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Abstract: The hydrogen storage pressure in fuel cell vehicles has been increased from 35 MPa to
70 MPa in order to accommodate longer driving range. On the downside, such pressure increase
results in significant temperature rise inside the hydrogen tank during fast filling at a fueling
station, which may pose safety issues. Installation of a chiller often mitigates this concern because
it cools the hydrogen gas before its deposition into the tank. To address both the energy efficiency
improvement and safety concerns, this paper proposed an on-board cold thermal energy storage
(CTES) system, cooled by expanded hydrogen. During the driving cycle, the proposed system uses
an expander, instead of a pressure regulator, to generate additional power and cold hydrogen gas.
Moreover, CTES is equipped with phase change materials (PCM) to recover the cold energy of the
expanded hydrogen gas, which is later used in the next filling to cool the high-pressure hydrogen gas
from the fueling station.

Keywords: hydrogen; filling process; expander; cold thermal energy storage; phase change material

1. Introduction

A few years ago, the typical hydrogen storage pressure in fuel cell vehicles was 35 MPa [1];
such pressure produced a very low volumetric energy density to accommodate long-range driving [2]
that would require 70 MPa. Recently, on-board hydrogen storage, mainly in high pressure of 70 MPa,
has been widely adopted. This increase of pressure, however, leads to a significant rise in the
temperature of the vehicle tank during fast filling at a fueling station due to heat of compression and
Joule–Thomson expansion [2,3]. Pre-cooling hydrogen with a chiller before refueling mitigates the
temperature rise to meet the maximum allowable tank temperature that conforms to international
standards and regulations such as the Society of Automotive Engineers (SAE) protocol [4] and the
International Organization for Standardization (ISO) safety code [5] (i.e., 85 ◦C) [2,3]. Such temperature
rise during the filling process also reduces the total amount of gas stored inside the tank. In a series
of experiments, Kim et al. [1] quantified temperature change on the cylinder of the tank using
computational fluid dynamics (CFD) analysis. Miguel et al. [6] evaluated the effect of the filling rate
on the gas temperature increase and investigated the thermal response of the metallic bosses and the
external surface of the tanks under different cycling conditions. Monde et al. [7] validated their model
via experiments and mentioned parameters affecting the filling process to determine the filling time or
precooled temperature. In several refueling experiments, Zheng et al. [8] investigated the temperature
rise during refueling and validated a CFD model; results showed that an increase in initial pressure and
a decrease in ambient temperature lead to an approximately linear decrease in final gas temperature [8].
Moreover, Miguel et al. [9] investigated the influence of initial tank temperature on refueling of
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two different on-board hydrogen tanks, four different fuel delivery temperatures (from ambient
temperature refueling to a pre-cooled hydrogen at −40 ◦C), several filling rates, and initial pressures.
Xiao et al. [9] proposed a new analytical solution of pre-cooling hydrogen temperature from a simplified
lumped parameter model, and investigated the effects of initial temperature, initial pressure, and the
filling time on the inflow hydrogen temperature.

Installation of a pre-cooling system in a hydrogen refueling station invites cooling demand,
thus significantly increasing the initial cost, as well as the running costs of the station, in terms of energy
consumption [10]. Elgowainy et al. [11] conducted a techno-economic and thermodynamic analysis
of hydrogen precooling units for T40 stations, and they examined the key factors that contribute to
the cost and energy use of hydrogen precooling. Cebolla et al. [12] executed filling experiments with
different inlet gas temperatures and mass flow rates and stated that the lowest precooling temperature
(−40 ◦C) is not always required in order to meet the user’s requirements. To reduce the cooling
demand at the fueling station, Melideo and Baraldi [10] proposed a convenient filling strategy, with an
almost linear pressure rise and pre-cooling in the second half of the process, which achieved a 60%
reduction of cooling energy demand compared to the entire filling pre-cooling by the CFD analysis.

On a parallel note, the storage system consumes more energy to compress hydrogen at
higher pressures of 70 MPa. Because the energy consumed during filling cannot be recovered,
energy efficiency at higher pressure storage decreases. According to the well-to-wheel analysis of fuel
cell vehicles by Campanari et al. [13], the conversion efficiency of energy consumed at a refilling station
(energy consumption for each kWh of energy given at the vehicle wheels) to compress hydrogen to
70 MPa from the pipeline (at 6 MPa) is 65%.

In this study, a recovery system for hydrogen pressure energy in a fuel cell vehicle is proposed.
During pressure regulation in the vehicle, an expander is used to recover the pressure energy and
produce additional power. In addition, the cold energy of expanded hydrogen is stored in an on-board
cold thermal energy storage (CTES) system. It is later used to cool the high-pressure hydrogen gas
before filling. Thus, it reduces (or eliminates) energy consumption by the chiller at the fueling station.
A simple thermodynamic analysis is used to investigate the feasibility of the new system. The aim
of this study is to show the potential energy-saving methods for fuel cell vehicles and measures of
effectiveness, which have so far been difficult to find in the available literature.

2. System Configuration

Figure 1 shows the configuration of the pressure energy recovery system. During the driving cycle,
hydrogen pressure from the tank to the fuel cell is reduced to less than 1 MPa typically by a pressure
regulator; for the proposed system, an expander is used from P1 to P2 to produce additional power.
During expansion, hydrogen temperature drops from T1 to T2; furthermore, the cold hydrogen from
the expander passes through an on-board CTES system, freezing the phase change material (PCM).
As shown in Figure 2, the temperature of expanded hydrogen increases from T2 to T3 through the
CTES system, whereas in the PCM, phase change occurs at a constant temperature TS. Then, during the
next filling process, the CTES system is used to cool the high-pressure hydrogen gas from T4 to T5

before filling, reducing (or eliminating) the energy consumption of the chiller at the fueling station.
SAE J2601 [4] defines the fueling station dispenser type by its capability to dispense hydrogen

fuel at a specific nozzle pre-cooled temperature (Type A: −20 ◦C and Type B: −40 ◦C). In this study,
T2 as a pre-cooled temperature was initially assumed to be −20 ◦C in order to investigate the feasibility
of the system. Then, a method to achieve −40 ◦C of pre-cooled temperature was presented.
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Figure 2. Temperature change of hydrogen through the CTES system with phase change materials.

3. System Modeling

The following are the general assumptions considered in the analysis: The kinetic and potential
energies, as well as the heat and friction losses, are negligible, and the expansion process is an adiabatic
process. The properties of hydrogen were obtained from REFPROP–NIST [14]. The equations for the
various components of the system are as follows.

The isentropic efficiency of the expander is defined as

ηe =
h1 − h2

h1 − h2,s
(1)

where the subscript s denotes an isentropic expansion process. The pressure after the expander P2 is
assumed to be 1 MPa.

The specific work of the expansion process is expressed as

we = h1 − h2 (2)
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Exergy can be defined as the maximum possible useful work that can be obtained during a process
that brings the system into equilibrium while interacting solely with the environment. The specific
exergy k of a hydrogen stream can be expressed as [15]

k = h − h0 − T0(s − s0) (3)

where h and s are the enthalpy and entropy, respectively, and the subscript 0 indicates that the
properties are taken at the standard temperature and pressure (T0 = 20 ◦C, P0 = 1 bar) as a dead state.

The specific cooling capacity of expanded hydrogen is expressed as

qc,e = h3 − h2 (4)

The cooling requirement, to cool the high-pressure hydrogen from T4 to T5 during the filling
process at the fueling station, is expressed as

qcool = h4 − h5 (5)

where the PCM temperature TS and the temperature of hydrogen after the PCM cold storage T3 are
assumed to be −25 ◦C and −30 ◦C, respectively, to cool the high-pressure hydrogen at the fueling
station from 20 ◦C to −20◦C. The pinch temperature between hydrogen and the PCM cold storage is
assumed to be 5 ◦C.

The fuel efficiency improvement (FEI) due to the additional work done by expanding hydrogen
can be evaluated as

FEI =
we

LHV
(6)

where LHV indicates the lower heating value of hydrogen.

4. Results

Figure 3 shows the expansion work of hydrogen in the vehicle tank for various expander
efficiencies with respect to pressure. It was assumed above that hydrogen from the tank expands
to 1 MPa through the expander. For a given expander efficiency, the expansion work decreases
with a decrease in tank pressure. Correspondingly, for a given tank pressure, the expansion work is
proportional to the expander efficiency.
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Figure 3. Expansion work of hydrogen as a function of tank pressure and expander efficiencies. 124 Figure 3. Expansion work of hydrogen as a function of tank pressure and expander efficiencies.
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Figure 4 shows the exergy and isentropic expansion work of hydrogen. The exergy difference
between the given tank pressure and the final pressure of 1 MPa, as the maximum available work from
the expansion process, represents the ideal expansion work by an isothermal expansion. As shown
in the figure, the ideal adiabatic (i.e., isentropic) expansion work is equal to about 60–70% of the
exergy difference.
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Figure 4. Exergy and expansion work as a function of tank pressure.

Although the expansion work by the adiabatic process is lower than that by an isothermal
process, using the cold energy of expanded hydrogen in the vehicle is possible. Figure 5 shows the
temperature of expanded hydrogen for various expansion efficiencies with respect to the pressure in
the tank. In the case of free expansion (zero expander efficiency), the temperature rises owing to the
Joule–Thomson expansion.
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The maximum temperature drop by isentropic expansion (1.0 expander efficiency) from 70 MPa
to 1 MPa is −201.6 ◦C. For a given pressure in the tank, the temperature drop is proportional to
the expander efficiency. Similar to the characteristics of the expansion work, for a given expander
efficiency, the temperature drop decreases with a decrease in tank pressure.
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Because the expansion work and cooling capacity of the expanding hydrogen decreases during
the discharging period from 70 MPa to 1 MPa, calculating the mean values of the expanding hydrogen
expanding hydrogen is useful. Figure 6 shows the specific cooling capacity of the expanded hydrogen
for various expander efficiencies with respect to the tank pressure.
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−20 ◦C at 70 MPa, neglecting the loss of the CTES system, is 600.7 kJ/kg.
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As shown, if the expander efficiency gets higher than 0.53, it is possible to meet this requirement.
On the contrary, given that the cooling capacity of the CTES system is realistically unable to do so,
it can alternatively reduce the energy consumption of the chiller at the fueling station. Thus, it is
possible to selectively use the chiller by monitoring the hydrogen temperature after the CTES system.
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Figure 8 shows the fuel efficiency improvement due to the additional work done in the vehicle
by the expanding hydrogen. Note that at expander efficiencies of 0.53 and 1.0, the fuel efficiency
improvements are 1.39 % and 2.63 %, respectively.
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The CTES system uses PCM to minimize its volume and weight. Table 1 list the properties of
the PCM model PCM-HS26N by savENRGTM [16], and its volume and weight of 9.7 L and 11.6 kg,
respectively, necessary to meet the cooling requirement for 100 L and 70 MPa of hydrogen storage and
replace the chiller at the fueling station.

Table 1. PCM properties, volume, and weight satisfying the cooling requirement of 100 L and 70 MPa
hydrogen storage. PCM, phase change materials.

PCM Properties Hydrogen Storage

Melting Temp. (◦C) −25.6 Volume (L) 100
Freezing Temp. (◦C) −26.2 Gas weight (kg) 3.97

Liquid density (kg/m3) 1200 qcool (kJ/kg) 600.7
Latent heat (kJ/kg) 205 Qcool (kJ) 2384.3

PCM volume and weight satisfying the cooling requirement
Volume (L) 9.7
Weight (kg) 11.6

Although the minimum cooling requirement considered disregarded losses in the CTES system,
the real cooling capacity of the expanded hydrogen, compensating for these losses, must be increased.
As shown in Figure 9, this can be achieved by employing two stages of PCM (−5 ◦C PCM1 and −25 ◦C
PCM2) in the CTES system. Thus, the specific cooling capacity of the expanded hydrogen can be
increased by 54% (from 600.7 kJ/kg to 924.8 kJ/kg) since its temperature after the PCM cold storage T3

can be increased from −30 ◦C to −10 ◦C.
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Figure 9. Two-stages of PCM cold thermal energy storage (CTES) system for cooling
capacity improvement.

As pre-cooling temperature, T2 was initially assumed to be −20 ◦C. To achieve the lower
temperature of −40 ◦C, the three stages of PCM (−5 ◦C PCM1, −25 ◦C PCM2, and −45 ◦C PCM3),
shown in Figure 10, can be used. In doing so, the cooling capacity (1087.1 kJ/kg) is able to meet
the minimum cooling requirement (883.2 kJ/kg) from 20 ◦C to −40 ◦C at 70 MPa, as in the previous
calculation process.
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5. Discussion

The results show that the proposed system for hydrogen pressure energy recovery in a fuel cell
vehicle can reduce fuel consumption by providing additional power through the expander and can
reduce the power consumption of the chiller at the refueling station through the on-board CTES system.

The 1.4–2.6% improvement in fuel efficiency with the hydrogen expander cannot be ignored
because it means a 3–5% reduction in the fuel consumption of fuel cell vehicles. In the case of waste
heat recovery (WHR) with an organic Rankine cycle (ORC) system, BOSCH promoted their system for
commercial vehicles by highlighting the reduction in fuel consumption by as much as 5% and payback
period within two years [17]. The reduction in fuel consumption by 5% means a 2% improvement
in net fuel efficiency, considering 40% of engine efficiency. The WHR ORC system consists of many
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components including expander, pump, and many heat exchangers. The proposed hydrogen expander
is much simpler than the WHR ORC system for additional power.

Nowadays, energy-saving technologies for vehicles using fossil fuels have been boosted by
the stricter CO2 emissions regulations for vehicles in the near future. In the case of energy-saving
technologies for the fuel cell vehicles, although there is no benefit in terms of CO2 emissions reduction,
such technologies must be developed to reduce energy losses in the energy conversion processes of
hydrogen as an energy carrier for transportation. From the point view of the customer, the on-board
CTES system for the hydrogen fueling process does not offer any advantage if there is no discount
in fuel cost or incentives. Otherwise, the on-board cold thermal energy storage can be used for the
air-conditioning in vehicles. In reality, in order to boost this kind of energy-saving technologies,
incentives or regulations should be provided to automobile companies and customers.

6. Conclusions

Hydrogen pressure in the storage system of a fuel cell vehicle has been increased from the past
35 MPa to a higher 70 MPa to realize longer driving ranges. However, such increase results in lower
energy efficiency owing to the higher energy consumption needed for compression, as well as the use
of a chiller to cool the hydrogen before filling at a fueling station. As a response, this study proposed
a hydrogen pressure energy recovery system consisting of a hydrogen expander, instead of a regulator,
and a cold thermal energy storage (CTES). Unlike the pressure regulator, the expander produces
additional power, while the expanding-hydrogen-cooled on-board CTES system cools the gas before
filling at the fueling station.

Some results from the simple thermodynamic analysis performed showed that at the
expander efficiencies of 0.53 and 1.0, fuel efficiency respectively improved by 1.39% and 2.63%.
Furthermore, the CTES could reduce (or dispense with) the energy consumption of the chiller at the
fueling station. A phase change material (PCM) could be considered for the CTES because its volume
and weight are feasible for the vehicle application.
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Nomenclature

FEI Fuel efficiency improvement, -
h Specific enthalpy, kJ/kg
k Specific exergy, kJ
LHV Lower heating value, kJ/kg
P Pressure, kPa
Q Heat transfer, kJ/kg
q Specific heat transfer, kJ/kg
s Specific entropy, kJ/kg·K
T Temperature, K
w Work, kJ
Special characters:
η Efficiency, -
Subscripts:
0 Dead state
c,e Cooling capacity of expanded hydrogen
cool Cooling requirement
s Isentropic process
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