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Abstract: Stochastic optimization of a district energy system (DES) is investigated with renewable
energy systems integration and uncertainty analysis to meet all three major types of energy
consumption: electricity, heating, and cooling. A district of buildings on the campus of the University
of Utah is used as a case study for the analysis. The proposed DES incorporates solar photovoltaics
(PV) and wind turbines for power generation along with using the existing electrical grid. A combined
heat and power (CHP) system provides the DES with power generation and thermal energy for
heating. Natural gas boilers supply the remaining heating demand and electricity is used to run all of
the cooling equipment. A Monte Carlo study is used to analyze the stochastic power generation from
the renewable energy resources in the DES. The optimization of the DES is performed with the Particle
Swarm Optimization (PSO) algorithm based on a day-ahead model. The objective of the optimization
is to minimize the operating cost of the DES. The results of the study suggest that the proposed
DES can achieve operating cost reductions (approximately 10% reduction with respect to the current
system). The uncertainty of energy loads and power generation from renewable energy resources
heavily affects the operating cost. The statistical approach shows the potential to identify probable
operating costs at different time periods, which can be useful for facility managers to evaluate the
operating costs of their DES.

Keywords: district energy system; optimization; renewable energy systems; combined heat and
power; operating cost; uncertainty

1. Introduction

Power generation from distributed energy resources has become increasingly popular [1].
Traditional power generation is often associated with large-scale power plants [2], but distributed
power generation tends to occur on smaller scales and is located near the end users. The introduction
of distributed generation allows the local energy demand to be less dependent on the grid [3] and
may provide additional efficiencies by using local energy resources. Renewable energy systems in
recent years have been considered within distributed generation systems [4]. One of the advantages
of renewable energy systems is that they can be configured in various system sizes to meet the local
energy demand [5].

The options for integrating renewable energy systems into district energy systems (DES) vary
depending on the location and the objective of the DES [6]. The integration of renewable energy systems
into DES has been actively explored in recent literature. Various renewable energy technologies are
utilized in DES, ranging from small scale to large scale [7]. The types of technology are also dependent
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on the location of the DES [8]. In other words, the availability of local renewable energy resources
determines the type of renewable energy systems which can be employed in that area [9]. Solar and
wind power are the two most popular types of renewable energy technologies integrated into DES [10].
Furthermore, geothermal, biomass, and hydropower are also attractive options for locations containing
the respective energy resources [11]. Other types of distributed energy systems such as combined heat
and power (CHP) are also used for DES planning [12].

Power generation of solar and wind energy systems can be interrupted due to the intermittency and
uncertainty of solar irradiation [13] and wind speed [14]. Mathematical models have been developed
to address the intermittency of renewable power generation in DES [15]. For example, Parisio et al.
proposed a Robust Optimization technique to control energy carriers into an energy hub [16].
Evins et al. utilized Mixed-integer Linear Programming to address operational constraints [17].
Mavromatidis et al. introduced a two-stage stochastic programming approach to optimal design
of distributed energy systems [18]. Jabbari-Sabet et al. used Particle Swarm Optimization and Unit
Commitment to solve for DES operation and management of a 10-bus system in the day-ahead
model [19]. Fioriti et al. investigated a hybrid minigrid under load and renewable generation
uncertainty [20]. The results from these studies show that stochastic optimization can be used to
address the uncertainties associated with DES.

There are a number of ways to incorporate stochasticity in the simulation and optimization of
renewable energy systems. In recent literature, the uncertainties of power generation from renewable
energy systems have been investigated for meeting the electricity demand [21], heating demand [22],
and cooling demand [23]. Najibi et al. investigated stochastic scheduling of renewable energy resources
to meet the electricity demand under uncertainties of solar photovoltaics (PV) power generation [24].
Similarly, Nikmehr et al. studied the operating cost optimization of a network of energy hubs to
fulfill the electricity demand [25]. Balaman and Selim focused on meeting the heating demand in
a heating district system [26]. Lu et al. presented a modeling solution to coordinate dispatch of
a multi-energy system with district heating network [27]. Comparatively, Sameti and Haghighat
studied optimization methods for a cooling network together with a district heating network [28].
Furthermore, Gang et al. presented an uncertainty-based design optimization for stand-lone district
cooling systems [29]. Overall, these DES planning studies are mostly focused on meeting one of the
three major energy demands, with electricity as the main focus.

There are limited studies on optimizing the operating cost of DES with consideration of all
three major energy demands. Li et al. optimized building cooling heating and power system with
consideration of uncertainty of energy demands [30]. Recently, Mavromatidis et al. incorporated
uncertainty and global sensitivity analysis to optimize design of an energy hub [31]. There is a need to
further investigate all three major energy use types, especially in the presence of uncertainty and global
sensitivity analysis. The addition of cooling and heating demand to the analysis is important for the
overall operation of the DES. This is because systems such as CHP can utilize thermal energy, which is
a by-product of power generation, for fulfilling the heating demand. Furthermore, the uncertainties in
power generation can impact the fulfillment of the cooling demand since cooling equipment is run
by electrical power. In this work, these uncertainties can be included in the model for optimization
without requiring a stochastic programming approach, in which later decision stages depend on
uncertainties in earlier decision stages [32].

The novelty of this paper is to establish an optimization framework with uncertainty incorporated
in terms of stochastic renewable power generation systems and stochastic energy use (loads) based
on a day-ahead model to optimize the operating cost of a modeled DES and potentially reduce
dependence on the grid. To address the existing gap in the literature, all three major categories of
energy consumption (electricity, heating, and cooling) are considered in the presence of renewable
power generation and energy usage uncertainties. These energy needs of the DES are met by a mix
of renewable energy systems (solar PV and wind turbines), CHP system, energy storage, natural gas
boilers, and the electrical grid.
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This study uses real data from a group of existing buildings on the campus of the University
of Utah as a case study. These buildings are metered to measure both the electrical and thermal
energy consumption. The uncertainties of energy consumption patterns and power generation from
the renewable energy resources (i.e., solar irradiation and wind speed) are analyzed based on the
Monte Carlo approach. The DES is optimized with the population-based Particle Swarm Optimization
(PSO) algorithm. The objective of the optimization is to minimize the operating cost of the DES on the
day-ahead model.

Unlike the aforementioned works in the literature, the results from this study will lay the groundwork
for the adding renewable energy systems into DES with (1) considering of all three major types of energy
consumption (electricity, heating, and cooling) in buildings; (2) including of the uncertainties of energy
consumption and power generation from renewable energy resources; (3) incorporating the Monte
Carlo statistical approach into the population-based PSO; and (4) generating statistical distributions of
the operating cost at different time periods in order to stochastically optimize for the operating cost of
the DES.

2. Problem Formulation

2.1. District Energy System Description

The methodology described in this section can be applied to any DES with known electricity,
heating, and cooling demands. Energy system sizes in the DES can be adjusted according to the
demands of the given DES. The stochastic optimization methodology proposed in this paper is
examined by utilizing a group of existing buildings on the campus of the University of Utah as a case
study. The buildings are predominantly used as offices and classrooms. As previously mentioned,
the chosen buildings are metered for energy usage, disaggregate into electricity, heating, and cooling.
The study examines the DES on four different days of the year (20 March, 21 June, 22 September,
and 21 December), which occur at the beginning of the four astronomical seasons. During these four
days, offices and classrooms are open. Throughout this paper, the existing energy system (utilizing the
electrical grid and natural gas) will be referred to as the current energy system. On the other hand,
the modeled DES (utilizing a mixed of energy systems) will be referred to as the proposed DES.
Furthermore, the non-cooling electricity load will be referred to as simply the electricity load, while
the electrical energy required to run cooling equipment will be referred to as the cooling load.

The average energy loads of the buildings comprising the proposed DES are detailed in Table 1.
To obtain average energy loads representing the four example days, hourly energy data is taken
from 10 preceding days and 10 subsequent days to capture typical load patterns during the time of
year around that particular example day. Figure 1 shows the daily energy loads of 21 June and its
20 neighboring days to illustrate the process of obtaining data for the study. Instead of using only the
actual energy data for 21 June, incorporating data from neighboring days allows for a representative
energy load that includes stochastic variation in the likely energy load on such an example day, which
will be discussed further in Section 2.3.1. The data represents the real energy loads in 2017 and
is obtained from the university’s SkySpark installation, a building analytics platform that collects
building data [33]. The mean and standard deviation of each set of hourly energy data are shown in the
Appendix A (Tables A1–A3). The average values are plotted in Figures 2–4. The daily electricity load
is consistent while the daily heating and cooling loads vary throughout the year. The DES is located at
Salt Lake City, UT, which is part of American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) climate zone 5 (i.e., cool and dry) [34]. Buildings in this climate zone typically
exhibit considerable heating and cooling demands in winter and summer, respectively.
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Table 1. Average loads on four example days.

Design Day Electricity (kWhe) Heating (kWht) Cooling (kWht)

20 March 15,747 15,243 5940
21 June 15,669 12,675 6897
22 September 14,981 14,981 4749
21 December 13,641 24,693 62

Figure 1. Daily energy loads on 21 June and its neighboring days.
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Figure 2. Average electricity load of the districts of buildings.
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Figure 3. Average heating load of the districts of buildings.
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Figure 4. Average cooling load of the districts of buildings.

2.2. Proposed District Energy System

The DES utilizes the local renewable energy resources for power generation to reduce the
dependence on the electrical grid. The diagram of the proposed DES is illustrated in Figure 5.
In particular, solar PV and wind power are the two renewable power generation sources integrated
into the DES. The National Renewable Energy Laboratory (NREL) provides hourly data over the
last 15 years for wind speed [35] and solar irradiation [36] at the study location of Salt Lake City, UT,
USA (40.766837, −111.846920). In addition to renewable power generation, a gas-fired microturbine
CHP system is used to provide power generation during times of electrical demand when solar PV
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and wind power is inadequate to meet the electricity loads. A battery system is also implemented
to store unconsumed renewable energy for use at a later time. Additionally, the power generated
from these resources will be used to run cooling equipment to meet the cooling demand. The system
will recover thermal energy from the CHP system in addition to using natural gas boilers to meet the
heating demand. The technical specifications of these systems are listed in Table 2. The system sizes
for the simulations presented here were chosen based on the energy demands of the buildings and the
availability of renewable energy resources in the area. Different design choices will affect the on-site
generation and ultimately the operating cost of the DES.

Electricity

Heating 

Cooling

Solar PVWind
Turbines

CHP

Grid

Battery

Natural
Gas

Boilers

Figure 5. Diagram of the proposed district energy system management.

Table 2. Energy system specifications for the proposed DES.

Energy System Specifications

Solar PV [37]

Capacity: 400 kW
Efficiency: 15%
Performance ratio: 75%
Dimension: 1.6 m2 for a 200 W panel
Tilt angle: 40.5◦

Wind Turbine [37]

Capacity: 400 kW
Rotor diameter: 25 m
Cut-in speed: 2.7 m/s
Cut-out speed: 25 m/s
Rated speed: 12 m/s

CHP [38]

Capacity: 300 kW
Technology: microturbine
Power to heat ratio: 0.6
Effective electrical efficiency: 55%
Overall CHP efficiency: 65%

Battery [37] Capacity: 100 kW
Charging/discharging efficiency: 90%
Depth of discharge: 90%

Boiler [39]
Capacity: 500 MBtu/h (146.5 kW)
Fuel-to-steam efficiency: 85%
Fuel: natural gas

2.3. Mathematical Model

The objective of the mathematical model is to minimize the operating cost of the DES, which
consists of the operating costs of the solar PV panels, wind turbines, battery system, CHP system,
natural gas boilers, and electricity purchased from the grid. This work assumes that these systems
are already installed. The operating and maintenance costs of these devices can be less significant to
decision makers as their variation with energy output is small. Their capital costs can be found in
Appendix B. All of the variables in the mathematical model are hourly because the solar irradiation,
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wind speed, and energy loads are provided as hourly data. The objective function of the operating
cost is detailed as follows:

Min f (X) = Min
T

∑
t=1

Costt = Min
T

∑
t=1

{ Ng

∑
i=1

[
ui(t)EG,i(t)CG,i(t)

]

+
Ns

∑
j=1

[
uj(t)ES,j(t)CS,j(t)

]
+

Nh

∑
k=1

[
uk(t)QH,k(t)CH,k(t)

]
+ ul(t)Egrid(t)Cgrid(t)

}
.

(1)

For electricity generation (the first term in brackets on the right-hand side of Equation (1)): Ng is
the number of generating units, ui is the state of the ith unit (ON = 1, OFF = 0), EG,i is the electricity
generation of the ith generating unit, and CG,i is the ith generating unit cost. The generating units
consists of on-site generation from solar, wind, and CHP. For energy storage (the second term in
brackets on the right-hand side of Equation (1)): Ns is the number of energy storage devices, uj is
the state of the jth unit (ON = 1, OFF = 0), ES,j is the energy capacity of the jth energy storage device,
and CS,j is the jth storage device cost. For thermal heating devices, including gas-fired boilers (the third
term in brackets on the right-hand side of Equation (1)): Nh is the number of heating devices, uk is the
state of the kth unit (ON = 1, OFF = 0), QH,j is the thermal energy of the kth heating device, and CH,k is
the kth heating unit cost. When purchasing electricity from the grid, ul is the state of sending/receiving
electricity from the utility (ON = 1, OFF = 0), Egrid is the electricity purchased (or exported) from (or to)
the utility, and Cgrid is the energy unit cost purchased from the utility.

The following equations break down the operating costs and constraints of all energy devices
used in the proposed DES. The operating costs from renewable energy resources (i.e., solar and wind
power) come from the operating & maintenance (O&M) costs of these systems. The fuel costs are zero
since the fuels for these systems (i.e., solar irradiation and wind speed) are free to harvest. For the
solar PV system, the operating cost, Csolar, is as follows:

Csolar = λsolarEsolar, (2)

where λsolar is the solar operating cost per unit of electricity output, and Esolar is the solar electricity
output. The solar power generation, Psolar, is the rate of electricity converted from solar energy (Esolar)
per unit of time. The solar power generation is subjected to the solar power capacity constraint:

Psolar,min(t) ≤ Psolar(t) ≤ Psolar,max(t). (3)

The solar electricity generation is calculated based on the specifications of the solar PV system
(Table 2) and the solar irradiation available at the study location.

Similarly, the operating cost of the wind electricity generation system , Cwind, is as follows:

Cwind = λwindEwind, (4)

where λwind is the wind operating cost per unit of electricity output, and Ewind is the wind electricity
output. The wind power generation is subjected to the wind power capacity constraint:

Pwind,min(t) ≤ Pwind(t) ≤ Pwind,max(t). (5)

Wind power generation depends on the wind speed since the wind turbines impose cut-in and
cut-off wind speeds as listed in Table 2.

Unlike the electricity generation from renewable energy resources, the operating cost of the CHP
system comes from the fuel cost in addition to the O&M cost. The fuel cost is the cost of the natural gas
used for running the microturbine in the CHP system. The operating cost of the CHP system , CCHP,
is detailed as follows:

CCHP = ( fCHP + γCHP)ECHP, (6)
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where fCHP is the CHP fuel unit cost, γCHP is O&M unit cost of the CHP system, and ECHP is the
electricity generation from the CHP system.

The thermal energy from the CHP system is utilized to partially meet the heating load, while the
natural gas boilers are used to fulfill the remaining load. The constraint for the heating load is shown
in the following equation:

Qheating = QCHP + Qboiler, (7)

where Qheating is the total heating load, QCHP is the thermal energy output delivered from the CHP
system, and Qboiler is the thermal energy output provided by the boilers.

The operating cost for the boiler system , Cboiler, is as follows:

Cboiler = ( fboiler + γboiler)Qboiler, (8)

where fboiler is the fuel unit cost to run the boilers, γboiler is the O&M unit cost of the boilers, and Qboiler
is the thermal energy output of the boilers.

A battery system is also implemented as an energy storage device in the DES for events of excess
electricity generation. The operating cost for the battery , Ces, is as follows:

Ces = λesEes, (9)

where λes is the unit operating cost of the battery, and Ees is the energy capacity of the battery.
Charging occurs during events of excess power generation from the renewable energy sources,
while discharging takes place if there is a lack of on-site power generation. The battery is also
subjected to the charging/discharging limitations and the state of charge constraint. The depth of
discharge of the battery system is 90% as it prolongs the life cycle of the battery system. If the battery
system is fully charged, any further excess renewable power generation will be sold to the grid.
The following equations illustrate the constraints on the battery:

Ees(t) = Ees(t− 1) + ηchargeEcharge∆t− 1
ηdischarge

Edischarge∆t, (10)

Ees,min(t) ≤ Ees(t) ≤ Ees,max(t). (11)

The electrical grid is used in the event that on-site power generation is inadequate to meet the
electricity load. The cost of purchasing electricity from the grid , Cgrid, is as follows:

Cgrid = λgridEgrid, (12)

where λgrid is the electricity unit cost from the grid, and Egrid is the purchased electricity. The unit
costs of all energy systems are detailed in Table 3.

Table 3. Unit costs of energy systems [37–39].

Parameter Symbol Value

Solar generation operating unit cost λsolar 3.32 ¢/kWh
Wind generation operating unit cost λwind 3.12 ¢/kWh
CHP fuel unit cost fCHP 4.54 ¢/kWh
CHP operating unit cost γCHP 2.34 ¢/kWh
Boiler fuel unit cost fboiler 4.34 ¢/kWh
Boiler operating unit cost γboiler 2.34 ¢/kWh
Battery operating unit cost λes 2.67 ¢/kWh
Grid unit cost of purchasing power λgrid 7.40 ¢/kWh



Energies 2019, 12, 533 9 of 26

The energy balance should be satisfied at all times:

Esolar + Ewind + ECHP + Ees + Egrid = Eload, (13)

where Eload consists of the non-cooling electricity load and the electrical energy to run
cooling equipment.

2.3.1. Uncertainty Model

Renewable energy systems in the DES are associated with uncertainties in power generation.
For instance, solar PV panels and wind turbines depend on solar irradiation and wind speed,
respectively. The uncertainties of these variables can be characterized by statistical probability
distributions [40–42]. The Monte Carlo simulation is used for modeling and sampling the uncertainties
in this study [43]. This section illustrates the uncertainty analyses of the input variables (i.e., wind
speed, solar irradiation, and energy loads). Figure 6 provides the average wind speed and solar
irradiation on all four example days. To determine the appropriate statistical distributions, hypothesis
tests were used on the actual data. As a result, the uncertainty analysis on the wind speed is conducted
based on a Weibull distribution, while the solar irradiation is analyzed based on a normal distribution.

The probability density function of wind speed based on the Weibull distribution is as follows:

f (xw) =
βw

δw

(
xw

δw

)βw−1
exp

[
−
(

xw

δw

)βw
]

, (14)

where xw is the wind speed, δw is the scale parameter, and βw is the shape parameter (Table A4 in the
Appendix A).

The mean and standard deviation of the wind speed (Table A5 in the Appendix A) are shown in
the following equations, respectively:

µw = δwΓ
(

1 +
1

βw

)
, (15)

σw =

[
δ2

wΓ
(

1 +
2

βw

)
− δ2

w

[
Γ
(

1 +
1

βw

)]2
]0.5

. (16)

The cumulative distribution function of the Weibull distribution of wind speed is modeled
as follows:

F(xw) = 1− exp

[
−
(

xw

δw

)βw
]

. (17)

Similarly, a normal distribution is used to model the solar irradiation. The probability density
function of this normal distribution is as follows:

f (xs) =
1√

2πσs
exp
−(xs − σs)2

2σ2
s

. (18)

The mean and standard deviation of the normal distribution are µs and σs (Table A6 in the
Appendix A), respectively. The cumulative distribution function of the normal distribution is
as follows:

F(xs) =
1
2

[
1 + erf

(
xs − µs

σs
√

2

)]
. (19)

Similar to the uncertainty analysis of wind speed and solar irradiation, the energy loads of the
district of buildings are analyzed based on normal distributions. The probability density functions
of the loads are similar to Equation (18), while their cumulative distribution functions are similar
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to Equation (19). Tables A1–A3 in the Appendix A represent the mean and standard deviation of
electricity, heating, and cooling loads, respectively.
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Figure 6. Average wind speed and solar irradiation at the study location (Salt Lake City).

Based on the Monte Carlo simulation, the uncertain variables can be sampled to produce
deterministic inputs for the stochastic model. In this study, there are 10,000 power generation scenarios
generated by the Monte Carlo simulation. Based on these, a day-ahead model of the DES is planned.
Using the constraints of the electricity generation from wind turbines and solar PV panels, there are five
decision variables to be considered: CHP electricity generation, battery state of charge, grid electricity
purchase, CHP thermal energy, and boiler thermal energy. As a result, the total number of variables
for a day-ahead model is 120 (24 h and five variables). All of these variables are linked to the
objective function, which was shown in Equation (1). The decision variables are demonstrated in the
following matrix: 

Et1
CHP Et1

es Et1
grid Qt1

CHP Qt1
boiler

Et2
CHP Et2

es Et2
grid Qt2

CHP Qt2
boiler

...
...

...
...

...
Et24

CHP Et24
es Et24

grid Qt24
CHP Qt24

boiler

 .

2.3.2. Stochastic Optimization Algorithm

The day-ahead model is optimized by the Particle Swarm Optimization (PSO) algorithm,
which was developed by Kennedy and Eberhart in 1995 for studying bird flocking and fish
schooling [44]. This optimization algorithm has been applied in many engineering applications,
such as gear train design, process parameter optimization in casting, power generation scheduling,
etc. [45,46]. The population-based optimization has been adopted for the stochastic optimization
in this study because it offers mathematical flexibility and computational efficiency to incorporate
uncertainties. Figure 7 describes the implementation of the algorithm used in this study. As illustrated
in the aforementioned matrix, the PSO algorithm can search for an optimal solution (i.e., minimizing
operating cost of the DES at each instant in time) based on the day-ahead model that contains a total of
120 variables. The Monte Carlo simulation method is integrated with the PSO algorithm to assess the
uncertainties of renewable power generation and energy loads.



Energies 2019, 12, 533 11 of 26

Start

1. Import historical data (15 years) for each
hour of 4 example days.

2. Probability distribution test.

3. Construct appropriate Cumulative Density
Functions.

4. Generate stochastic input values.

5. Calculate power generation.

1. Access load data (electricity, heating,
and cooling) of 4 example days.

2. Probability distribution test

3. Construct approriate Cummulative
Density Functions.

4. Generate stochastic loads.

Initialize PSO parameters

Calculate personal best
solution for each particle

Is current best  
solution better than  

personal best?
Assign current best

solution as new
personal best

Keep previous
personal best

Yes No

Assign personal
best to global

best (operating
cost)

Check all constraints

Conditions 
Satisfied? 

ith scenario

Update velocity
and position of

particles

No

Record solution 

Yes

Scenario
Finished? 

Generate
results from all

scenarios

Yes

i = i + 1

No

Figure 7. Flowchart of the Monte Carlo simulation and the Particle Swarm Optimization algorithm.

The PSO algorithm optimizes by allowing for communication and learning to take place among the
particles in the search space. In the beginning, a group of random particles initializes the PSO algorithm
and then searches for the minimum solution by updating generations of the particles. In every iteration,
there are two “best” values that determine the location and velocity of each particle. The first value is
the personal best solution (pBest) that each particle has achieved so far. The other “best” value is the
global best (gBest) that is obtained so far by any particle in the population, which is not necessarily
a global minimum in the solution space. The tolerance of the solution (i.e., the operating cost) is
measured to determine the optimum population size and iteration with respect to the computational
time. As a result, the population size is picked to be 50 and the number of iteration is 1000 as this gives
the best trade-off between accuracy and computational time. The solution of each particle in every
iteration is calculated by the objective function. The location and velocity of the particle in the search
space are calculated based on the following Equations [47]:

xk+1
j = xk

j + vk+1
j , (20)

vk+1
j = wvk

j + r1c1(pBestk
j − xk

j ) + r2c2(gBestk
j − xk

j ), (21)
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where x is the location of the particle, v is the velocity of the particle, c1 and c2 are acceleration
coefficients and both equal to 2.05, w is the inertia coefficient and w = 2/[(c1 + c2) − 2 + [(c1 +

c2)
2 − 4(c1 + c2)]

1/2], r1 and r2 are random numbers ⊂ (0,1), j is the jth particle, and k is the kth
iteration [45]. The three terms in Equations (21) represent inertial, cognitive, and social components,
respectively. The inertial component presents the relative velocity of the particle in the search space.
The cognitive component refers to the personal experience of the particle (i.e., personal best operating
cost) while the social component is associated with the communication among particles (i.e., global
best operating cost).

3. Results and Discussion

The simulation of the DES solves for the operating costs of the four example days, which give
different operating conditions with mixed electricity, heating, and cooling demands. These four example
days are associated with seasonal transitions at the study location, which offer variations in daylight
hours and wind speeds. As a result, the power generation from the renewable energy resources changes
throughout the year (Table 4). Furthermore, the uncertainties of renewable power generation and energy
loads are shown to influence the operating costs. The mean and standard deviation of the operating
cost in all hours of the four example days are shown in Table 5. The total operating cost of each day
of the proposed DES is compared to the operating costs of the current energy system (relying on the
electrical grid and natural gas boilers) in Table 6. These operating costs represent the average values
for 10,000 power generation scenarios. The simulation time for each example day is approximately 5 h
in MATLAB (2015b version by Mathworks, Natick, MA, USA) on a desktop computer with an Intel i7
processor and 16 GB of RAM.

Table 4. Purchased power and average on-site power generation on four different example days.

Hour
20 March 21 June 22 September 21 December

Grid On-Site Grid On-Site Grid On-Site Grid On-Site
(kWh) (kWh) (kWh) (kWh) (kWh) (kWh) (kWh) (kWh)

1 594.67 155.36 648.98 160.50 490.26 111.11 305.08 126.06
2 565.62 148.11 645.63 155.60 478.56 108.30 233.79 204.59
3 532.25 136.61 670.90 220.45 470.94 115.65 298.21 130.86
4 476.84 197.15 692.30 180.12 456.32 131.88 313.22 115.31
5 592.59 146.34 625.00 174.82 468.12 125.41 305.31 118.91
6 570.40 133.37 630.00 156.00 488.68 117.40 364.22 111.06
7 675.25 145.93 760.20 168.30 587.79 118.87 409.92 127.75
8 783.49 153.02 802.30 217.75 823.20 155.83 552.58 123.24
9 875.71 192.21 832.19 193.78 816.32 153.91 560.94 176.38
10 886.63 200.41 907.05 158.21 825.00 171.24 539.01 173.37
11 962.04 221.48 935.64 203.20 851.25 162.60 573.44 180.70
12 960.43 237.61 986.54 248.60 906.40 172.87 584.40 159.67
13 967.83 206.78 919.21 238.65 899.43 168.65 623.90 162.79
14 936.39 185.57 996.71 245.60 1028.20 180.65 620.01 159.15
15 996.27 177.40 1083.45 230.00 951.11 172.65 648.30 127.33
16 959.39 147.15 977.92 210.75 948.98 175.34 572.93 170.81
17 869.44 202.14 904.28 178.60 813.40 153.86 542.37 144.66
18 750.68 168.89 830.00 168.60 717.53 142.30 382.14 142.61
19 697.34 143.36 802.30 170.54 643.99 110.09 291.53 167.20
20 626.29 136.76 730.00 146.30 602.23 106.99 271.49 170.75
21 612.42 190.76 720.65 145.20 598.32 109.27 258.70 163.98
22 448.62 316.19 703.60 167.00 578.32 107.16 275.10 155.58
23 531.59 170.10 650.20 152.65 498.32 114.34 313.40 120.82
24 464.06 237.94 697.00 160.00 476.30 125.03 285.72 143.80

Total Daily Power Generation

17,336.26 4350.64 19,152.06 4451.21 16,418.98 3311.40 10,125.72 3577.41

On-site Generation Percentage

20.06% 18.86% 16.78% 26.11%
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Table 5. Hourly operating costs (mean and standard deviation) on four example days.

Hour 20 March 21 June 22 September 21 December

µ ($) σ ($) µ ($) σ ($) µ ($) σ ($) µ ($) σ ($)

1 57.52 1.61 55.64 1.74 47.73 0.19 50.41 1.11
2 55.71 0.93 54.89 1.73 46.41 0.15 49.35 3.06
3 52.75 1.32 54.36 2.95 47.21 0.40 51.99 1.44
4 52.72 2.83 54.97 1.86 46.03 0.92 53.37 0.42
5 57.27 1.52 55.32 2.30 46.64 0.51 51.62 0.59
6 56.08 0.66 55.54 1.09 48.31 0.41 53.47 0.39
7 62.23 1.28 58.61 0.95 53.16 0.21 55.80 0.75
8 68.32 1.02 66.12 2.30 63.12 0.58 66.72 0.76
9 74.72 2.09 68.74 1.87 66.13 0.50 67.89 2.13

10 74.45 1.68 71.84 0.73 64.86 1.37 65.57 2.22
11 78.29 2.51 76.46 2.16 70.12 0.50 66.20 2.37
12 78.26 2.60 78.22 2.53 73.83 2.63 64.98 2.32
13 76.54 1.66 74.55 1.80 72.94 2.52 65.99 2.61
14 76.03 1.68 78.68 2.16 80.36 2.12 66.16 2.30
15 77.88 1.12 82.64 1.34 76.17 0.63 66.15 0.33
16 75.38 0.70 76.67 1.73 76.16 0.98 63.85 1.77
17 71.49 2.17 70.02 0.62 66.96 0.40 60.44 1.50
18 63.28 1.08 61.59 0.64 61.35 0.24 52.26 1.77
19 60.04 1.25 60.00 0.87 55.65 0.13 47.99 2.22
20 56.28 1.41 54.84 0.74 52.76 0.12 48.15 2.65
21 58.76 2.75 54.90 1.16 52.90 0.25 47.77 2.17
22 54.87 5.33 53.92 1.00 51.57 0.24 48.03 1.56
23 53.92 2.90 53.94 0.42 48.57 0.45 50.78 0.78
24 52.67 5.78 57.34 1.68 47.04 0.49 49.75 1.30

Table 6. Comparison of average operating costs.

Example Day Proposed DES Current System Operating Savings Percent Reductions

20 March $1545.46 $1700.75 $155.29 9.13%
21 June $1529.76 $1683.23 $153.47 9.12%
22 September $1415.99 $1572.26 $156.27 9.94%
21 December $1364.70 $1517.52 $152.82 10.07%

The operating costs for each hour of the four example days are illustrated in Figure 8. Due to the
nature of the buildings (offices and classrooms), the majority of the energy use occurs during the day.
The operating cost during occupied hours dominates the daily operating cost of the DES. The use of
solar PV is beneficial for the DES since the power generation from solar PV panels can be used for
fulfilling the electricity load during the day. On the other hand, the power generation from the wind
turbines occurs mostly in the afternoon and at night, which can be consumed for night-time building
operations and energy storage. The use of solar PV and wind power offers a balance between power
generation from renewable energy resources during the day and at night. As a result, the intermittent
nature of power generation from each resource can be mitigated. Furthermore, the addition of on-site
generation (including wind turbines, solar PV panels, and the CHP system) reduces the dependence
on the electrical grid by as much as 26%, as seen in Table 4.

For each hourly operating cost, a probability-normalized histogram is constructed to assess
the influence of uncertainties. The operating costs for the three representative hours (4th
hour, 12th hour, and 20th hour) in four example days are shown in Figures 9–12, respectively.
The probability-normalized histograms show the potential operating costs and their probabilities
in different price ranges. In other words, the distribution illustrates how probable each operating cost
is for the given operating conditions.
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Figure 8. Operating costs of the DES of the four example days.

Figure 9. Probability of the operating cost on the 4th hour (left), 12th hour (center), and 20th hour
(right) of the 20 March case study.

Figure 10. Probability of the operating cost on the 4th hour (left), 12th hour (center), and 20th hour
(right) of the 21 June case study.
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Figure 11. Probability of the operating cost on the 4th hour (left), 12th hour (center), and 20th hour
(right) of the 22 September case study.

Figure 12. Probability of the operating cost on the 4th hour (left), 12th hour (center), and 20th hour
(right) of the 21 December case study.

The uncertainties of solar PV and wind power generation drive the uncertainty in power
generation overall when using renewable energy resources (Figures 13–16). It is important to note that
the probability of zero power generation is also included in the plots, which can affect the general
distributions. The solar irradiation values are drawn from a normal distribution while the wind speeds
are from a Weibull distribution. Consequently, the potential operating costs have various distributions
at different hours during the day. For instance, the operating cost follows a normal distribution during
hours when the the majority of power generation comes from solar PV panels. Similarly, when wind
generation dominates the makeup of electric power provided, the operating cost reflects a Weibull
distribution. On the other hand, the effects from other systems are not as pronounced since energy
systems such as the CHP generation, the electrical grid, and natural gas boilers are assumed to be
readily available when needed. Statistical distributions of all considered power generation methods
influence the type of distribution of the operating cost; however, the operating cost probability
distribution tends to take the shape of the probability distribution for the source with the most
uncertainty. Furthermore, the statistical distributions of energy loads are represented by normal
distributions (Figures 17–20). The expected energy loads have Gaussian curves that center about
their mean values. Therefore, the effect on the operating cost from the expected energy loads are
determined by the means and standard deviations of the energy loads. For instance, the high variance
(and, therefore, large standard deviation) of the cooling load during early afternoon hours leads to
unpredictable cooling demand in those hours.
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Figure 13. Probability of the power generation from solar PV (left) and wind (right) at the 12th hour
on the 20 March case study.

Figure 14. Probability of the power generation from solar PV (left) and wind (right) at the 12th hour
on the 21 June case study.

Figure 15. Probability of the power generation from solar PV (left) and wind (right) at the 12th hour
on the 22 September case study.
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Figure 16. Probability of the power generation from solar PV (left) and wind (right) at the 12th hour
on the 21 December case study.

Figure 17. Probability of electricity load (left), heating (center), and cooling load (right) of the 12th hour
on 20 March.

Figure 18. Probability of electricity load (left), heating (center), and cooling load (right) of the 12th hour
on 21 June.

Figure 19. Probability of electricity load (left), heating (center), and cooling load (right) of the 12th hour
on 22 September.
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Figure 20. Probability of electricity load (left), heating (center), and cooling load (right) of the 12th hour
on 21 December.

The addition of heating and cooling loads in the analysis of the DES has generated considerable
differences compared to studies of DES without heating and cooling loads. As mentioned in the
proposed DES section, all of the cooling equipment is run by electrical power. In other words,
the power generation from energy systems in the DES needs to fulfill both the electricity demand
and the electrical energy required by the cooling equipment. During events of high electricity and
cooling demands, it is more likely for the DES to purchase power from the grid because the on-site
generation is not adequate. From Table 5, the standard deviation of the operating cost often exceeds
$2 during peak energy demand, which typically occurs around 12 p.m. and in the early afternoon.
This observation indicates that the uncertainty of the operating cost of the DES increases during events
of high energy consumption. This is due to the presence of uncertainties from electricity, heating,
and cooling demands. It is also notable that the standard deviations of the operating costs on the last
four hours on 20 March are considerably higher than the other hours. This is caused by the uncertainty
of heating load during those hours.

The projected operating costs of the proposed DES on four example days are compared to the
operating costs of the current energy system during the same periods (Table 6). Studies of DES
without consideration of all three major energy loads do not provide a complete picture of the total
energy consumption and operating cost. This study includes both electrical and thermal loads for
more comprehensive results. The proposed DES with a mixed of power generation systems shows
potential for operating cost reductions. The probabilistic operating cost savings are around $150/day
(approximately 10%) compared to the actual operating cost. Overall, the strategic implementation of
power generation from various sources reduces the overall operating cost of the DES.

Throughout this study, there are limitations on the applicability of this method that could be
addressed by future studies on reducing the operating cost of DES with stochasticity in power
generation and energy demands. Critical limitations are as follows:

• The performance of solar PV panels is assumed to be consistent throughout the lifetime of the
renewable energy systems. In other words, the degradation of the energy system is not considered.

• The operating costs on the four example days are based on the specific system sizes that were
detailed in Table 2. Design choices will influence the operating cost, but variations in the design
of the various systems were not considered here.

• The CHP and boiler are assumed to be readily available. The uncertainties from these systems are
not considered.

• The unit operating costs for the energy systems are consistent throughout the year. Monthly and
seasonal changes in unit costs will influence the operating costs throughout the year.

• The start-up and shut-down costs of the energy systems are not considered.
• All of the variables are hourly. Fluctuations in power generation and energy loads on a sub-hourly

basis are not accounted for here.
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• The examples days do not capture extreme conditions/design days. Instead, the beginning days
of four different astronomical seasons are studied, capturing a variety of conditions outside of the
summer and winter design days.

4. Conclusions

DES optimization for a district of metered buildings has been investigated in this paper with
consideration of uncertainties in energy loads and power generation of renewable energy resources.
The optimization of this DES minimizes the operating cost, which includes the cost of meeting the electricity,
heating, and cooling loads. The simulation results suggest that the operating cost of the proposed DES is
less than the operating cost of the current energy system (by approximately 10%); however, the uncertainties
in the system lead to unpredictability in the operating cost. Analyses based on statistical probability were
demonstrated to have the capability to predict probable operating costs at a given time period.

A Monte Carlo statistical simulation has been used to incorporate the uncertainty of energy loads
and power generation from renewable power generation into the DES model. The results from the case
study using four example days have shown the influence of uncertain input variables. The operating
cost at each hour of the four example days is heavily dependent on the sources of power generation.
Even though the uncertainties of all renewable sources of power generation add to the uncertainty in
the operating cost, the most dominating source of power generation at a given period determines the
distribution of the operating cost. Furthermore, the uncertainty in operating cost of the electricity load
is more prominent than the uncertainty in operating cost of the heating load. This is because the use of
natural gas for heating is more reliable than power generation from renewable energy resources.

The low operating costs of the energy systems used in the DES contribute toward the low overall
operating cost. The proposed DES incorporates solar PV and wind turbines for power generation,
which can often operate at a lower cost per unit of electricity compared to purchased electricity from
the grid. With on-site generation, the purchased power from the electrical grid on the four example
days can be reduced by up to 26%. It is important to recognize that the percentage of on-site power
generation (i.e., the reduction in purchased power) on different days of the year can vary from the
on-site power generation of the four example days. Nonetheless, the buildings can be less dependent
on the grid and the overall operating cost can be lowered.

In conclusion, a DES incorporating renewable energy systems offers operating cost reduction
opportunities. However, the uncertainties associated with renewable energy resources can cause
unreliable power generation, leading to uncertainty in operating costs. Additionally, consideration of
uncertainties in the energy loads is also important. The addition of uncertainties from the electricity,
heating, and cooling loads can further contribute to unpredictable operating costs. Even though the
energy loads exhibit normal distributions, those with high variance can increase (or decrease) the
required loads to be fulfilled. Thus, the operating cost can be highly unpredictable. A statistical
analysis that incorporates the expected uncertainty is recommended for DES planning with renewable
energy resources, as a deterministic calculation may give a misleading picture of the likely operating
costs and potential savings.

Author Contributions: Conceptualization, T.T.D.T. and A.D.S.; Methodology, T.T.D.T. and A.D.S.; Software,
T.T.D.T.; Formal Analysis, T.T.D.T.; Investigation, T.T.D.T.; Resources, T.T.D.T. and A.D.S.; Data Curation,
T.T.D.T.; Writing—Original Draft Preparation, T.T.D.T. and A.D.S.; Writing—Review & Editing, T.T.D.T. and
A.D.S.; Visualization, T.T.D.T.; Supervision, A.D.S.; Project Administration, T.T.D.T. and A.D.S.; Funding
Acquisition, A.D.S.

Funding: This work was supported by the U.S. Department of Energy Grant No. EE0007712.

Acknowledgments: The authors would like to recognize the Facilities Management organization at the University
of Utah, with particular thanks to engineer Phil Banza, for providing access to building energy data.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2019, 12, 533 20 of 26

Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations
CHP Combined heat and power
CRF Capital recovery factor
DES District energy system
O&M Operation and maintenance
PSO Particle swarm optimization
PV Photovoltaics
Nomenclature
β Weibull shape parameter
γ Unit cost of O&M ($/kWh)
σ Standard deviation ($, m/s, W/m2, kWh)
δ Weibull scale parameter
λ Unit cost of electricity generation ($/kWh)
µ Mean ($, m/s, W/m2, kWh)
c Acceleration coefficient
C Cost ($)
E Electricity generation output (kWhe)
f Unit cost of fuel ($/kWht)
gBest Global best solution
n Project lifetime (Year)
N Number of energy devices
pBest Personal best solution
P Power (kW)
Q Thermal energy output (kWht)
r Random value ⊂ (0,1)
t Hourly timestep (Hour)
v Particle velocity
x Particle position
Subscripts
ann Annualized capital cost

boiler Natural gas boiler

CHP Combined heat and power
es Energy storage
g Electricity generation devices

grid Electrical grid

h Thermal heating devices

heating Thermal heating

load Energy load

NPC Net present capital cost
s Solar irradiation

solar Solar PV power
w Wind speed

wind Wind power
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Appendix A

Table A1. Electricity load parameters (mean and standard deviation) on four different days.

Hour
20 March 21 June 22 September 21 December

µe σe µe σe µe σe µe σe
(kWhe) (kWhe) (kWhe) (kWhe) (kWhe) (kWhe) (kWhe) (kWhe)

1 492.42 78.23 510.71 49.75 657.89 65.41 429.03 26.75
2 511.60 62.46 506.69 50.69 655.37 55.78 436.98 33.11
3 476.17 39.53 509.14 34.78 653.73 63.17 428.12 31.44
4 478.87 52.44 507.32 40.79 660.89 51.66 427.85 26.69
5 511.08 53.42 530.30 60.84 659.19 63.16 423.37 20.65
6 529.76 71.35 565.72 75.10 652.64 74.22 474.46 60.99
7 648.10 123.35 651.39 121.28 614.04 130.92 536.99 121.74
8 787.19 226.12 767.94 212.78 652.64 205.47 675.41 238.52
9 865.34 275.10 836.83 263.74 636.82 237.01 736.64 242.62
10 874.86 299.60 838.10 253.89 629.66 229.00 711.87 244.43
11 894.97 299.57 857.70 286.99 598.15 251.63 753.22 275.50
12 899.92 316.56 851.30 280.72 601.63 246.20 743.35 254.13
13 904.45 309.82 845.24 275.72 593.17 255.07 767.43 277.31
14 842.33 253.54 842.93 268.87 585.06 274.90 773.44 274.42
15 840.84 272.48 851.29 278.20 594.54 272.84 773.42 288.34
16 812.61 232.82 818.29 256.29 583.22 271.62 741.42 269.55
17 743.79 209.39 713.25 182.44 576.40 196.91 680.65 204.78
18 596.05 107.02 594.80 106.00 596.24 124.50 520.45 93.33
19 529.86 74.13 531.36 54.66 596.45 73.24 456.38 45.16
20 501.35 71.04 505.51 49.00 610.09 73.45 441.01 38.74
21 506.23 73.42 500.44 49.56 640.57 72.20 418.94 32.48
22 508.79 76.29 510.73 47.05 622.50 72.99 428.42 32.92
23 494.29 74.72 509.24 40.09 656.26 81.63 434.20 41.73
24 496.05 73.94 512.64 44.51 654.28 63.58 428.38 33.33

Table A2. Heating load parameters (mean and standard deviation) on four different days.

Hour
20 March 21 June 22 September 21 December

µh σh µh σh µh σh µh σh
(kWht) (kWht) (kWht) (kWht) (kWht) (kWht) (kWht) (kWht)

1 697.17 100.87 550.01 141.21 657.89 83.13 1078.32 142.08
2 704.61 110.71 559.89 146.39 655.37 79.77 1080.78 139.29
3 687.97 93.11 567.40 149.00 653.73 73.07 1138.20 207.98
4 716.95 115.52 570.12 149.75 660.89 77.54 1174.89 189.36
5 704.81 106.46 577.08 153.48 659.19 78.13 1127.84 173.81
6 726.84 113.43 576.53 147.03 652.64 73.65 1082.01 150.15
7 705.36 120.04 551.37 144.82 614.04 73.01 1046.14 144.54
8 682.38 126.15 600.40 169.66 652.64 78.88 1130.84 163.64
9 659.12 105.02 544.82 142.87 636.82 80.54 1082.01 162.38
10 617.38 90.15 529.00 136.83 629.66 95.09 1052.55 161.84
11 566.44 80.83 568.69 294.81 598.15 64.24 994.99 169.91
12 547.21 73.58 522.25 155.51 601.63 66.04 960.62 154.69
13 516.04 111.26 504.86 131.79 593.17 63.71 911.11 150.71
14 590.38 160.71 482.49 120.80 585.06 69.34 929.25 123.72
15 543.12 87.06 488.63 123.65 594.54 70.31 914.65 124.07
16 573.81 119.23 481.13 121.19 583.22 64.92 930.75 132.15
17 550.89 86.23 476.29 119.45 576.40 63.66 913.29 107.82
18 558.94 96.10 474.99 120.90 596.24 74.02 963.89 123.46
19 591.54 88.92 486.38 123.28 596.45 72.37 969.89 128.04
20 617.38 110.46 490.61 129.21 610.09 88.85 1010.67 129.43
21 655.57 111.91 498.24 140.00 640.57 83.58 1032.63 147.96
22 674.87 112.51 511.07 142.23 622.50 81.68 1018.04 129.34
23 674.60 102.79 528.73 139.95 656.26 87.64 1080.92 139.95
24 679.37 121.17 533.91 148.33 654.28 76.48 1068.37 139.65
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Table A3. Cooling load parameters (mean and standard deviation) on four different days.

Hour
20 March 21 June 22 September 21 December

µc σc µc σc µc σc µc σc
(kWht) (kWht) (kWht) (kWht) (kWht) (kWht) (kWht) (kWht)

1 257.61 210.82 280.32 96.75 141.85 109.30 2.11 4.25
2 202.13 150.68 265.69 113.81 138.81 111.10 1.40 3.11
3 192.69 234.93 269.10 95.35 155.52 116.62 0.95 1.82
4 195.11 167.76 261.36 88.47 142.87 113.81 0.68 1.90
5 227.84 262.97 249.53 95.69 136.87 107.31 0.85 2.27
6 174.00 180.22 210.45 95.87 127.32 106.06 0.82 2.22
7 173.08 221.68 188.80 92.72 130.49 118.43 0.68 1.78
8 149.32 146.07 194.46 104.96 134.89 119.86 0.41 1.42
9 202.58 270.27 189.14 99.56 146.96 130.81 0.68 2.03

10 212.18 216.60 227.16 107.62 161.56 120.35 0.51 1.73
11 288.54 248.76 281.14 109.30 211.44 138.68 0.92 1.96
12 298.12 305.31 341.87 210.20 261.47 135.18 0.72 1.85
13 270.16 208.78 372.59 192.94 225.94 172.15 19.27 63.33
14 279.64 219.37 887.00 224.44 343.47 239.39 5.73 20.31
15 332.83 210.79 893.92 181.93 282.54 177.26 2.22 6.23
16 293.93 221.84 370.38 223.22 311.18 273.30 2.32 6.05
17 327.79 262.04 349.64 197.39 272.99 194.18 6.38 9.85
18 323.52 228.54 325.64 231.39 258.33 195.67 4.30 8.34
19 310.84 161.43 359.33 187.46 233.37 114.49 2.35 4.50
20 261.70 138.12 290.11 144.77 210.35 101.01 1.23 2.31
21 296.96 167.39 293.83 121.65 215.06 147.97 3.75 2.60
22 249.67 146.55 262.00 86.49 206.98 186.12 1.36 2.23
23 216.01 161.22 254.58 124.55 155.56 114.35 0.92 1.95
24 203.84 147.97 316.67 163.50 143.28 116.88 1.19 2.10

Table A4. Wind speed parameters (scale and shape) on four different days.

Hour 20 March 21 June 22 September 21 December

δw βw δw βw δw βw δw βw

1 4.06 3.44 3.48 2.68 3.15 4.61 2.52 3.74
2 5.19 3.50 4.24 1.95 2.73 3.85 3.67 1.04
3 3.63 2.90 4.53 1.31 3.30 3.06 2.80 3.06
4 5.71 1.37 4.11 1.67 3.83 2.23 3.01 3.25
5 4.23 1.91 3.94 1.43 3.73 2.99 3.38 1.93
6 4.97 2.91 4.86 2.69 3.77 2.89 3.01 2.07
7 5.37 2.30 4.44 2.37 3.27 2.61 4.16 2.42
8 4.71 2.33 5.71 1.96 3.79 3.12 3.62 2.34
9 5.32 1.82 5.24 2.19 3.22 4.02 5.00 1.64

10 5.44 2.40 4.16 2.15 2.66 2.88 4.19 1.10
11 5.99 1.70 6.26 1.60 2.88 4.63 3.79 0.89
12 6.60 1.45 6.79 3.04 3.17 3.86 4.37 1.70
13 6.76 2.33 7.47 2.61 3.57 2.51 4.19 1.29
14 6.13 2.06 7.05 2.56 3.64 2.71 4.69 1.95
15 5.74 2.57 6.46 2.39 4.23 2.58 3.60 2.36
16 4.58 2.54 6.64 2.35 4.49 2.01 4.85 1.33
17 6.61 1.68 5.56 3.82 4.20 3.96 4.51 1.61
18 5.85 2.51 5.07 3.08 4.02 4.42 4.26 1.06
19 4.94 1.83 5.16 2.40 3.29 3.32 5.61 1.34
20 4.71 1.59 4.59 2.31 3.09 3.52 4.86 0.72
21 6.44 1.14 4.69 1.55 3.60 2.52 5.34 1.30
22 7.59 1.45 5.04 2.02 3.29 2.48 4.84 1.38
23 5.54 1.59 4.73 3.22 3.55 2.15 3.96 1.72
24 5.26 1.18 5.90 1.94 4.63 2.45 4.81 1.54
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Table A5. Wind speed parameters (mean and standard deviation) on four different days.

Hour
20 March 21 June 22 September 21 December

µw σw µw σw µw σw µw σw
(m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s)

1 4.19 1.66 3.54 2.15 2.45 1.43 2.48 1.53
2 4.11 2.00 3.65 1.10 2.35 1.18 2.05 2.02
3 3.89 1.63 4.37 2.74 3.27 1.17 2.77 1.69
4 3.75 1.84 2.92 2.35 2.87 1.84 2.73 1.83
5 3.54 1.87 3.32 2.00 3.44 1.50 2.44 1.78
6 4.46 1.59 4.02 1.88 3.10 1.64 2.50 1.59
7 4.22 1.45 3.57 1.85 2.88 1.31 2.89 2.17
8 3.85 1.52 3.78 2.31 3.75 1.18 3.13 2.16
9 4.40 2.32 4.14 2.00 3.30 1.39 2.89 2.72
10 4.51 2.87 4.47 2.30 2.74 1.67 2.87 2.06
11 4.98 3.05 4.44 2.57 2.82 1.17 2.87 2.37
12 4.99 3.87 5.60 1.79 3.17 1.64 3.68 2.61
13 5.60 2.90 5.96 2.44 3.45 1.53 3.61 2.70
14 5.39 1.93 5.57 1.73 3.48 1.30 4.09 2.29
15 4.41 1.45 5.23 1.97 3.85 1.35 3.95 2.48
16 4.77 2.28 5.88 2.65 4.01 1.35 3.65 1.91
17 4.81 1.78 4.59 1.03 3.81 0.94 3.19 1.96
18 4.36 1.62 4.30 1.30 3.29 1.14 2.68 1.89
19 4.33 2.48 3.43 1.50 2.55 0.96 1.83 2.17
20 4.19 2.51 3.20 1.80 2.21 1.06 1.92 2.02
21 3.36 2.89 2.82 1.61 2.95 1.28 2.29 2.28
22 3.61 3.18 3.99 1.31 3.19 1.19 2.06 2.04
23 3.97 2.36 3.95 1.13 3.27 1.47 2.48 1.55
24 3.63 2.54 3.99 2.41 3.60 1.55 2.75 1.94

Table A6. Solar global horizontal irradiation parameters (mean and standard deviation) on
four different days.

Hour
20 March 21 June 22 September 21 December

µs σs µs σs µs σs µs σs
(W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (W/m2)

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.33 0.82 0.00 0.00 0.00 0.00
6 0.00 0.00 114.67 112.13 0.00 0.00 0.00 0.00
7 4.87 12.76 268.80 233.49 158.40 74.93 0.00 0.00
8 242.93 226.92 442.73 283.06 494.20 201.54 0.20 0.56
9 327.73 317.12 529.40 320.47 610.40 279.02 59.40 67.32

10 409.20 334.32 594.27 331.27 731.53 260.48 132.87 164.46
11 469.47 359.90 564.60 388.64 732.73 307.62 281.80 240.79
12 501.67 400.60 593.13 338.30 749.80 325.33 298.80 270.75
13 489.47 416.97 604.87 295.30 763.87 269.62 266.47 263.38
14 509.87 390.06 523.07 383.02 764.80 236.39 245.07 261.49
15 430.53 355.43 447.47 367.61 697.60 307.82 221.47 243.97
16 403.33 363.25 423.87 366.08 696.53 238.74 155.53 175.07
17 422.20 309.26 383.60 327.20 595.60 229.72 16.60 48.49
18 280.13 213.92 365.40 269.74 476.07 125.82 0.07 0.26
19 70.07 54.09 243.80 230.65 26.27 30.89 0.00 0.00
20 0.00 0.00 28.80 51.32 0.00 0.00 0.00 0.00
21 0.00 0.00 0.33 0.90 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix B

The capital costs of different energy systems are shown in Table A7. The annualized capital costs
are calculated based on the following equation:

Cann = CRF · CNPC, (A1)

where Cann is the annualized capital costs, CNPC is the net present capital cost, and CRF is the capital
recovery factor, which can be calculated as follows:

CRF =
i(1 + i)n

(1 + i)n − 1
, (A2)

where i is the discount rate and n is the project lifetime. The annualized capital costs are calculated
based on a 5% discount rate and the project lifetimes of all systems are assumed to be 30 years.
The annualized capital costs are also shown in Table A7.

Table A7. Capital costs of the proposed DES [37–39].

Energy System Capital Cost

Solar PV $997,200
Wind Turbine $1,500,400
CHP $1,020,000
Battery $30,000
Boiler $17,500

Total Capital Costs $3,565,100

Annualized Capital Costs $231,915
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