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Abstract: Parameter identification in load models is a critical factor for power system computation,
simulation, and prediction, as well as stability and reliability analysis. Conventional point estimation
based composite load modeling approaches suffer from disturbances and noises, and provide limited
information of the system dynamics. In this work, a statistics (Bayesian Estimation) based distribution
estimation approach is proposed for both static and dynamic load models. When dealing with
multiple parameters, Gibbs sampling method is employed. The proposed method samples all
parameters in each iteration and updates one parameter while others remain fixed. The proposed
method provides a distribution estimation for load model coefficients and is robust for measuring
errors. The proposed parameter identification approach is generic and can be applied to both
transmission and distribution networks. Simulations using a 33-feeder system illustrated the
efficiency and robustness of the proposal.

Keywords: Bayesian estimation; dynamic model; Gibbs sampling; parameter estimation; static model

1. Introduction

1.1. Composite Load Modeling Methods

Load modeling is a traditional topic in power systems and has been widely studied over the years [1–8].
The importance of an accurate model for voltage stability studies is established in [9]. In [10,11], the authors
discussed load modeling in the context of planning, operation, and control systems. The emergence of
smart grid technologies, such as distributed generation (DG) and load/demand side management,
has created the need for appropriate load models in order to further improve the accuracy and
reliability of the power system [12,13].

Load models can be categorized into static models and dynamic models. Static models include
the ZIP (constant impedance (Z), constant current (I), and constant power (P)) model, the exponential
model, and the frequency dependent model. Examples of widely used dynamic models include the
induction motor (IM) and the exponential recovery load model (ERL) [1]. The research focus to date has
been on composite load modeling, which consists of static and dynamic models [1]. Specifically, in [1],
it is shown that the ZIP+IM model can be used under various conditions and in different locations and
compositions. A simplified composite model is shown in Figure 1.
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Figure 1. The composite model of ZIP + IM.

Component-based and measurement-based approaches are two typical load model parameter
identification methods that are used today [11,14]. The component-based approach requires
information of load compositions. As introduced in [1], this approach requires models of individual
components, component compositions (consumption of different load type in percentage), as well
as class composition (residential, industrial or commercial load percentage). Measurement-based
approaches calculate the parameters using algorithms such as least-squares (LS) and genetic algorithm
(GA) based on selected model structure by minimizing the objective function as follows.

min
1
n

n

∑
i=1

[(Pm
i − Pe

i )
2 + (Qm

i −Qe
i )

2] (1)

where superscript “m” indicates the measured value, and “e” presents the estimated value.
Measurements should be obtained under different conditions and disturbances. Different techniques
have been used in [14–16] to identify the parameters for the composite model. Additional methods
for load model parameter identification include the Hammerstein model based on real-time system
identification for dynamic load [17] and the artificial neural network (ANN), which is based on
modeling proposed in [18].

1.2. Motivations for Using Bayesian Estimation

Traditional measurement based parameter estimation approaches do not consider the robustness
of the model, and therefore the model sometimes may fail to present the characteristic of the load
accurately due to its time-varying feature. Thus, in [19], the robust time-varying load parameter
identification approach uses batch-model regression to obtain the updated system parameters.
Moreover, the measurement based approach is highly dependent on measurements from meters,
and so measurement anomalies may affect the robustness of the estimations in both time-varying
and time-independent load models. Influence of measurement noises when implementing various
parameter identification methods is an issue discussed in [20]. The challenges in component based
approaches are that they rely on individual load components and the compositions of these load. In [4],
for example, ZIP coefficients, commonly used in electrical appliances, have to be first determined in
order to develop an accurate model and before critical values can be applied. Moreover, the process of
determining different components involves such factors as characterization of consumers, clustering,
and weather. Since the data are highly dependent on the type of day, weather, and service class, it is
a computationally wasted approach to get ZIP coefficients for these appliances. Difficulties involved
in obtaining the comprehensive load composition information is another fact that needs to be carefully
considered when implementing component based approaches.

Bayesian estimation (BE) based composite load parameter identification approach, on the other
hand, can successfully overcome the aforementioned disadvantages in measurement-based and
component-based approaches. First, BE is a time-varying estimation method. Parameters can be
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updated according to the requirements. Second, BE does not require the complicated procedure used
in component based approaches. The information of the composition of the loads and the coefficients
of the appliances are not necessarily needed. Third, BE is a robust estimation method due to its statistic
characteristics: measurement anomalies will not significantly affect the results if the number of samples
is large enough, and the measurement error will not affect the estimation results since in each step of
sampling the estimated parameter is drawn from a posterior distribution calculated according to the
data and eventually forms a distribution of the target parameter.

1.3. Bayesian Probability and Gibbs Sampling

Bayesian probability is one of several interpretations of probability theory. To evaluate the
probability of a hypothesis, Bayesian probability specifies some prior probability, which is then
updated to a posterior probability in the light of new, relevant data (likelihood). The formula of
Bayesian estimation can be written as:

p(θ|x) = p(θ) · p(x|θ)
∑ p(θ) · p(x|θ)

where p(θ) is the prior, p(θ|x) is the posterior given a observation x, and p(x|θ) is the likelihood.
The denominator is called the normalization factor. Bayesian estimation gives the probability density
function (PDF) of a parameter, which is given by some already known observations. It is the product of
the combination of prior information as well as observations of happened events (likelihood). Different
from a specific number given by ML, a PDF is able to provide more information and can be used in
such functions as forecasting and optimization.

Gibbs sampling is an extension of the Monte Carlo Markov Chain method [21], which performs
well when there are multiple parameters to identify. Following the principle of Bayesian probability,
Gibbs sampling calculates the posterior distribution of one parameter while fixing the value of others.
Then, a new sample of the target parameter is drawn from the posterior, and the next new parameter
is sampled with the updated sample. The detailed sampling algorithm is shown in Algorithm 1.

Algorithm 1 Gibbs sampling.

1. Get measurement of x.
2. Draw initial samples θ(0) ∼ q(θ), where q(θ) is the prior and θ = {θ1, θ2, · · · , θM}.
3. For iteration k = 1, 2, ..., K

Calculate p(θ1|θ
(k−1)
2 , θ

(k−1)
3 , ..., θ

(k−1)
M , x) and draw sample θ

(k)
1 ,

Calculate p(θ2|θ
(k)
1 , θ

(k−1)
3 , ..., θ

(k−1)
M , x) and draw sample θ

(k)
2 ,

...
Calculate p(θM|θ

(k)
1 , θ

(k)
2 , ..., θ

(k)
M−1, x) and draw sample θ

(k)
M .

End For
4. The distribution estimate is the histogram of θk, k = K, · · · , K, where K is the preset maximum
iteration number, and K is the burn-in number. The results θk, k = 1, · · · , K− 1, are burn-in data
and discarded.

1.4. Summary of Contributions

The following contributions are made in this work.

• To the best knowledge of the authors, the proposed Bayesian approach has not been investigated
in the context of load model identification. Bayesian estimation-based approaches have been used
in wind forecasting and state monitoring [1,2,22], as well as load forecasting [3–5]. The promising
performance has shown plentiful possibility in power systems.
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• The proposal is a generic approach. Detailed formulation and derivation of both static (ZIP) and
dynamic (IM) models are presented. The proposed algorithm can be applied in both transmission
and distribution network context.

• Numerical experiments illustrated that the proposal provides robust distribution estimation
despite the existence of noise. Furthermore, the proposal estimation is more accurate in point
estimation than conventional algorithms.

The rest of the paper is organized as follows. In Section 2, a ZIP model for steady state is
presented, and the Gibbs sampling is derived. In Section 3, an induction motor model in the context of
dynamic state is presented. A modified version of Gibbs sampling is proposed. Numerical experiments
are presented in Section 4 to illustrate the effectiveness and robustness of the proposed algorithms.
Section 5 discusses existing difficulties in applying the proposal to the real-time operation. Section 6
concludes the paper.

2. ZIP Model and Coefficient Estimation

2.1. ZIP Model

The ZIP model describes how the power of load changes as voltage varies in the steady-state
condition. The ZIP model is presented as follows.

P = P0(α1V̄2 + α2V̄ + α3), Q = Q0(α4V̄2 + α5V̄ + α6),
∑3

i=1 αi = ∑6
i=4 αi = 1,

where V̄ =
V
V0

, P and Q are real and reactive power, and V is voltage magnitude at the load terminal.

Variables P0, Q0 and V0 represent the values of the respective variables under the initial operating
condition. When voltage V deviates from V0, real and reactive power of the load are assumed to follow
a quadratic model. As the real power and reactive power follow the same form of model, we discuss
only the real power as an example in the following. The identification of reactive power parameters
follows the same procedure.

Define y[t] =
P[t]
P0

, x[t] =
V[t]
V0

, where P[t] and V[t] are the tth measurements of the real power

and voltage magnitude of the ZIP load. The following assumptions are made.

• The measurement noise follows a normal distribution, i.e., y[t] = α1x[t]2 + α2x[t] + α3 + ε[t],
where ε[t] ∼ N (0, 1/τ), and 1/τ is the variance The reasons for making this assumption are:
(1) According to the law of large numbers, a normal distribution would be the best one to
represent the characteristics of the noise if the number of experiment is large enough. (2) Since
normal distribution is a conjugate distribution, it is easier for model parameter updating when
implementing Gibbs sampling.

• Total number of n independent and identically distributed (i.i.d.) samples are drawn, namely
(x, y) , {(x[1], y[1]), · · · , (x[n], y[n])}. Thus, the likelihood is

p(x, y|α1, α2, τ) ∝
n

∏
t=1

exp[(y[t]− µ[t])2τ/2], (2)

where µ[t] , α1x[t]2 + α2x[t] + 1− α1 − α2 is the mean.
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2.2. Gibbs in the ZIP Model

Gibbs sampling can be directly applied in the ZIP model estimation. Assume the prior
distributions are as follows.

α1 ∼ N (µ
(0)
1 , 1/τ

(0)
1 ), (3)

α2 ∼ N (µ
(0)
2 , 1/τ

(0)
2 ), (4)

τ ∼ G(a(0), b(0)). (5)

where the distribution of τ is a gamma distribution follows G(a, b). It can be shown that, after each
iteration of Gibbs sampling, the post distributions of these three parameters remain in the same form.
Gibbs sampling of the ZIP model is stated in Algorithm 2. The detailed derivation of the algorithm can
be found in Appendix A.

Algorithm 2 Gibbs Sampling in the ZIP model.

1. Get measurement of x, y.
2. Draw initial samples α1 ∼ N (µ

(0)
1 , 1/τ

(0)
1 ), α2 ∼ N (µ

(0)
2 , 1/τ

(0)
2 ), τ ∼ G(a(0), b(0)).

3. For iteration k = 0, 1, 2, ..., K
Draw a sample α

(k+1)
1 ∼ N (µ

(k+1)
1 , 1/τ

(k+1)
1 ), where

µ
(k+1)
1 ,

τ
(k)
1 µ

(k)
1 − τ(k) ∑n

t=1
(
(α

(k)
2 − 1− α

(k)
2 x[t] + y[t])(1− x[t]2)

)
τ
(k)
1 + τ(k) ∑n

t=1(x[t]2 − 1)2
,

τ
(k+1)
1 , τ

(k)
1 + τ(k) ∑n

t=1(x[t]2 − 1)2,

Draw a sample α
(k+1)
2 ∼ N (µ

(k+1)
2 , 1/τ

(k+1)
2 ), where

µ
(k+1)
2 ,

τ
(k)
2 µ

(k)
2 − τ(k) ∑n

t=1
(
(α

(k+1)
1 − 1− α

(k+1)
1 x[t] + y[t])(1− x[t])

)
τ
(k)
2 + τ(k) ∑n

t=1(x[t]− 1)2
,

τ
(k+1)
2 , τ

(k)
2 + τ(k) ∑n

i=1(x[t]− 1)2.

Draw a sample τ(k+1) ∼ G(a(k+1), b(k+1)), where

a(k+1) = a(k) + n/2,
b(k+1) = b(k) + ∑n

t=1
(
y[t]− α

(k+1)
1 x[t]2 − α

(k+1)
2 x[t]− (1− α

(k+1)
1 − α

(k+1)
2 )

)2/2.

End For
4. Discard burn-in data, and the distribution estimate is the histogram samples.

3. Induction Motor Model and Coefficient Estimation

3.1. Induction Motor Model

The dynamic part of load is usually represented by an IM model, which is discussed below [5].

dE′d
dt

= − 1
T′

[E′d + (X− X′)Iq]− (ω− 1)E′q
dE′q
dt

= − 1
T′

[E′q − (X− X′)Id] + (ω− 1)E′d
dω

dt
= − 1

2H
[(Aω2 + Bω + C)T0 − (E′d Id + E′q Iq)]

Id =
1

R2
s + X′2

[Rs(Ud − E′d) + X′(Uq − E′q)]

Iq =
1

R2
s + X′2

[Rs(Uq − E′q)− X′(Ud − E′d)]

(6)
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where T′ , Xr+Xm
Rr

, X , Xs + Xm, X′ , Xs +
XmXr

Xm+Xr
, A + B + C = 1. In Equation (6), Rs is motor stator

winding resistance, Xs is motor stator leakage reactance, Xm is motor magnetizing reactance, Rr is
rotor resistance, Xr is rotor leakage reactance, H is rotor inertia constant, ω is rotor speed, Id and Iq are
stator current in d-axis and q-axis, Ud and Uq are bus voltage in d-axis and q-axis, and E′d and E′q are
stator voltage in d-axis and q-axis. T0 is the initial load torque. The parameters to be identified in an
IM model are: Xr, Xm, Xs, Rr, Rs, A, B, C, H. Typically, A is assumed to be 1 as the mechanical torque is
assumed to be proportional to the square of the rotation speed of the motor [11]. Consequently, B and
C are both equal to 0.

The differential equation (Equation (7)) is non-linear and the differentiations of E′d, E′q, ω cannot
be measured directly. These features make the procedure in ZIP models unsuitable for IM model
parameter identification and complicates the estimation process. In this work, the state of IM model is
assumed to follow the transitions below.

yEd [t] = β1E′d[t] + β2 Iq[t]− (ω− 1)E′q[t] + εEd [t]
yEq [t] = β1E′q[t]− β2 Id[t] + (ω− 1)E′d[t] + εEq [t]
yω [t] = β3(ω

2T0 − E′d[t]Id[t]− E′q[t]Iq[t]) + εω [t]{
Id[t] = αb(Ud[t]− E′d[t]) + αc(Uq[t]− E′q[t]) + ε Id [t]
Iq[t] = αb(Uq[t]− E′q[t])− αc(Ud[t]− E′d[t]) + ε Iq [t]

(7)

where yEd ,
dE′q
dt

, yEq ,
dE′d
dt

yω ,
dω

dt
, β1 , − 1

T′
, β2 , −X− X′

T′
, β3 , − 1

2H
, αb ,

Rs

R2
s + X′2

,

αc ,
X′

R2
s + X′2

, εEd [t] ∼ N (0, 1/τE), εEq [t] ∼ N (0, 1/τE), εω [t] ∼ N (0, 1/τω), ε Id [t] ∼ N (0, 1/τI),

and ε Iq [t] ∼ N (0, 1/τI).
The prior distribution of these parameters is assumed to be as follows.

β1 ∼ N (µ
(0)
β1

, 1/τ
(0)
β1

), β2 ∼ N (µ
(0)
β2

, 1/τ
(0)
β2

)

β3 ∼ N (µ
(0)
β3

, 1/τ
(0)
β3

), αb ∼ N (µ
(0)
αb , 1/τ

(0)
αb )

αc ∼ N (µ
(0)
αc , 1/τ

(0)
αc ), τE ∼ G(α

(0)
E , β

(0)
E )

τω ∼ G(α(0)ω , β
(0)
ω ), τI ∼ G(α

(0)
I , β

(0)
I ).

That is, the transition of the IM model is assumed to be disturbed by some Gaussian noise and the
prior distribution of the parameters follows Gaussian distributions. In this case, if the measurements of
yEd

, yEq
, yω, E′q, E′d, Id, Iq, Ud, Uq are available, the same procedure as the one in the ZIP model section

can be followed and similar posterior distribution can be obtained after some algebra. In practice,
however, not all of the measurements are available. Thus, we provide a modified Gibbs sampling of
the IM model.

3.2. Gibbs Sampling in IM Model

If measurements of yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq are available, Gibbs sampling of the IM model
is similar to the procedure of the ZIP model. The Gibbs sampling of the IM model can be found in
Algorithm 3.

However, measurements of the derivative equations, i.e., the values of yEd , yEq , E′d, E′q, are not
available. Thus, an iterative algorithm following the intuition of Gibbs sampling algorithm is proposed
in this paper. Starting by using the typical value of corresponding parameters, Equation (6) is solved
first, and a set of sampled value of yEd , yEq , E′d, E′q is obtained. Then, the Gibbs sampling is implemented
to derive posterior distributions of the target parameters. The means of the posterior distributions are
used to solve Equation (6) again and generate new samples of yEd , yEq , E′d, E′q. This iteration continues
until the predefined maximum iteration number is reached. The flow chart of the proposed method is
shown in Figure 2.
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Algorithm 3 Gibbs Sampling in the ZIP model.

1. Get measurements of yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq.
2. Draw initial samples β1 ∼ N (µ

(0)
β1

, 1/τ
(0)
β1

), β2 ∼ N (µ
(0)
β2

, 1/τ
(0)
β2

), β3 ∼ N (µ
(0)
β3

, 1/τ
(0)
β3

),

αb ∼ N (µ
(0)
αb , 1/τ

(0)
αb ), αc ∼ N (µ

(0)
αc , 1/τ

(0)
αc ), τE ∼ G(α

(0)
E , β

(0)
E ), τω ∼ G(α(0)ω , β

(0)
ω ), τI ∼ G(α

(0)
I , β

(0)
I )

from typical distributions.
3. For iteration k = 0, 1, 2, ..., K

Draw a sample β
(k+1)
1 ∼ N (µ

(k+1)
β1

, 1/τ
(k+1)
β1

) according to Equation (A6).
Draw a sample β

(k+1)
2 ∼ N (µ

(k+1)
β2

, 1/τ
(k+1)
β2

) according to Equation (A7).
Draw a sample β

(k+1)
3 ∼ N (µ

(k+1)
β3

, 1/τ
(k+1)
β3

) according to Equation (A8).
Draw a sample αk+1

b ∼ N (µ
(k+1)
αb , 1/τ

(k+1)
αb ) according to Equation (A9).

Draw a sample αk+1
c ∼ N (µ

(k+1)
αc , 1/τ

(k+1)
αc ) according to Equation (A10).

Draw a sample τk+1
E ∼ G(α(k+1)

E , β
(k+1)
E ) according to Equation (A11).

Draw a sample τk+1
ω ∼ G(α(k+1)

ω , β
(k+1)
ω ) according to Equation (A12).

Draw a sample τk+1
I ∼ G(α(k+1)

I , β
(k+!)
I ) according to Equation (A13).

End For
4. Discard burn-in data, and the distribution estimate is the histogram samples.

Iteration 

times<M ? 

M: Maximum sample iteration 

number

Substitute 

sampled 

value for 

parameters 

to (6)

Yes

No

Save sampled value, 

update histogram for 

each parameter 

Get the 

distributions for 

each parameter

Initialize
' '[0], [0], [0]d qE E 

Measure 
, , ( , )d qP Q U U U

Calculate ,

from , ,

d qI I

P Q U

' '

Solve (6) for

[ ], [ ], [ ], 1, ,d qE t E t t t n 

Implement Algorithm 3, sample 

the value for all parameters

Use typical/sampled value for those to 

be identified parameters, and solve 

equation (6) with left side equals to 0.

Figure 2. Flow chart of Gibbs sampling in IM model.
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4. Numerical Results

Simulation studies were carried out for ZIP and IM models, separately. In this study, the maximum
Gibbs sampling runs K was set to 40,000 and the burn-in length K was chosen as 5000 [21].

4.1. ZIP Model Identification

A 33-bus test feeder was used to generate the testing data. Load at bus 18 was replaced by a ZIP
model. Randomness was added to loads at other buses by multiplying a random factor drawing from
a uniform distribution following U [0.1, 4.5] as shown in Equation (8).

Pw,i = Pi · U [0.1, 4.5] (8)

where Pi is the original load in the 33-bus test feeder, i indicates the node number, and Pw,i is the
weighted load at the corresponding node after multiplying a random weight. The changes at each load
in every experiment simulated the disturbances and uncertainties in the system, which significantly
impacted the voltage and power at the bus of interest.

The ZIP factors of the load at node 18 were assigned as α1 = 0.25, α2 = 0.25, α3 = 0.5. Power
flow converged in each iteration with different Pw,i, and the corresponding voltage Vw,i was recorded.
The measurement noise ε followed N (0, 0.1), which means a 10% measurement error.

By implementing the proposed GS method, the coefficients of the ZIP model were estimated,
as shown in Figure 3.

Figure 3. The estimated parameters of the ZIP model.

Different from other estimation approaches, the GS approach can generate a distribution that
describes the probability of the real value falling into a certain range. As shown in Figure 3,
the mean values of the distributions of α1 and α2 were found to be 0.25 and 0.249, respectively,
and α3 = 1− α1 − α2.

Figures 4 and 5 show the voltage and voltage/real power differences, respectively, using the
estimated and real model in 100 i.i.d. experiments. The randomness came from the factors multiplied
to loads at other buses. The dash line in Figure 4 indicates the voltage at bus 18 using the real ZIP
coefficients, and the solid line is the voltage measured at the same bus using estimated coefficients.
The comparison shown in Figure 5 is the distributions of voltage and active power differences, ∆V and
∆P. It can be seen that the differences were in the range of 10−4 and 10−3 p.u., respectively. Figure 6
shows the burn-in process observed. It shows that the process was very quick, and no significant
burn-in process that could be observed.
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Figure 4. Voltage comparison at bus 18 between the simulations using the real parameter and
estimated parameter.

Figure 5. Comparison of the absolute values of ∆V and ∆P between connecting real ZIP model and
the estimated ZIP model at bus 18.

Figure 6. The burn-in process of sampling α1.

4.2. IM Model Identification

The estimation of the parameters in the IM model followed the same procedure. A dynamic model
was built in Matlab/Simulink to generate the data that were used in Equation (7) in a 33 bus test feeder,
as shown in Figure 7. The sampling results are shown in Figure 8 and compared with the real data
in Table 1. According to Table 1, the estimation error was less than 6%, with 5% measurement error.
It is worth noting that estimation of parameters highly relied on the prior distributions. A good prior
could significantly increase the estimation accuracy and shorten the burn-in period. A comparison
of the active power response using test parameter and identified parameteris shown in Figure 9.
The simulation results also indicate the differences in active power was small and the identified
parameters were accurate enough to be used in other analyses.

Figure 7. The topology of the 33 bus system with IM.
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Figure 8. The estimated parameter distributions of the IM model.

Figure 9. Comparison of the active power between simulations using test parameter and
identified parameter.

Table 1. Estimated and real value of the parameters for IM mode with 5% measurement error.

Para. Real Value Est. Value (Mean) Error (%)

β1 0.0077 0.007683 0.22
β2 0.018 0.01824 1.33
β3 25 24.8 0.8
αb 0.20 0.211 5.5
αc 0.80 0.813 1.63
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4.3. Benchmarks

The ZIP and IM model parameters derived by the proposed GS method were compared with
least square (LS) [23] and Kalman Filter (KF) methods [24] with 10% noise. The comparison results of
the voltage and active power using GS, LS, and KF in ZIP model are shown in Figure 10. The average
absolute mean errors of voltage and active power in p.u. are listed in Table 2. As shown in Figure 10,
it was obvious that the GS approach had the best performance, while KF method only fell slightly
behind. In contrast, LS have the largest error among all three approaches when there was large
measurement error. However, KF only worked well with time-invariant parameter estimation [25].
In practice, the ZIP component varies with time due to stochastic consumer behaviors.

Figure 10. The absolute error distributions of voltage and active power using GS, LS and
KF, respectively.

Table 2. Active power and voltage errors with different methods.

Para. Error GS (%) LS (%) KF (%)

Voltage 0.007 0.062 0.024
Active Power 1.12 4.65 2.64

The parameters estimation comparisons in the IM model are listed in Table 3. The estimation
errors from GS were the smallest. The performance of KF was worse than itself in the ZIP model, but
still better than the LS method.

Table 3. IM model parameter estimation with different methods.

Para. GS LS KF Real Value

β1 0.007683 0.0076 0.0077 0.0077
β2 0.01824 0.1375 0.0185 0.018
β3 24.8 18 34 25
αb 0.211 2.06 1.8 0.2
αc 0.813 4.04 3 0.8

5. Discussion

Some difficulties during the identification are discussed.

1 It is assumed that the noise in ZIP and IM models follows a normal distribution. In practice,
the true randomness of parameters of load models is not available. By the law of large numbers,
a normal distribution would be the best approximation of the randomness if the sample size is
large enough. However, the robustness of the proposal needs further investigation when the
Gaussian assumption is violated.

2 We are only estimating the parameters of ZIP or IM model. It is necessary to consider multiple
ZIP and MI models connected to different locations in the grid. There might be inferences to
the estimation.
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3 How to identify a composition model composed by ZIP and IM is another interesting topic, which
is a future work of this project. Most of the work that has been done in composite load modeling
needs to specify the percentage of ZIP by giving the active power load PZIP.

6. Conclusions

Bayesian estimation based dynamic load modeling is an executable and reliable composite load
modeling approach. This method can overcome some disadvantages in the traditional composite
load modeling process. It can provide a robust time-varying dynamic load parameter estimation with
higher accuracy and better performance. It is worth noting that this method requires a good estimation
of each parameter, which can be achieved by using traditional identification methods, such as
Least-square, Kalman Filter, Genetic Algorithm, etc. Future work will be focused on implementing
those aforementioned approaches to better estimate the prior, parameter identification in composite
load model, and model clustering using machine learning approaches. Another important study is
evaluating the robustness of the proposal when assumptions are violated via experiments.
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ML maximum likelihood
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Appendix A. Derivation of the ZIP Model

In this Appendix, we derive the posterior distribution of parameters in the ZIP model. We show
that the Guassian distribution assumption makes the post distribution of these three parameters remain
the same form of the priors.

In the kth iteration, samples are firstly drawn from the prior distributions

α
(k)
1 ∼ N (µ

(k)
1 , 1/τ

(k)
1 ),

α
(k)
2 ∼ N (µ

(k)
2 , 1/τ

(k)
2 ),

τ(k) ∼ G(a(k), b(k)).

and α
(k)
1 , α

(k)
2 , τ(k) are initialized. Some algebraic work yields:

p(α1|α
(k)
2 , τ(k), x, y) ∝ p(x, y|α1, α

(k)
2 , τ(k))p(α1) (A1)
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where p(α1|α
(k)
2 , τ(k), x, y) is the posterior probability given the samples of x, y, α2, and τ,

p(x, y|α1, α
(k)
2 , τ(k)) is the likelihood in Equation (2), and p(α1) is the prior estimation following

Equation (3). Taking the log form on both sides of Equation (A1) yields

log p(α1|α
(k)
2 , τ(k), x, y) ∝

−
τ
(k)
1
2

(α1 − µ
(k)
1 )2 − τ(k)

2 ∑n
t=1
(
y[t]− (α1x[t]2 + α

(k)
2 x[t] + 1− α1 − α

(k)
2 )
)2

(A2)

Taking log form helps convert the multiplications of the probabilities to summations, which can
significantly simplify calculations when updating the distributions of the posteriors. For a normal
distribution y ∼ N (µ, 1/τ), the log dependence on y is − τ

2 (y− µ)2 ∝ − τ
2 y2 + τµy.

The right hand side of Equation (A2) can be further written as the following if the terms not
related to α1 are omitted.

−
(
τ
(k)
1 + τ(k) ∑n

t=1(x[t]2 − 1)2)α2
1/2 +

(
τ
(k)
1 µ

(k)
1 − τ(k) ∑n

t=1(α
(k)
2 − 1− α

(k)
2 x[t] + y[t])(1− x[t]2)

)
α1

Defining

µ
(k+1)
1 ,

τ
(k)
1 µ

(k)
1 − τ(k) ∑n

t=1
(
(α

(k)
2 − 1− α

(k)
2 x[t] + y[t])(1− x[t]2)

)
τ
(k)
1 + τ(k) ∑n

t=1(x[t]2 − 1)2
,

τ
(k+1)
1 , τ

(k)
1 + τ(k) ∑n

t=1(x[t]2 − 1)2,

(A3)

yields
α1|α

(k)
2 , τ(k), τ

(k)
1 , µ

(k)
1 , x, y ∼ N (µ

(k+1)
1 , 1/τ

(k+1)
1 ).

A new α1 is sampled from the estimated distribution N (µ
(k+1)
1 , τ

(k+1)
1 ) as α

(k+1)
1 . Following

a similar procedure, α2 can be derived. Define

µ
(k+1)
2 ,

τ
(k)
2 µ

(k)
2 − τ(k) ∑n

t=1
(
(α

(k+1)
1 − 1− α

(k+1)
1 x[t] + y[t])(1− x[t])

)
τ
(k)
2 + τ(k) ∑n

t=1(x[t]− 1)2
,

τ
(k+1)
2 , τ

(k)
2 + τ(k) ∑n

i=1(x[t]− 1)2.

(A4)

Therefore, the following can be derived:

α2|α
(k+1)
1 , τ(k), τ

(k)
1 , µ

(k)
1 , x, y ∼ N (µ

(k+1)
2 , 1/τ

(k+1)
2 ).

For τ, the posterior given by new samples of α
(k+1)
1 and α

(k+1)
2 can be written as

p(τ|α(k+1)
1 , α

(k+1)
2 , x, y) ∝ p(x, y|α(k+1)

1 , α
(k+1)
2 , τ)p(τ). Taking the log form of both sides of the

posterior yields

log p(τ|α(k+1)
1 , α

(k+1)
2 , x, y) ∝

n
2

log τ − τ

2 ∑n
t=1
(
y[t]− α

(k+1)
1 x[t]2 − α

(k+1)
2 x[t]− 1 + α

(k+1)
1 + α

(k+1)
2 + (a(k) − 1) log τ − b(k)τ

)
.

Define

a(k+1) = a(k) + n/2,

b(k+1) = b(k) + ∑n
t=1
(
y[t]− α

(k+1)
1 x[t]2 − α

(k+1)
2 x[t]− (1− α

(k+1)
1 − α

(k+1)
2 )

)2/2.
(A5)

the posterior τ|α(k+1)
1 , α

(k+1)
2 , x, y ∼ G(a(k+1), b(k+1)) can be obtained.
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Appendix B. Derivation of the IM Model

If measurements of yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq are available, Gibbs sampling of the IM
model is similar to the procedure of the ZIP model. The detailed algebra is omitted here for space
considerations. The post distributions of parameters remain the same form of the one of the priors.

Define

µ
(k+1)
β1

=
τ
(k)
β1

µ
(k)
β1

+ τ
(k)
E ∑n

t=1
(
E′d[t]yEd [t] + E′q[t]yEq [t]− β

(k)
2 (E′d[t]Iq[t]− E′q[t]Id[t])

)
τ
(k)
β1

+ τ
(k)
E ∑n

t=1(E′d[t]
2 + E′q[t]2)

,

τ
(k+1)
β1

=
1

τ
(k)
β1

+ τ
(k)
E ∑n

t=1(E′d[t]
2 + E′q[t]2)

(A6)

the posterior β1| β
(k)
2 , yEd

, yEq
, yω, E′q, E′d, Id, Iq, Ud, Uq, τ

(k)
E , τ

(k)
β1

, µ
(k)
β1

∼ N (µ
(k+1)
β1

, τ
(k+1)
β1

) can
be obtained.

Define

µ
(k+1)
β2

=

τ
(k)
β2

µ
(k)
β2

+ τ
(k)
E ∑n

t=1
(
yEd [t]Iq[t]− yEq [t]Id[t] + β

(k+1)
1 (E′d[t]Iq[t]− E′q[t]Id[t]) + (ω[t]− 1)(E′d[t]Id[t] + Eq[t]Iq[t])

)
τ
(k)
β2

+ τ
(k)
E ∑n

t=1(Id[t]2 + Iq[t]2)
,

τ
(k+1)
β2

=
1

τ
(k)
β2

+ τ
(k)
E ∑n

i=1(Id[t]2 + Iq[t]2)
.

(A7)

the posterior β2| β
(k+1)
1 , yEd

, yEq
, yω, E′q, E′d, Id, Iq, Ud, Uq, τ

(k)
E , τ

(k)
β2

, µ
(k)
β2
∼ N (µ

(k+1)
β2

, τ
(k+1)
β2

) can
be obtained.

Define

µ
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β3
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τ
(k)
β3

µ
(k)
β3
− τ

(k)
ω ∑n
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)
τ
(k)
β3
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(k)
ω ∑n

t=1
(
ω[t]4T2
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) ,

τ
(k+1)
β3

=
1

τ
(k)
β3

+ τ
(k)
ω ∑n

t=1
(
ω[t]4T2

0 + (E′d[t]Id[t] + Eq[t]Iq[t])2 − 2ω[t]2T0(E′d[t]Id[t] + Eq[t]Iq[t])
) .

(A8)

the posterior β3|yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq, τ
(k)
E , τ

(k)
β3

, µ
(k)
β3
∼ N (µ

(k+1)
β3

, τ
(k+1)
β3

) can be obtained.
Define

µ
(k+1)
αb =

τ
(k)
αb µ

(k)
αb + τ

(k)
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t=1
(

Id[t](Ud[t]− E′d[t]) + Iq[t](Uq[t]− E′q[t])
)

τ
(k)
αb + τ

(k)
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t=1
(
(Ud[t]− Ed[t])2 + (Uq[t]− Eq[t])2

) ,

τ
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αb =

1

τ
(k)
αb + τ

(k)
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t=1
(
(Ud[t]− Ed[t])2 + (Uq[t]− Eq[t])2

) (A9)

the posterior αb|yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq, τ
(k)
I , τ

(k)
αb , µ

(k)
αb ∼ N (µ

(k+1)
αb , τ

(k+1)
αb ) can be obtained.

Define

µ
(k+1)
αc =

τ
(k)
αc µ

(k)
αc + τ

(k)
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t=1
(

Id[t](Ud[t]− E′d[t])− Iq[t](Uq[t]− E′q[t])
)

τ
(k)
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τ
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1

τ
(k)
αc + τ
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(
(Ud[t]− Ed[t])2 + (Uq[t]− Eq[t])2

) (A10)

the posterior αc|yEd
, yEq

, yω, E′q, E′d, Id, Iq, Ud, Uq, τ
(k)
I , τ

(k)
αc , µ

(k)
αc ∼ N (µ

(k+1)
αc , τ

(k+1)
αc ) can be obtained.
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Other parameters can be obtained as follows:

τ
(k+1)
E |yEd

, yEq
, yω, E′q, E′d, Id, Iq, Ud, Uq, β

(k+1)
1 , β

(k+1)
2 ∼ G(α(k+1)

E , β
(k+1)
E )

where

α
(k+1)
E = α

(k)
E + n/2,

β
(k+1)
E = β

(k)
E +

∑n
t=1

[(
yEd

[t]−β
(k+1)
1 E′q [t]−β

(k+1)
2 Id [t]+(ω[t]−1)E′q [t]

)2
+
(
[yEq [t]−β

(k+1)
1 E′d [t]+β

(k+1)
2 Iq [t]−(ω[t]−1)E′d [t]

)2]
2 .

(A11)

τ
(k+1)
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