al–air batteries reached an extraordinary capacity of 2480 mAh/g, with 31 wt% KOH
electrolyte at −15 ◦C. Moreover, the Al–air batteries at 0 ◦C exhibited higher discharge voltage and
power densities than those at 15 and −15 ◦C. This study provides an important reference for future
studies to improve low-temperature performance of Al–air batteries.
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1. Introduction

Besides the rapid advancement of modern industrial technology, other factors, such as
environment friendliness, cleanliness, and being an alternative inexpensive energy source have become
the subject of research because of the limitations of traditional energy, i.e., fossil fuel exhaustion and
risk of climatic degeneration [1]. Metal–air batteries are one of the most promising candidates for
next-generation energy storage due to their high capacity and energy density. Al–air batteries have
driven the increasing concern due to their high specific energy density, low cost [2], and stability
in solid gel electrolyte [3] or the electrolyte with additives (such as ZnO/PEG di-acid inhibitor and
non-conductive oil) [4,5]. The application of these batteries has spread to remote communications,
railroad signaling, seismic telemetry, and power grids. Moreover, the high safety and long platform of
discharge make them a prominent power storage source for hybrid electric vehicles [6,7]. Although
significant progress has been achieved in enhancing the electrochemical performance of Al–air battery,
a critical issue that seriously restricts its future commercialization and practical application remains.
Batteries are sensitive to environmental conditions, especially to temperature. However, few studies
focus on low-temperature (LT) performance of Al–air batteries, which is of considerable importance
for the development of Al–air battery. For example, understanding the effects of winter operation for
electric vehicles is critical in cold regions, such as Switzerland, Canada, Northern USA, Northeast
China, and Russia.

Scientists have already realized that a broad application temperature range is a big challenge
for battery development. Numerous papers have addressed the problem of poor LT performance of
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various kinds of batteries [8–13]. If the temperature falls to the subzero range, then the electrochemical
performance and stability of batteries can be dramatically reduced, depending on the battery chemistry
in comparison with those at room temperature. Ji et al. [14] have shown that the sluggish diffusion
process of ions at LT leads to the remarkable deterioration of electrochemical performance. For
vanadium redox flow batteries, a relatively low energy density is limited by the solubility of vanadium
ions in the sulfuric acid supporting electrolyte at LT [15]. The high capability and cycling stability
of Na-ion batteries are substantially reduced when temperature falls below 0 ◦C [16]. Most studies
focused on the LT performance of Li-ion batteries, particularly for propelling electric vehicles [11,17–19].
Some studies suggest that discharge capacity and operating voltage are limited by the poor ionic
conductivity of electrolytes and low diffusivity of lithium ion within graphite anodes at LT. A study
reported that Li-ion batteries could only deliver 5% of its capacity at −40 ◦C compared with that at
20 ◦C [12,20]. Researchers focus on improving battery cycling stability and capacity at LT [14,21–28].
Al–air batteries exhibits evident advantages over Li-ion batteries. Al–air batteries are safe and cost
effective, and their raw materials are widely available. These advantages demonstrate that the Al–air
battery has the potential to be a backbone technology for the energy storage of electric vehicles in
the future. However, the LT performance of the Al–air battery has never been tested or investigated.
Therefore, studying the mechanisms of LT performance for the Al–air battery is crucial and challenging.

Based on the aforementioned reasons, the LT electrochemical performance for Al–air batteries
is comprehensively tested in this study. The following section presents a detailed fabrication of the
Al–air battery. In addition, the electrochemical performance is tested and discussed. The results could
provide suggestions for developing better-performing Al–air batteries.

2. Experiment

2.1. Materials

All materials in this study were of analytical grade and used without further treatment. Reagents
for the air cathode synthesis, including activated carbon, ether black, poly(vinylidene fluoride) (PVDF),
and Ni foam, were purchased from Shenyang Kejing. Catalysts, including MnO2, La2O3, SrO, and
ZnO, were from Sinopharm Chemical Reagent. Organic solvent N-methyl pyrrolidone (NMP) was
provided by Shanghai Hushi Laboratorial Equipment Co., Ltd. Al foil and KOH (from Chinasun
Specialty Products Co., Ltd.) solution served as the metal anode and electrolyte, respectively.

2.2. Fabrication of Al-air Batteries

Air cathode was prepared according to the method used in our previous study [3], with conductive
carbon materials, catalysts, binder, and current collector. A mixture of activated carbon (70 g), ether
black (10 g), MnO2 (10 g), La2O3 (8 g), and SrO (2 g) was milled together with PVDF (8 g) binder.
Thereafter, the solid blend in NMP dispersed, forming a 400 ml viscous paste, which was smeared
evenly on the surface of the Ni foam and dried for 24 h at ambient temperature. A 0.3 mm-thick
cathode plate was obtained by pressing it at 8 MPa.

All experiments comprised KOH and ZnO aqueous alkaline solutions in distilled water as
an electrolyte. ZnO additive in alkaline solutions was used as a corrosion inhibitor [3,5,29–33].
The concentrations of KOH and ZnO were α and (α/30) wt% respectively. Al foil with 20 µm thickness
was used as the metal anode and cut into 6 cm × 6 cm, and the reaction area is a circle with a diameter
of 4 cm and weight of 0.067 g. The Al–air batteries were finally assembled, as shown in Figure 1.
The distance between the aluminum and air electrode is 6 cm.
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Figure 1. Schematic illustration of the assembled Al–air battery.

2.3. Electrochemical Tests

Conductivity is one of the most important factors that affect electrochemical performance.
Different contents of KOH pellets were added into distilled water, and the conductivities were
measured each time at different temperatures. A pair of Pt electrode was immersed in the electrolyte
solution to measure the conductivity with a Mettler Toledo FE30 conductivity testing system. Discharge
characteristics of the assembled Al-air batteries were measured using a LAND battery testing system
at room, zero, and subzero temperatures. Once the cell was assembled, a 5 min period was left to
allow good impregnation of electrodes to stabilize the open circuit potential. To characterize the
self-discharge behavior, Tafel extrapolation was performed using an electrochemical workstation
RST5000 in the conventional three-electrode cell. A Platinum wire was used as the counter electrode
and mercury/mercuric oxide (Hg/HgO) was used as the reference electrode. The working electrode
was the Al anode. After the Al anodes were immersed in electrolyte for 20 min to allow for potential
stabilization; potentiodynamic polarization was conducted at a 1 mV/s scan rate. The voltage scan
range of the anodic polarizing curve was −0.5 to 0.5 V vs. open circuit potential.

3. Results and Discussion

3.1. Ionic Conductivity

Figure 2 shows the conditions of KOH solution (with α = 20, 30, and 40 concentration), which was
kept frozen for 24 h at −25 ◦C. Distilled water was also frozen for comparative purposes. As shown in
the figure, the KOH solution at a low concentration (20 wt%) was frozen, and the solution still flowed
evenly at extremely LT at high concentrations. This finding illustrates well that KOH solution with
concentration higher than 20 wt% could be adopted in Al–air battery at LT.

Figure 3 displays the conductivity of electrolyte solution (including KOH and ZnO) in terms
of the mass fraction of KOH and temperature. The conductivity decreases further with decreasing
temperature. Conductivity decreases with increasing KOH content after the peak because of increased
viscosity and restricted ion mobility [34–36]. The highest conductivity of around 560 mS cm−1 is
observed at KOH content 31.5 at 15 ◦C. Fairly high conductivity of 230 mS cm−1 with content 28 wt%
is evident when the temperature is lowered to −15◦C. The KOH content is fixed at 25 and 31 wt%
(α = 25 and 31) in the following research.
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3.2. Electrochemical Characterization

Figure 4 shows the discharge behaviors of the Al–air battery using 25 wt% KOH electrolyte
solution at constant current densities of 0.5 mA cm−2 (a) and 1.0 mA cm−2 (b). The result shows that
the Al–air battery at 0 ◦C exhibits an open-circuit voltage of 1.41 V, which is higher than that of other
temperatures, whereas the lowest open-circuit and platform voltage appeared at −15 ◦C. The cathode
reaction would be affected by the diffusion coefficient of oxygen. According to Arrhenius-type
equation [37], the gas diffusion coefficient decreases with temperature. However, proper LT would
inhibit the hydrogen evolution of Al anode. Additionally, the discharge time of the Al–air battery
at −15 ◦C is unexpectedly up to 25 h. The discharge time is related to the utilization of Al foil. The
hydrogen generation was barely observed at −15 ◦C, thereby indicating that the LT improves the
stability of the Al–air battery and suppresses the parasitic reaction. At a discharge current density of
0.5 mA cm−2 (Figure 4a), the Al–air battery achieves a capacity of 116 mAh/g at 25 ◦C, which is only
4.03% of aluminum’s theoretical capacity (2980 mAh/g [38]), and the gravimetric energy density is
142 Wh/g. At −15 ◦C, Al–air battery exhibited a much superior capacity of 2343 mAh/g at the same
current density, which is 78.68% of the theoretical value. The gravimetric energy density is 2480 Wh
g−1. Compared with the current density 0.5 mA cm−2 case, the capacity increases by 1.12, 1.84, and
2.175 folds at −15 ◦C, 0 ◦C, and 15 ◦C, respectively, at 1.0 mA cm−2 (Figure 4b). The conductivity of
electrolyte is essential for the discharge performance. LT results in the reduction OH− activity, which
also improves the oxygen reduction reactions. The extraordinary capacity is mainly due to the effect of
LT on the anodic reaction.
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Figure 4. Discharging voltage profiles with a constant current density of 0.5 mA cm−2: (a) and
1.0 mA cm−2; (b) by using 25 wt% KOH.

The discharging performances are also tested using a higher concentration (31 wt%) KOH
electrolyte solution with constant current densities of 0.5 and 1.0 mA cm−2. With increasing electrolyte
concentration, the Al–air battery achieves high discharge voltage but low capacities, as shown in
Figure 5. When the electrolyte concentration is high, the aluminum oxidation rate increases. Therefore,
the batteries exhibit high discharge voltage, short discharge time, and low capacities.
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Figure 5. Discharging voltage profiles with a constant current density of 0.5 mA cm−2: (a) and 1.0 mA
cm−2; (b) by using 31 wt% KOH.

The potentiodynamic polarization at different temperatures was measured using a three-electrode
system. Figure 6 and Table 1 respectively present the Tafel curves and corresponding corrosion
parameters of Al anodes in 25 wt% KOH (Figure 6a) and 31 wt% KOH (Figure 6b) electrolyte solutions.
The values of the corrosion potential (Ecorr) and the corrosion current density (Icorr) are calculated from
the Tafel plots. The corrosion inhibition efficiency is calculated by the following formula as used in
Reference [39–41].

η% =
Icorr − Icorr(inh)

Icorr
× 100,

where the Icorr and Icorr(inh) are the corrosion current densities at 15 ◦C and other temperatures,
respectively. Based on the Tafel plot results, the corrosion current density of Al–air batteries at 15◦C
is clearly much larger than that of 0 or −15 ◦C, and the corrosion potential shifts, implying that it is
less corrosion resistant and possesses the largest self-corrosion rate than that of others. As illustrated
in Table 1, the inhibition efficiencies are much high at LT. The largest inhibition efficiency is obtained
at −15 ◦C. This finding further confirms the discharged behaviors in Figures 4 and 5. The LT can
significantly prevent the corrosion of aluminum anodes in KOH electrolyte solution.
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Figure 6. Potentiodynamic polarization curves for Al anodes measured in 25 wt% KOH: (a) and 31
wt% KOH; (b) at different temperatures.

Table 1. Corrosion parameters of Al anodes in KOH electrolyte at different temperatures.

KOH Content Temperature (◦C) −Ecorr (V vs. Hg/HgO) Icorr (mA/cm2) η%

25 wt%
−15 −1.490 0.232 84.33

0 −1.480 0.695 53.02
15 −1.471 1.479 –

31 wt%
−15 −1.487 0.448 44.54

0 −1.479 0.534 33.86
15 −1.466 0.807 –

For further evaluation of the impacts of ambient temperature on Al–air battery, their
current–voltage/current–power curves in 25 wt% and 31 wt% KOH are shown in Figure 7a,b,
respectively. The voltages ranged between 1550 and 350 mV, with an applied discharge current density
in the range of 0.5–170 mA cm−2. With increasing current density, the discharge voltage decreased
accordingly. The batteries at 0 ◦C showed higher power density than that of others. The Al–air batteries
with 25 wt% KOH electrolyte reached the peak value of 101.14 ± 2.8 mW cm−2 (0 ◦C) at 130 mA cm−2,
which is higher than that of 92.17 ± 2.6 mW cm−2 (15 ◦C) and 80.21± 2.8 mW cm−2 (−15 ◦C), as
depicted in Figure 7a. For cases of high electrolyte solution concentrations (31 wt%), the discharge
voltages and power densities increase, as plotted in Figure 7b. The maximum power densities reach
104 ± 2.9 mW cm−2 (0 ◦C) at 130 mA cm−2, which is more than 95.55 ± 2.7 mW cm−2 (15 ◦C) and
84.37± 2.6 mW cm−2 (−15 ◦C). These data provide rather surprising results, thereby suggesting that
the proper LT improves the power density of Al–air battery. Although the LT environment lowered
the electrical conductivity of electrolyte solution, LT repressed the hydrogen evolution reaction and
promoted oxygen reduction reactions to a certain degree.
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Figure 7. Discharging voltage and power density profiles versus current density with 25 wt%: (a) and
31 wt%; (b) KOH electrolyte solutions.

4. Conclusions

Measurements for LT electrochemical performance of Al–air batteries are reported for the first time.
The combination effects of temperature and electrolyte concentrations on electrochemical performance
are discussed. Different temperatures are included for comparison. The LT has a significant effect
on the discharge performance. In the tests of constant current discharge, the capacities of Al–air
batteries can reach 2343 mAh/g with 25 wt% KOH electrolyte and 2480 mAh/g with 31 wt% KOH
electrolyte at −15 ◦C. The corrosion experiments of Al anodes further demonstrate that the LT could
effectively decrease the hydrogen evolution reaction. Surprisingly, the Al–air batteries at 0 ◦C exhibit
high discharge voltage and power densities. The peak value of power densities at 0 ◦C reaches 101.14
± 2.8 mW cm−2 (25 wt% KOH) and 104 ± 2.9 mW cm−2 (31 wt% KOH) at 130 mA cm−2, which is
higher than that of −15 ◦C and 15 ◦C. Therefore, the proper LT could improve the performance of
Al–air batteries. This novel result is crucial to studies focusing on power sources for wide temperature
ranges. Further studies on the improvement of LT of metal–air battery are needed.
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