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Abstract: Metal oxides are promising potential candidates for thermochemical energy storage in
concentrated solar power plants. In particular, the Cu2O/CuO system is suitable because of its
high energy density, applied temperature interval, and reduced cost compared to the CoO/Co3O4

system. In heterogenous gas-solid reactions, the pressure affects the kinetics significantly. To quantify
this effect for oxidation of Cu2O to CuO, isothermal runs between 800 ◦C and 930 ◦C at different
oxygen partial pressures (0.1, 0.2, 0.5, and 1.0 bar) were conducted with thermogravimetric analysis
(TGA). Defined fractions of CuO samples (1–100 µm) were analyzed with X-ray diffraction (XRD),
Brunauer-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM) analysis. The kinetic
analyses were performed with extended non-parametric kinetics (NPK), which is applied for the first
time to consider the pressure term in the general kinetic equation in addition to the conversion and
the temperature term. The results show how the oxygen partial pressure impacts the kinetics and how
reparameterization of the pressure term affects the kinetic analysis of the oxidation reaction of Cu2O
to CuO. The best conversion model is a two-dimensional Avrami-Erofeev model with an activation
energy of 233 kJ/mol. The kinetic models for conversion, temperature, and pressure presented in this
work provide one of the most important requirements for reactor designs.

Keywords: thermochemical energy storage; partial pressure; kinetics; thermogravimetric analysis;
Cu2O/CuO

1. Introduction

Humanity’s demand for energy is increasing continuously due to population expansion and
massive urbanization. According to the energy outlook of the International Energy Agency (IEA),
fossil fuels will continue to contribute considerably to this energy demand [1], with the increase in
CO2 emissions impacting global warming. For instance, in the European Union (EU), around 40% of
the CO2 emissions are produced in the building sector by direct energy consumption [2]. To reduce
CO2 emissions, it is necessary to shift to renewable sources such as wind and solar energy, which
are available everywhere and are relatively free of cost [3]. For this reason, concentrated solar power
(CSP) has been developed to generate electricity from solar energy. Solar power plants can deliver
energy whenever the sun is available, but the need for energy still exists especially in the winter
season and during the night [4,5]. Therefore, the efficiency of CSP plants should be increased by
storing the excess energy during sunny periods and the summer season. Here, “excess” expresses the
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temporary overprovision of energy due to inelastic energy demand: The collected solar energy cannot
be consumed when the energy is available. Therefore, it is essential to decouple energy production
and consumption, for example, through the use of storage facilities [2].

“Storing energy is a key challenge for the future for efficiency and sustainability of CSP plants” [6].
The surplus energy from CSP plants can be stored through water electrolysis by producing hydrogen
gas and/or by methanation, which can be stored or injected into the gas grid [7–9]. This process,
called power-to-gas (PtG), has been used worldwide and was reviewed by Götz et al. regarding
the various technologies available and their advantages and drawbacks [10]. This storage process
can be used by renewable sources, such as wind and solar energy. However, the efficiency of such
conversion processes must be considered [11]. With the use of thermal energy storage, at least one of
the conversion steps can be omitted (conversion from heat to electrical or mechanical energy).

Thermal energy storage is divided into sensible, latent, and thermochemical heat storage.
Thermochemical energy storage is a promising concept due to its high energy density and zero
energy loss [12–14]. Reversible reactions are used for the thermochemical energy storage system [15].
The exothermic reaction is used to release heat, and the endothermic (back) reaction is used to store
heat. Thus, this system needs suitable materials for operation. Wang et al. investigated the use of
sixteen different chemicals in CSP plants and suggested different metal oxides (Fe2O3, BaO, Co3O4,
Mn2O3, and CuO) suitable for thermochemical energy storage [16,17]. The equilibrium temperatures
range from about 350 ◦C to about 1100 ◦C, which means these metal oxides are suitable for improving
the efficiency of CSP plants due to the high efficiency of CSPs at high operating temperatures [18,19].

Screening suitable materials at high temperature for thermochemical energy storage (TCES) has
been the focus of many research groups [19–21]. Metal oxide systems are favored due to their high
operating temperature ranges, high reaction enthalpies, longer storage periods at ambient temperature,
and utilization of air not only as a reactant but also as a heat transfer medium [20–24]. Dizaji et al.
and Wu et al. classified the redox metal oxides into two categories: Pure redox oxides and mixed
redox systems [22,23]. They reviewed the advantages and disadvantages from various perspectives,
such as energy density, reversibility of the reactions, kinetics, economics, and reactor types. In general,
pure redox oxides have some drawbacks, such as low cycle stability, low kinetics, and sintering effects,
which researchers have attempted to overcome by doping with other metal oxides [25–30].

The metal redox oxides Co3O4/CoO and Cu2O/CuO have been investigated in recent research,
because they possess the highest energy density, 844 and 810 kJ/kg, respectively. However, Cu2O/CuO
have several unresolved challenges regarding application in TCES for this redox system, such as grain
growth after thermal cycling, the close reduction temperature of CuO to the Cu2O melting point of
1235 ◦C, and a decrease in the conversion rate with O2 after the very low number of redox cycles
reported by various authors [22,23,31–33]. However, the economic aspect and non-toxicity compared to
Co3O4/CoO make the redox system Cu2O/CuO interesting for utilization as a thermochemical energy
storage material [6,33]. Figure 1 illustrates thermochemical energy storage for a Cu2O/CuO system.
CuO is reduced to Cu2O by an excess of thermal energy from CSP, and the stored energy in Cu2O is
released by an exothermic reaction with oxygen.

Equation (1) presents the reversible chemical reaction of Cu2O/CuO system with energy content
and equilibrium temperature at oxygen partial pressure of 0.21 bar.

2Cu2O (s) + O2 (g) � 4CuO (s) + ∆H,
∆H = 810 kJ/kg, Teq = 1020 ◦C at p(O2) = 0.21 bar.

(1)
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The kinetics of the Cu2O/CuO system are essential for the reactor design and the operating
parameters on a large scale [6]. CuO is used in the field of the chemical looping combustion as a
copper-based oxygen carrier. Thus, various authors have reported investigating the kinetics of the
reduction of CuO to Cu2O and the oxidation of Cu2O to CuO with different support materials, such as
aluminum oxide, zirconium oxide, and titanium oxide [34–37]. Implementation of the those kinetics
investigations in thermochemical energy storage would not be possible due to the impact of support
materials on the kinetics of Cu2O/CuO, which should be studied separately. In thermochemical
energy storage, the kinetics of the reduction of CuO to Cu2O was reported by Deutsch et al. [33]
in simultaneous thermal analysis (STA) and in a fixed-bed reactor. They indicated cycle stability of
Cu2O/CuO system up to 20 cycles at 950 ◦C and at an oxygen partial pressure of 0.21 bar for the
oxidation reactions, reduction was carried out in a nitrogen atmosphere. However, they did not study
the impact of the oxygen partial pressure on the kinetics.

Therefore, to identify the impact of the oxygen partial pressure term on the general kinetic
equation, which is usually neglected or is assumed to be constant at a constant oxygen partial pressure,
this work investigates the oxidation reaction of Cu2O to CuO. The reaction rate expression commonly
consists of three terms: The temperature term k(T), the reaction model f (α), and the pressure term
h(P). For k(T), the Arrhenius equation is normally used in solid state reactions. The model term f (α) is
different from reaction to reaction based on the different mechanism of each reaction. The equation
below presents the general kinetic equation:

dα/dt = k(T) f (α)h(P) (2)

To identify the pressure term h(P) in a general kinetic equation, isothermal runs were performed
at 930 ◦C, 870 ◦C, 830 ◦C, and 800 ◦C for oxygen partial pressure variations (0.1, 0.2, 0.5, and 1.0 bar)
with STA. The mass signals resulting from the STA experiments were used to evaluate the conversions
(α) based on the following equation:

α =
mi − m(t)
mi − m∞

(3)

where mi is the initial mass, m(t) is the mass at time t, and m∞ is the mass at the end of the reaction.
Non-parametric kinetics (NPK) was used to evaluate the kinetic data and the effect of the oxygen
partial pressure on the oxidation kinetics of Cu2O to CuO.

The NPK method is one of the more recent methods for modeling gas-solid reactions. It is based on
the observation that the discretization of the general kinetic equation results in a rank-1 matrix, when
only the f (α) and k(T) terms are considered. To derive the kinetic model from experimental data,
the values are arranged in a matrix, and rank-1 approximation methods are used to separate the
contribution of each variable.
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Model fitting can then be performed independently for each term of the general kinetic equation,
which is generally easier and less prone to error than direct model fitting. The main advantage of the
NPK method is that it can derive kinetic models from any combination of experiments without any
additional a priori assumptions.

The NPK method was originally developed by Serra et al. [38–40] and later extended by various
authors [41–44]. The method for evaluating the kinetics for this work is based on the NPK method
extended by Birkelbach et al. [45]. This NPK method allows the derivation of kinetic models in more
than two variables. With this method, we can also model the pressure dependence of the reaction.

2. Materials and Method

CuO from Merkur Emsure was sieved after grinding using a Retsch planetary ball mill PM 100.
According to the investigation of Sahir et al. [46], the oxidation kinetics of copper is in the chemically
controlled regimes, in particles ranging between 100 µm and 300 µm up to 800 ◦C, while reactions of
particles ranging in size from 800 µm to 1000 µm were affected by mass transfer. Therefore, the particles
selected for this kinetic study ranged in size from 1 µm to 100 µm.

Following the recommendations of the International Confederation for Thermal Analysis and
Calorimetry (ICTAC) [47,48], the sample mass of CuO for the STA experiments in this work was
reduced significantly to minimize the transport effects on the kinetic measurements.

2.1. Particle Size Distribution (PSD)

A certain fraction after sieving was analyzed using a Mastersizer 2000 by Malvern Panalytical.
A dispersion module with water as the dispersing fluid was used, and the measured interval was
between 0.020 and 2000 µm.

2.2. X-ray Diffraction (XRD)

X-ray analysis was performed at the X-ray center at the TU Wien. A PANalytical X’Pert
diffractometer (Panalytical, Malvern, UK) in Bragg-Brentano geometry was used. Radiation was
generated by Cu Kϕ1,2, and an X’Cleleraor linear detector with a Ni filter was in action. The sample was
spun with back loading zero background sample holders and 2θ = 5–90◦ at 25 ◦C. The diffractograms
were evaluated with the PANalytical program suite HighScorePlus, version 3.0d. A Background
correction and a Kα2 strip were performed” [33].

2.3. Brunauer-Emmett-Teller (BET) Analysis

The physisorption measurement was executed by ASAP 2020 (Micromeritics GmbH, Aachen,
Germany). To eliminate the adsorbed gases and moisture from the sample, the sample was heated
up to 120 ◦C under vacuum for several hours.

2.4. Simultaneous Thermal Analysis

For the kinetic measurements, a Netzsch STA 449 Jupiter instrument (Erich Netzsch GmbH & Co.
Holding KG, Germany) with a TGA-DSC sample holder were used. The oven temperature range of
the instrument was between 25 ◦C and 1250 ◦C, which was regulated by an S-Type thermocouple.
The gas flow rates of oxygen and nitrogen were controlled using red-y smart Voegtlin. Aluminum
oxide crucibles without lids were used for all experiments. The inert gas nitrogen with a flow rate of
100 ml/min was adjusted for each experimental run. Before each experiment was started, the sample
in the reactor was flowed by nitrogen (99.999 % [v/v]) for a minimum of 30 min to remove oxygen
from the reactor [47,48].



Energies 2019, 12, 508 5 of 15

2.5. Scanning Electron Microscopy

The scanning electron microscopy (SEM) analysis was performed before and after the thermal
treatment with FEI Quanta 200 FEG SEM (FEI, USA), which is equipped with a Schottky emitter in
the operating range of 200 V to 30 KV with an Everhart-Thornley Detector for secondary electrons
in action.

3. Results and Discussion

3.1. Material Analysis

The X-ray diffractometer indicated a purity of 99.8% for the CuO sample, and the BET analysis
results for the CuO sample represented a surface area of 1.3 m2/g. The PSD result in Figure 2 illustrates
a bimodal distribution of CuO between 1 and 100 µm with two local maxima at 5 µm (7%) and
34 µm (4%).
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3.2. Equilibrium Curve and Concept of Measurements

First, to prove whether the equilibrium oxygen pressure for the Cu2O/CuO system derived from
the thermodynamic data from the HSC software [49] agrees with the experimental data, CuO was
reduced under six different oxygen partial pressures (0.01, 0.3, 0.5, 0.1, 0.15, and 0.2 bar). In Figure 3,
the points indicate the measured temperatures and pressures at which CuO was reduced to Cu2O.
The line is a generated equilibrium oxygen pressure curve from the thermodynamic data resulting from
the HSC database [49]. As illustrated in Figure 3, the experimental data are in very good agreement
with the theoretical data.
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respectively. Using the energy calibration, the specific energy storage densities can be calculated, 
which are given in Table 1. It was found that despite the visible change (the DSC peak shape and 
magnitude in Figure 6) in the reaction rate with the oxygen partial pressure for the oxidation steps 
the integrated peak area remained constant (within the experimental error) at about 1400–1650 µVs, 

Figure 4. Representation of the operating conditions for the measurements relative to the equilibrium
curve for the reaction system: Four temperature levels (800, 830, 870, 930 ◦C) and four partial oxygen
partial pressures (0 bar for reduction, 0.1, 0.2, 0.5 and 1 bar for oxidation) at each temperature have
been selected for the experiments.

Figure 5 illustrates an isothermal run for the oxidation of Cu2O at 800 ◦C in the STA experiment.
The mass signal is represented in green and the temperature profile as a dashed line in red.

The initial material was CuO and was reduced at higher temperatures to Cu2O by decreasing the
mass by 10.25%. The oxidation of Cu2O to CuO was performed at oxygen partial pressures of 1.0, 0.5,
0.2, and 0.1 bar. At each temperature level, a new sample was used in the STA for four consecutive
reduction/oxidation cycles. The conversions were between 94 and 100 wt%.
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Figure 5. Experimental run for oxidation and reduction of Cu2O and CuO, respectively, at 800 ◦C and
different oxygen partial pressures in the simultaneous thermal analysis (STA).

Comparable results were also obtained at other temperatures, for example, 930 ◦C, once again
with the same sample subjected to multiple oxidation/reduction steps. The differential scanning
calorimetry (DSC) results are presented in Figure 6. The area indicates the relative reaction enthalpy
for the reduction (endothermic, positive peaks) and the oxidation (exothermic, negative peaks),
respectively. Using the energy calibration, the specific energy storage densities can be calculated,
which are given in Table 1. It was found that despite the visible change (the DSC peak shape and
magnitude in Figure 6) in the reaction rate with the oxygen partial pressure for the oxidation steps the



Energies 2019, 12, 508 7 of 15

integrated peak area remained constant (within the experimental error) at about 1400–1650 µVs, which
is equivalent to an energy storage density of approximately 510–600 kJ/kg of CuO. The peak areas for
the reduction steps (always using N2) resulted in 1450 µVs and 520 kJ/kg, respectively, which agrees
reasonably well with the results for the oxidation reaction.
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Table 1. Specific energy content in kJ/kg of the reduction (charge) and oxidation (discharging) steps of
the Cu2O/CuO system for each cycle at 930 ◦C.

Energy Content in kJ/kg 1. Cycle 2. Cycle 3. Cycle 4. Cycle

Charging (Reduction, N2 atmosphere) 525 522 521 523
Discharging (Oxidation) 601 539 508 505
pO2 (bar) 1.0 0.5 0.2 0.1

There is a significant deviation between theoretical (810 kJ/kg) and experimental (505–601 kJ/kg)
specific energy content of the material, despite the up to 100 % conversion measured by TGA—this
might result from using open TGA/DSC crucibles for the measurements (energy losses to gas stream).
However, this does not influence the relative comparison of the values with regard to cycle stability
and has also no effects on the kinetics evaluations.

3.3. Impact of Mass on Kinetic Measurements

To our knowledge, the impact of the sample mass on the kinetics of the Cu2O/CuO system has not
been investigated. ICTAC [47,48] recommends 1 mg mass loss for kinetic studies, which means 10 mg
in the case of copper oxide. However, to find the impact of the mass on the kinetic measurements,
the conversion curve of four different masses (50.0, 10.0, 8.27, and 2.20 mg) was evaluated. Figure 7
illustrates the comparison of the conversions and the conversion rates vs. time for the oxidation of
Cu2O at an oxygen partial pressure of 0.1 bar and at 930 ◦C. It can be seen that the trend of the
conversion curve of the sample with a mass of 50 mg is more influenced by the heat and mass transfer
compared to the other masses. The conversion curve of the mass with 8.27 mg and 2.20 mg copper
oxide shows a similar trend until the 0.8 conversion. Therefore, a mass of 8.29 ± 0.60 mg was selected
for the kinetic study of this work. To minimize the temperature gradient, the sample was distributed
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on the bottom of the crucible thus that the height of the sample for each experiment was several
hundred micrometers [47,48].
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3.4. Evaluation of the Kinetics

Figure 8 illustrates the conversions and the conversion rates at the temperature levels 800 ◦C and
830 ◦C. It can be observed that the increase in the oxygen partial pressure increases the reaction rate
and reduces the time required for full conversion. The same behavior of the impact of the pressure was
observed at 870 ◦C and 930 ◦C. Figure 8 shows that a temperature increase of 30 ◦C from 800 ◦C to 830
◦C significantly impacts the conversion rate of the oxidation kinetics by a factor of five. This means
that the same conversion of oxidation can be reached around five times faster at 830 ◦C than at 800 ◦C
at the same partial pressure. Therefore, the time axis in Figure 8 has been adjusted accordingly.
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Figure 9 shows all measurements in a diagram with conversion, temperature, and pressure axes.
Figure 9 illustrates the conversion at four temperature levels and four pressure levels of all measured
data. The colors are related to the conversion rates. The brighter the color, the higher the reaction rates.
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Figure 9. All measured data in conversion, temperature, and pressure (ctp) diagram.

Figure 10 shows the conversion term and the pressure term at each experimented temperature
level. The points are the experimental data with error bars, which relate to the standard deviation. Due
to the non-prior model estimation by NPK, the trend of each model determined should be fitted to the
known models (nucleation, diffusion, order-based, and geometric contraction models). Some models
are represented in Table 2.

The best fitted models with the largest regression coefficient are the A2 and A5 models.
Avrami-Erofeev (A2, A3, A4, and A5) models are nucleation models with different nucleation types
and crystal dimensionality [50,51]. Nucleation models are normally used to describe many solid-state
reactions, such as crystallization crystallographic transition, decomposition, adsorption, hydration,
and desolvation [50–63]. Due to the existence of impurities, cracks, edges, dislocations, and defect
points in each of the crystals, the activation energy is minimized on these sites [54,61,62]. These reactive
sites are called nucleation sites [54,61,62], which attain high reactivity, and on these sites, a new phase
(CuO) can start to form in the lattice of Cu2O.
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Table 2. Some models of solid-state reactions for conversion dependence [48,60,61].

Model ID Type f(α)

A1 Avrami-Erofeev 4(1 − α)[−ln(1 − α)]3/4

A2 Avrami-Erofeev 2(1 − α)[−ln(1 − α)]1/2

A3 Avrami-Erofeev 3(1 − α)[−ln(1 − α)]2/3

A4 Avrami-Erofeev 4(1 − α)[−ln(1 − α)]3/4

A5 Avrami-Erofeev 3/2(1 − α)[−ln(1 − α)]1/3

B1 Prout-Tompkins α(1 − α)

R2 Contracting area 2(1 − α)1/2

R3 Contracting volume 3(1 − α)2/3

R4 Interface 3/2(1 − α)1/3

D1 1-D diffusion 1/(2α)
D2 2-D diffusion −[1/ln(1 − α)]

D3 3-D diffusion-Jander [3(1 − α)2/3]/[2(1 − (1 − α)1/3)]
F0/R1 Zero-order 1

F1 First-order (1 − α)
F2 Second-order (1 − α)2

F3 Third-order (1 − α)3

Two-dimensional nucleation according to the Avrami-Erofeev model (A2) showed a better fit
than the other nucleation models. The pressure trend is also illustrated in Figure 11, which proves
that an increase in the oxygen partial pressure leads to an increase in the pressure term in the general
kinetic equation.
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Figure 11. Model generated from all data measured with the NPK method and the best models fitted
(A2 and A5) to the experimental data, temperature, and pressure dependences.

Figure 11 exhibits the model term, temperature term, and pressure term by considering all kinetic
data presented by using the NPK method. The A2 model is the best fitted model with the highest
regression coefficient (R2 = 0.89) and an activation energy of 76.7 kJ/mol. It can be seen that the model
and pressure trends are the same as the previously evaluated models and pressures at each temperature
level (see Figure 11). However, the temperature trend does not match the exponential trend of the
Arrhenius equation. Unusual Arrhenius trends at high temperatures were observed and reported by
Kyaw et al. [64] in their study “Carbonation of CaO for High Temperature Thermal Energy Storage”
and by Schaube et al. [65] for the CaO/Ca(OH)2 system at high H2O partial pressures. Deutsch et al.
found a negative activation energy for the CuO/Cu2O system in STA experiments [33].
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Distance to the equilibrium was not considered for the kinetic evaluation presented above.
To consider the pressure influence on the kinetic evaluation, the pressure parameter was reparametrized
to (1−P/P*)n for considering the distance of the equilibrium curve in the general kinetic equation.
The result of this reparameterization (Figure 12) shows close temperature dependence to the weighted
Arrhenius equation. The pressure term indicates the distance to the equilibrium oxygen partial
pressure and consequently, its impact on the kinetics. The influence of the pressure term on the kinetics
decreases if the oxygen partial pressure P, adjusted for the reaction, is close to the equilibrium oxygen
partial pressure P* (Sections 3 and 3.2; see Figure 3), which moves the Equation (1)−P/P* toward zero.

After reparameterization, the model stays the same (A2) with a regression coefficient of R2 = 0.87,
an activation energy of 233 kJ/mol, and a frequency factor of 5 × 109 1/s. The general kinetic equation
for the oxidation kinetics of Cu2O to CuO in the temperature range between 800 ◦C and 930 ◦C by
variation in the oxygen partial pressures (0.1, 0.2, 0.5, and 1.0 bar) can be written as follows:

dα/dt = 5 × 109 × e(−233000/RT) × 2(1 − α)[− ln(1 − α)]1/2 × a(1 − P/P∗)0.658. (4)
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Figure 12. Reparameterization of pressure for considering the distance to the equilibrium curve in the
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The trend of the conversion model of the experimental data in all kinetic evaluations indicated
different behavior from the Avrami-Erofeev models at the end of the reactions (α = 0.7–0.8), which led to
a reduction in the model regression coefficient. This observation could be the result of changing the
mechanism of the reaction at the end of Cu2O oxidation, due to the formation of the CuO layer around
the Cu2O core [66,67] that leads to limitations in oxygen transfer to the reactive Cu2O. However,
this issue should be studied separately.

4. Scanning Electron Microscopy

Figure 13 shows the CuO particles before and after the experimental run by STA. Pure CuO
particles are visible, but after the STA runs, the particles do not exist due to agglomeration and
the sintering effect, which created an area of CuO with cavities. The sintering effect of CuO is a
disadvantage, which results in material aging and a negative impact on cycle stability in the long term.
The same results were reported by Deutsch et al. [33] in a fixed-bed reactor and STA, but Alonso et al.
reported better results in a rotary kiln [6].
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5. Conclusions

The investigation of the effect of the sample mass on the oxidation kinetics of Cu2O to CuO shows
that a sample mass of less than 10 mg is required for the kinetic analyses to minimize the transport
effects on the kinetic measurements.

The equilibrium oxygen pressure for the Cu2O/CuO system was tested experimentally, and the
results are in very good agreement with the theoretical equilibrium oxygen pressure generated by the
HSC software [49].

The extended NPK method [45] was used for the first time for this application, which determines
the pressure, conversion, and temperature terms of the oxidation reaction of Cu2O to CuO for its
utilization in thermochemical energy storage. The best conversion model was Avrami-Erofeev’s
two-dimensional nucleation model (A2) with an activation energy of 233 kJ/mol, and a frequency
factor of 5 × 109 1/s. The reparameterization of the pressure term from P to (1−P/P*)n is essential to
take into account the distance from equilibrium in the general kinetic equation.
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