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Abstract: A practical wind farm controller for production maximisation based on coordinated control
is presented. The farm controller emphasises computational efficiency without compromising accuracy.
The controller combines particle swarm optimisation (PSO) with a turbulence intensity–based Jensen
wake model (TI–JM) for exploiting the benefits of either curtailing upstream turbines using coefficient
of power (CP) or deflecting wakes by applying yaw-offsets for maximising net farm production.
Firstly, TI–JM is evaluated using convention control benchmarking WindPRO and real time SCADA
data from three operating wind farms. Then the optimised strategies are evaluated using simulations
based on TI–JM and PSO. The innovative control strategies can optimise a medium size wind farm,
Lillgrund consisting of 48 wind turbines, requiring less than 50 s for a single simulation, increasing
farm efficiency up to a maximum of 6% in full wake conditions.

Keywords: wind farm production maximisation; coordinated control; CP-based optimisation;
yaw-based optimisation; wake effects; turbulence intensity; Jensen model; particle swarm optimisation

1. Introduction

Wind farms take advantages of economies of scale for reducing levelised cost of energy by
clustering turbines together. However, turbines in this cluster interact with each other aerodynamically
through wake effects. Wake effects, or simply wakes, can significantly impact economic performance
of a wind farm by decreasing net production or increasing fatigue loads [1–3].

Industry best practice is to install the turbines with increased spacing in the prevailing wind
directions (downwind) as compared to non-prevailing wind directions (crosswind) [2]. Wake losses in
the crosswind directions can be as high as 50% due to close spacing [4], reducing wind farm efficiency
to as low as 40% [5].

Another way of reducing wake effects is global optimisation of the whole wind farm using
coordinated control. With state of the art (greedy control), every turbine maximises its own production,
neglecting the wake effects on shadowed turbines [2]. Coordinated control based on global optimisation
of the whole wind farm, instead of local optimisation of individual turbines, can result in increased
annual energy production [6].

Coordinated control is the farm level control (termed “farm control” or “optimised control as well”),
which is based on the optimised cooperation or coordination of turbines in the farm. In such control
setups, turbines coordinate with each other to increase the net production. Curtailing or yawing the
upstream turbines reduces the wake effects produced, hence increasing production of the downstream
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turbines. Net gain in farm production can be achieved if the decrease in curtailed turbines’ production
is compensated by an increase in shadowed turbines’ production.

A review of coordinated control studies in [7,8] concludes that the realisation of benefits of
coordinated control depends upon terrain characteristics, atmospheric wind conditions, layout of the
wind farm and number of turbines under consideration. Wakes recover quickly in rough terrains as
compared to smooth surfaces (offshore) [7]. In certain wind directions, downstream turbines are under
significant wake effects, impacting their production negatively. Usually negligible wake effects are
observed at higher wind speeds in above-rated wind conditions [5]. Net production of denser wind
farms (with closely spaced turbines) is generally affected more by wake effects [5].

Coordinated control can be performed with optimal settings of CP or yaw-offsets (α) of the upstream
turbines. The only change required in the existing control system will be the coordinated control algorithm,
specifically a change in the software [4,9]. Intelligent farm control aimed at maximising net present value
will replace turbine power curve as the main performance characteristic [6]. Real time online coordinated
control requires the optimisation process to be completed in the order of seconds [6,10]. This paper aims
to develop online, accurate and computationally efficient coordinated control strategies for production
maximisation. Particle swarm optimisation PSO is combined with a fast processing wind deficit model,
the turbulence intensity–based Jensen wake model (TI–JM), for developing a realistic and practical
online wind farm controller. A field implementation of coordinated control strategies based on this
work is presented in [8].

This paper is structured in different sections, described as follows. Different wind and wake
modelling techniques are briefly explained in Section 2. A brief overview of TI–JM is given in Section 3.
This is followed by detailing the optimisation process in Section 4 with the control problem and
objective function formulation in Section 4.1 and details of PSO in Section 4.2. Information about the
three wind farms: Brazos, Le Sole de Moulin Vieux (SMV) and Lillgrund is provided in Sections 5.1–5.3
respectively. The methodologies for obtaining efficiencies of the farms case studies are discussed in
Section 6. Results and analyses are presented in Section 7. Conclusion of this work is given in Section 8.

2. Wind and Wake Modeling

A brief overview of different wake models available in literature is presented in this section.
Wake models can generally be divided into two categories; complex computational fluid dynamics
(CFD) models and simplified engineering models [11–17]. Wind is a complex fluid as a number of
parameters affect the wind flow, such as boundary layer conditions, wind shear, turbulence intensity,
and terrain characteristics [18]. Complex fluids can be considered homogeneous at the macroscopic
(or bulk) scale, but are disordered at the “microscopic” scale, and possess structure at an intermediate
scale [18]. The key elements of CFD modelling are the grid or mesh generation, algorithm development
and turbulence modelling. The higher the resolution of the mesh, the higher will be the accuracy
and computational requirements for the model. Complexity of a CFD model depends upon the way
turbulence is modeled and solved [19]. Eddy viscosity [20], large eddy simulation [21], and k− ε [22]
are some of the examples of CFD models. These CFD models can provide detailed information about
wind flow. However the computational requirements required for wake modelling are extremely
high. For example, the CFD model used in [16] for simulating a single wake between two turbines
take 30 h for processing using a 256 cores. This makes CFD models unsuitable for real time online
coordinated control.

Engineering wake models use empirical or analytical expressions for predicting wind deficit in
a wind farm. This makes them computationally efficient but relatively less accurate as compared to
CFD models. These models contain simple models for turbulence and surface roughness and can
provide quick and accurate solutions for mean wind flows [23]. Engineering models are useful for
predicting mean wind deficit inside the wind farm and for estimating wind farm efficiency, but they do
not provide details of the wake flow process [20]. These models can be easily executed on a standard
personal computer. Despite their simplicity, engineering models can be highly effective for predicting
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power production if the parameters are tuned well [24]. The Jensen model [25,26], Larsen model [27]
and Frandsen model [28] are examples of engineering wake flow models.

If detailed wake flow information is not required then it is better to combine the accuracy of CFD
models with the computational efficiency of engineering models [4,29]. The parameters such as wake
decay coefficients and wake expansion factors in engineering models shall be tuned with reference to
wind farm data or a higher order CFD model, as suggested in [4,13,14,24,29–37]. This can be achieved
by combining analytical expressions based on CFD models with engineering models. A comparative
analysis of different CFD and engineering wake models in [2,7,16] concludes that the Jensen model
is the most suitable for feedback control systems, due to its computational efficiency. However,
the parameters must be tuned according to the wind conditions and terrain on site [4,29,31,33,35,38].
The wind deficit model developed and used in this paper, named TI–JM, is based on this principal
explained in the next section.

3. Turbulence Intensity–Based Jensen Model (TI–JM)

This section gives a brief overview of TI–JM, which is used for developing the coordinated control
strategies. The detailed methodology for developing TI–JM and validation using real-time data is
given in [7]. TI–JM modifies the wake decay coefficient (k) of the standard Jensen model [25,26] using
wake-added turbulence intensity. Wake decay coefficient presents how quickly the wake diffuses
depending on hub height of the wake generating turbine (z) and the surface roughness length (z0) as
given in Equation (1) [25,26]. TI–JM has all the characteristics of the standard Jensen model [25,26]
except for the constant k.

k = 1/[2 ln(z/z0)] (1)

The Jensen model has widely been used for developing farm control strategies due to its processing
efficiency [2,4,7,8,39–42] and is also part of many industry standard software such as WindFarmer [7]
and WindPRO [31]. Simple assumptions such as the ideal wind flow, constant k and linear wake
expansion make the Jensen model computationally very efficient. However, keeping k constant means
ignoring the farm-added roughness and wake-added turbulence intensity, making the model less
accurate [4,29].

Wake affected turbines experience more turbulent wind as the farm acts as a roughness generator
itself, because of the additional turbulence intensity [29,31]. This wake-added turbulence intensity must
be considered for estimating wind speed deep inside a wind farm. TI–JM follows this principle and
uses the wake added turbulence intensity along with free-stream turbulence intensity for estimating k
and wind deficit inside the wind farm using Equation (2) [43]. Turbulence intensity is composed of
lateral, vertical and longitudinal components. The longitudinal component (IL) can be determined
using Equation (2) [43]. The wind speed deficit can now be found using Equation (3) [25,26].

IL =
1

ln (z/z0)
= 2k⇒ k = IL/2 (2)

ux = u0

1−

1−
√

1− CT[
1 + k×x

r0

]2


 , (3)

where ux denotes the wind speed at distance x from the wake producing turbine, u0 is the wind speed
at the corresponding upstream turbine, r0 is the radius of turbine swept area and CT is the coefficient
of thrust. TI–JM provides speedy and accurate results, requiring minimum parameters as inputs,
which are generally easily available from Supervisory Control And Data Acquisition (SCADA) data.
If a turbine is affected by multiple or overlapping wakes then these are superimposed by taking a a
linear superposition of the squared deficits (based on kinetic energy deficits), is used for this purpose,
as suggested in [26].
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4. Optimisation

In order to use the controller online, an acceptable solution has to be achieved in the order of
seconds so that the CP or yaw-offset of each turbine can be calculated before the wind reaches it,
as communicating these optimised values will also take some time.

Previous research on wind farm coordinated control emphasises more on the aerodynamics of the
problem, providing little or no information of the optimisation process. Wind farm coordinated control
is a complex optimisation problem as each individual turbine’s production is a dimension of the farm
production [40]. Numerical optimisation [1,10,44–51], game-theoretic approach [39,42,52], hill climbing
algorithm [53] and genetic algorithm [41,54] are some of the techniques used for solving the coordinated
control problem. However, It is suggested in [3,9] that iterative algorithms can improve performance
of farm controllers. Therefore, performance of different optimisation techniques (brute force, genetic
algorithm, simulated annealing and PSO) were evaluated for wind farm coordinated control in [40],
concluding that PSO can solve the coordinated control problem with high accuracy, speed and success
rate as compared to other evaluated techniques. Details of PSO for optimising wind farm power
production using coordinated control are given in Section 4.2.

4.1. Objective Function

Net production of a wind farm is the sum of individual wind turbines’ productions as given in
Equation (4) [2],

PWakes =
N

∑
i=1

PT(i) =
N

∑
i=1

1
2

ρAu(i)3CP(i) cos2 αi, (4)

where (PWakes) is the total farm production, (N) shows the total number of turbines in the wind farm,
(PT(i)) is the power production of i-th turbine under consideration, air density is given by (ρ), turbine
swept area is (A) and (α) is the yaw-offset.

Usually ρ remains constant inside the wind farm. If it is assumed that turbines in the farm
have same configuration then the term ( 1

2 ρA) is constant. Ignoring this constant term means that the

objective function or control problem is to maximise
N
∑

i=1
u(i)3CP(i) cos2 αi in Equation (4).

The term (cos2 α) quantifies the impact of yaw-offset on a turbine’s power production. Different
exponents of cos α (in Equation (4)) have been used in literature [7]. The exponent of cos α can fall in
the range of 1 to 5 depending on the turbines and farm under consideration [7,55–59]. It is discussed
in [60] that there is no physical background for the exponent of cos α in Equation (4) and it can be
tuned for the best-fit according to the data [61]. Different exponents of cos α were evaluated in [7] and
it was observed that an exponent of “2” fits well with the given data, hence an exponent of “2” for
cos α is used in this paper.

In no-wake conditions, all the turbines experience free-steam wind speed (u0) and there is no
need to yaw i.e., α = 0◦. In this case, turbines operate with maximum CP denoted by (CP(max)) for
the specific wind speed (measured by the anemometer) according to turbine power curve. The aim is
to get as close as possible to this maximum production in wake-affected wind conditions. In terms
of a minimising objective function the aim is to minimise the difference between power production
in no-wake conditions and power production in wake-affected conditions (actual production) as
shown in Equation (5). As the constant ( 1

2 ρA) is ignored, the objective function (OF) is formulated as
Equation (5):

OF = min

(
N

∑
i=1

u3
0CP(max) −

N

∑
i=1

u(i)3CP(i) cos2 α(i)

)
. (5)

The controller minimises the value in Equation (5) by optimally varying CP or α. When yaw-offset
is applied on an upstream turbine, the wake produced deflects away from the downstream turbine’s
swept area. This wake deflection is greater than the offset applied [62]. Hence wakes can be skewed
away from the downstream turbine’s swept area using an optimum α. Wind deficit inside the wind
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farm is obtained using TI–JM. The optimisation function is linked to the TI–JM using axial induction
factor, which is the loss in momentum or measure of the slowing of wind speed between free stream
and the rotor plane [3,45].

The relationship between α and wake skew angle (γ) given in Equation (6) [62] is used in this
study. This expression is developed and validated using wind tunnel experiments and real-time wind
farm data [60,63,64].

γ = −1.20× α (6)

Equation (5) can be used for CP and yaw based optimisation. For simplicity, CP and yaw based
optimisation will be studied independently: when optimising the CP settings, α will be set at zero;
and conversely when optimising the turbine yaw angles, CP will be set at CP(max) for the wind speed
measured by each individual turbine’s anemometer.

4.2. Particle Swarm Optimisation (PSO)

PSO consists of particles which move through the solution space in an organised way, by developing
a collective intelligence for solving complex optimisation problems [65,66]. An individual particle
represents a potential solution to the given problem. A swarm of particles represents a dimension of the
objective function/control problem. Every particle’s best fitness value estimated in different iterations
is recorded as the local best of that specific particle. All local bests are compared with each other and
the best fitness value is recorded as the global best. Local and global bests along with the particles’
current positions are used to estimate a velocity for finding the best possible solution. The PSO version
presented in [65,67] is used in this work. The optimisation process is iterative. Each iteration, the
particles create a direction moving towards the global optimum with a velocity (Vi). This Vi of a given
particle (i) is determined using Equation (7) [65,68]. The position (xi) of the particle i at time (t + 1) is
simply the sum of particle i’s current position at time (t) and the velocity for moving towards the next
positions as given in Equation (8) [65,68].

Vi(t + 1) = R1Vi(t)× ζ + c1R2 × (pi(t)− xi(t))− c2R3 ×
(

pg(t)− xi(t)
)

, (7)

xi(t + 1) = xi(t) + Vi(t + 1), (8)

where (R1, R2 and R3) are randomness generators, inertia is denoted by (ζ) which controls velocity
of the particles, (c1, c2) are constants used for controlling movement towards local and global best
respectively, (pi) is personal best of the i-th particle in all previous t iterations, (pg) is the global best of
the swarm and (xi) is current position of the i-th particle in the solution space.

The number of swarms required for optimising the objective function in Equation (5) is equal to
N. Power production of each turbine is a dimension of the net farm production. The value of OF in
Equation (5) is minimised in such a way, that each turbine’s optimum CP or α is achieved. Coordinated
control process using CP optimisation with PSO is given in Figure 1.

The particles’ values are initialized between minimum CT and maximum CT for a given wind
speed or α in a selected range (−15◦ to 15◦ in this case). The optimiser then evaluates different
combinations of α or CT , which is converted to CP using axial induction factor, for obtaining the
power production of a given turbine. This way optimised α or CP of each individual wind turbine is
calculated. TI-JM is then used to estimate the wind speed on the wake affected turbines. Sum of the
power productions of all the turbines is obtained, which is subtracted from the maximum possible
farm power production at that wind speed as per Equation (5). In each iteration, the farm power
production obtained is compared to the previous best value. The best value for farm production
among all iterations along with α or CT and CP of each turbine is recorded. These values are then
communicated to each wind turbine for optimising the farm production. The algorithm terminates
when all the iterations are executed.
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Figure 1. Particle swarm optimisation (PSO) flowchart for solving the coordinated control problem.

5. Wind Farms Case Studies

The Brazos, SMV and Lillgrund wind farms are used as case studies in this work. These three
wind farms represent a diverse set in terms of layout, terrain and wind characteristics. A brief overview
of these wind farms case studies is given as follows.

5.1. Brazos

Turbines in the Brazos wind farm are installed in a non-grid shape with downwind spacing
up to 8D and crosswind spacing of as low as 2D [7]. Each row in the Brazos can be assumed to be
a sub-farm for faster and efficient optimisation. The encircled row in Figure 2a is used as the case
study for optimisation in this work. Seven Mitsubishi MWT 1000 turbines are installed in this row
with a spacing of 3D [7]. This case study is referred to as Brazos-row. Brazos has a flat terrain with low
grass [7]. The wind–rose in Figure 2b shows the wind characteristics on site based on data from year
2004–2006.

(a) (b)

Figure 2. (a) Brazos layout (case study row encircled); (b) Wind–rose obtained with data from 2004–2006.

5.2. Le Sole de Moulin Vieux (SMV)

Seven Senvion MM82 2050 kW wind turbines are installed in almost like a one-dimensional array
with a spacing of 3.3D to 4.3D as depicted in Figure 3a in the SMV wind farm. SMV has a rough
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terrain and vegetation is present on the ground. The farm has woods to the south at less than 1.5D
distance. These woods can cause abrupt changes in wind speed and direction [8]. Figure 3b shows
wind characteristics in the farm.

(a) (b)

Figure 3. (a) Layout of the Le Sole de Moulin Vieux (SMV) wind farm; (b) Wind–rose obtained with
data from 2011–2015.

5.3. Lillgrund

Lillgrund contains 48 Siemens SWT-2.3-93 turbines, installed in 8 rows as can be seen in Figure 4a.
Downwind spacing is 4.5D while crosswind spacing is 3.5D. Lillgrund is an offshore wind farm.
The wind–rose in Figure 4b shows wind characteristics in the wind farm. Wind data of 15 years
(2000–2015) was used in Figure 4b using [69] at 50 m height. Performance of this wind farm is
significantly affected by wakes due to the dense layout [5].

(a) (b)

Figure 4. (a) Lillgrund layout and turbines in set j; (b) Wind–rose obtained with data from 2000–2015.

6. Methodology for Calculating Efficiency

This section details the methodology for obtaining efficiencies of the three wind farms case studies.
Equation (9) [2] is used for estimating efficiencies (η) of Brazos-row and SMV. The denominator (Pmax)
is simply the maximum possible farm production for a given wind speed in no-wake conditions.
The numerator (Pactual) is the actual net production of the farm.
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η =
Pactual
Pmax

(9)

Efficiency of the Lillgrund wind farm (ηLill) is estimated using Equation (10) [70]:

ηLill =
Nj

48

48
∑

i=1
Pi

∑
j

Pj
, (10)

where average power of the i-th turbine is denoted by (Pi), (j) represents a set containing a specific
number of turbines (Nj) as per Table 1. The number of turbines in set j is determined using free stream
wind direction. There can be four different combination in set j as it contains the turbines facing the
free-stream wind, as shown in Figure 4a. Production of the j-th turbine in set j is given by (Pj).

Table 1. Turbines in set j.

Wind Direction Figure 4a Nj j

North-west NNW 3 Row-8 (3 turbines)
South-west NSW 3 Row-2 to row-4 (last turbine in each row)
North east NNE 5 Row-1 to row-5 (first turbine in each row)
South-east NSE 7 Row-1 (Seven turbines)

7. Results and Analyses

Wake effects are negligible in above-rated conditions [5], hence only below-rated conditions were
assumed in the simulations in this section. Efficiencies based on WindPRO and real-time SCADA data
in full or near-full wake conditions were used as benchmarks. WindPRO direction bin was kept at 10◦,
which is the finest possible. WindPRO uses the standard onshore and offshore values of k given in [71],
for wake estimation. TI–JM used SCADA data for Brazos-row and SMV for tuning the initial value of
k according to the conditions. For TI–JM and SCADA data, the directional resolution was maintained
at 1◦. TI–JM was first compared with SCADA data and WindPRO using efficiencies based on greedy
control. The optimal control strategies were then evaluated by comparing them with greedy control
using TI–JM. Contour plots of the three wind farm case studies in full wake conditions were used for
depicting a comparison of conventional and coordinated control strategies.

Data filtering was applied to ensure that only operational turbines were analysed. It was observed
that the maximum efficiency in no-wake conditions for Brazos-row and SMV wind farms was not 100%.
Instead it was 82% for Brazos-row and 86% for SMV. These discrepancies may have been caused by
anomalies in SCADA data or other unknown operational issues. WindPRO and TI–JM did not consider
any anomalies or issues with data, taking only wake effects for wind deficit estimation. Therefore,
the maximum efficiency (82% for Brazos-row and 86% for SMV) was shifted to 100% by simply adding
the difference (18% for Brazos-row, 14% for SMV) to the efficiency at all points. This nullified the impact
of all other issues by taking into consideration only the impact of wake effects on farms productions.
The shifted efficiency (based on SCADA data) was then compared, with efficiencies obtained with
WindPRO and TI–JM.

Results and analyses for Brazos-row, SMV and Lillgrund wind farms were presented in
Sections 7.1–7.3 respectively. These results were obtained using a basic computer (4 cores, 3.50 GHz
processor and 16 GB RAM).

7.1. Brazos-Row

Efficiency of the Brazos-row was calculated using SCADA data from 2004–2006 provided by [72].
The case study row was under wake effects in the directional sector of 90◦ ± 30◦. Figure 5 depicts
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the average efficiency in this directional sector. The sector 90◦ ± 30◦ can be further divided into bins
as follows.

• Full wakes (worst case) = 90◦ ± 10◦

• Partial wakes = 110◦ ± 10◦ and 70◦ ± 10◦

The shifted efficiency in Figure 5 shows that efficiency can drop to as low as 58% in full wake
conditions. WindPRO and TI–JM estimated that efficiency can be as low as 30% and 62% in full wake
conditions. The standard Jensen model available in WindPRO was used with a constant k = 0.07,
for such an onshore terrain. WindPRO uses the WAsP model [31] for analysing the impact of terrain
on wake effects. On the other hand, TI–JM did not use any terrain model, rather it varied k according
to wind conditions, instead of keeping it constant as discussed in Section 3. TI–JM used k up to 0.25 for
estimating wind speed deficits inside the farm. The initial value of k was the standard k for such
terrains. Wind direction was derived from the data obtained from met mast.

Figure 5. Brazos efficiency in 60◦–120◦ directional sector.

It can be seen in Figure 5 that WindPRO and TI–JM predict almost symmetrical efficiencies around
90◦ as it is a straight line (row) of turbines (Figure 2a). However, the shifted efficiencies were not
symmetrical on both sides of 90◦. The efficiency predicted by TI–JM fit well with the shifted efficiency in
the 60◦–90◦ sector. However, the efficiency was not that accurate in the 91◦–120◦ sector. Overall, TI–JM
predicted better than WindPRO in most of the cases. TI–JM and WindPRO ignored wake-meandering
and wind shear effects, which can result in uncertainty in models’ prediction accuracy.

Both CP and yaw-based optimised strategies can increase the average efficiency by up to 6% as
compared to greedy control as can be seen in Figures 5 and 6. It was observed that coordinated control
based on Cp optimisation performed better in full or near-full wake conditions. Yaw optimisation can
produce better results in partial wake conditions.

The reduction in CP of upstream turbines depended upon wind speed and direction. Optimised
reduction in CP of the upstream turbines for curtailing their power production ranged between 3% and
20%. In higher wind speeds, the CP curtailment was minimal as wake effects were also minimal.
This was true for all the three wind farm case studies. In full wake conditions, significantly larger
yaw-offset (up to ±30◦) was required for deflecting the wake away from the swept area of the wake
affected turbines. This converted a full wake into a partial wake for the downstream turbines but at the
same time it significantly reduced the production of the yawed turbine. A partial wake was converted
into a minimal or no-wake situation using a yaw-offset in a range of ±15◦, producing a significant
increase in wake affected turbines’ productions. The impact of this yaw-offset on the yawed turbine
was considerably low, hence increase in net production was observed.
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Figure 6. Impact (% increase) of optimised control strategies on Brazos-row efficiency, relative to
greedy control.

Wind flow with state of the art greedy control, CP and yaw-based optimised strategies in full
wake conditions is shown in Figure 7. The lower wind speed deficit inside the wind farm with CP
optimisation, as compared to greedy control can also be seen. Figure 7c depicts the wake skewing
from the downstream turbines. The wake-added turbulence intensity increased k, hence the wake
spread inside the farm as shown in Figure 7. The optimisation process (in a single simulation) took
less than 15 s for Brazos-row.

(a) (b) (c)

Figure 7. Comparison of control strategies for Brazos-row at 8 m/s in full wakes. Range of k varies
from 0.07 (free-stream) to 0.025 (deep inside the farm); (a) Conventional greedy control; (b) Optimised
control based on CP; (c) Optimised control based on yaw-offset.

7.2. Le Sole de Moulin Vieux (SMV)

SCADA data of the SMV wind farm from 2011–2014 was provided by Maïa Eolis (now Engie
Green). Full or near-full wake conditions were assumed in the simulations. Average efficiency from
the south 160◦–220◦ is shown in Figure 8. The sector 160◦–220◦ was chosen because of the prevailing
wind direction and significant wake effects observed in these directions. Analyses of the SCADA data
showed that shifted efficiency can drop to 78% in the worst conditions. WindPRO (standard Jensen
model with k = 0.07 and WAsP) predicted that efficiency can be as low as 70% with such layout and
terrain. TI–JM estimated a minimum efficiency of 76% in the worst case. It was observed that k can
increase up to 0.20 as the wind moves through the wind farm.

It can be observed in Figure 8 that TI–JM matches the shifted efficiency better in 160◦–200◦,
while WindPRO produces better results in 200◦–220◦. TI–JM under-estimated wake losses in the
200◦–220◦ sector, concluding that the k needs to be further increased in this sector for better wake
estimation. Wind conditions on site due to the nearby woods (Section 5.2) also added to the complexity
for wind deficit prediction.

It can be observed in Figures 8 and 9 that optimised control strategies can increase efficiency by up
to 4%. The directional sector 160◦–220◦ could not be divided into partial and full wakes for the whole
wind farm in this case. Turbines in the SMV were not installed in a straight line (Figure 3a), hence these
turbines will be under different wake conditions for a given wind direction [8]. SMV5 produced full
wakes on SMV1-SMV4 in 180◦ ± 10◦. For the same wind direction, SMV5 was under minimal wake
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effects of SMV6 and SMV6 was under negligible wake effects of SMV7. SMV6 experienced significant
wake effects of SMV7 in 200◦ ± 10◦ but at the same time all other turbines experienced minimal wake
effects from their corresponding upstream turbines. The optimised yaw-offsets and CP curtailment
settings were the same as for Brazos-row (Section 7.1).

Figure 8. SMV Efficiency in 160◦–220◦ sector.

Figure 9. Impact (% increase) of optimised control strategies on SMV efficiency, relative to greedy control.

A comparison of wind flow using conventional and optimised control strategies is shown in
Figure 10. The optimisation process (in a single simulation) took less than 15 s for SMV.

(a) (b) (c)

Figure 10. Comparison of control strategies for SMV at 8 m/s from north. Range of k varies from 0.07
(free-stream) to 0.020 (deep inside the farm); (a) Conventional greedy control; (b) Optimised control
based on CP; (c) Optimised control based on yaw-offset.
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7.3. Lillgrund

Lillgrund efficiency can be as low as 40% in the worst case, when turbines were under full
wake effects [5]. Due to the dense layout of the farm, turbines experienced wake effects in almost all
wind directions. Therefore, the 360◦ farm efficiency curve available in [5] was digitised using [73]
and reproduced in Figure 11. Other details such as farm layout, surface roughness length, turbine
characteristics, and turbulence intensity were provided by [70]. As per [70], the value of k was tuned for
best fit as required by the wake model. It was noted in the simulations that values of k in Equation (11)
provided the best fit (for TI–JM) with actual efficiency. WindPRO used the standard k = 0.04 for
offshore wind conditions in this case. Although WindPRO captured the shape of the efficiency curve,
in most of the cases it underestimated wake effects. On the other hand, TI–JM predicted wake effects
with almost 95% accuracy in this case.

k = 0.04 i f u0 ≤ 7.0 m/s

k = 0.08 i f 7.0 m/s < u0 ≤ 12.0 m/s
(11)

wind speeds > 12 not considered as suggested in [5].

Figure 11. Average 360◦ efficiency of Lillgrund in below-rated conditions.

Dense wind farms such as Lillgrund can significantly benefit from coordinated control. Full wake
conditions were experienced when the wind flowed in 45◦ ± 10◦, 135◦ ± 10◦, 225◦ ± 10◦, 315◦ ± 10◦

directions. It can be seen in Figure 12 that efficiency can be improved by a maximum of 6% with
optimised control strategies. It can also be observed in Figure 12 that efficiency can be increased in
almost all wind directions as wake effects were always present in the farm. In partial wakes, yaw-based
optimisation provided a better opportunity for efficiency improvement while CP optimisation was
more suitable in full wake conditions. This observation was same as for Brazos-row. The ranges for CP
curtailment and yaw-offsets were the same as Brazos-row and SMV.

A comparison of wind flow using conventional and optimised control strategies is shown in
Figure 13. The optimisation process (in a single simulation) took less than 50 s for Lillgrund.
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Figure 12. Impact (% increase) of optimised control strategies on Lillgrund efficiency, relative to
greedy control.

(a) (b) (c)

Figure 13. Comparison of control strategies for Lillgrund at 8 m/s in full wake conditions. Range of
k varies from 0.04 (free-stream) to 0.14 (deep inside the farm); (a) Conventional greedy control;
(b) Optimised control based on CP; (c) Optimised control based on yaw-offset.

8. Conclusions

Wake effects can have a significant impact on economic performance of wind farms by increasing
production losses and fatigue loads. This work presented an intelligent and fast-processing farm
controller for reducing wake effects. Optimised coordinated control strategies are used for increasing
farm production by optimally varying CP or yaw-angles. The optimised control strategies used TI–JM
for estimating wind speeds inside the wind farms and PSO for optimisation. TI–JM is an improved
version of the standard Jensen model. TI–JM takes deep array effects into consideration using wake
added turbulence intensity for estimating k. It can accurately predict wind speed inside a wind farm
in most of the cases in the wind farm case studies, and hence farm production and efficiency. Both the
CP-based and yaw-based optimised strategies increased wind farm efficiency as compared to the
conventional greedy control. The system has been designed for all wind conditions, however it was
tested only for static wind conditions using TI–JM. Simulations confirm that average efficiency can be
increased by up to 6% for Brazos-row and Lillgrund while 4% for SMV. SMV and Brazos-row were
optimised in a maximum of 15 s while Lillgrund always took less than 50 s, using a basic computer.
It is concluded that CP optimisation is suitable in full wake conditions for net production maximisation.
Yaw-optimisation is beneficial for farm production maximisation in partial wake conditions. As future
work, these results shall be validated using high fidelity wake models. It shall be noted that yaw
optimisation increases fatigue loading on the yawed turbines. The aim of this paper is only to analyse
production maximisation. Fatigue load optimisation would require a multi-objective optimisation for
minimising loads and maximising production of the farm, which is left for future work. Furthermore,
a wind turbine has a designed service life of almost 20 to 25 years, however due to the technological
advances and ever-growing size of turbines, farm operators replace these turbines much earlier
than their end of life. Hence, the increase in fatigue loading for some gain in production might be
economically beneficial. This can be further investigated in the future.
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