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Abstract: In this article, the critical spontaneous ignition temperature of both hydrocarbon and
alcohol fuel was acquired on a constant volume combustion bomb platform by slowly heating
the inner charges, and then followed by using the CHEMKIN-PRO software to simulate the
auto-ignition-dominated characteristic and parameter sensitivity of the two kinds of fuels. Results
revealed that in different conditions, the critical spontaneous ignition temperature of methanol
changed dramatically, with a maximum temperature of 50 K, while the counterpart temperature of
n-heptane remained an invariable value of 553 K within a large changeable scope of temperature,
and only a maximum temperature of 10 K was observed. The maximum difference of spontaneous
ignition temperature between methanol and n-heptane reached 270 K. At the same time, a minimum
difference of 170 K was obtained as well. The complete reaction of methanol requires 5 steps, involving
6 components and 11 elementary reactions. However, for the comparative part-n-heptane, more than
20 main self-ignition reactions were involved, which indicated that the whole reaction process of
n-heptane has more reaction pathway branches and it was much more complicated compared to
methanol. The differences of the reaction pathways triggered a considerable distinction of critical
self-ignition temperature between the two charges, making a “step-by-step” spontaneous ignition
combustion mode possible. In this way, a further high-efficient and clean combustion can be available
to cater to much more stringent emission regulations in the future.

Keywords: reaction pathway; influence parameter; critical spontaneous ignition temperature;
automotive diesel engine

1. Introduction

The widespread use of internal combustion engines has brought a lot of convenience to our lives
but also caused tremendous pressure on energy and the environment. The consumption of fossil energy
has caused serious pollution to the environment, and the shortage of nonrenewable resources has also
brought about a huge crisis. Energy saving and emission reduction have become the main direction
of internal combustion engine research. Given the highly-developed pursuit of energy conservation
and emission reduction worldwide [1], a new combustion mode with high efficiency and cleanness
based on reaction-controlled homogeneous gas mixture cascade combustion has been put forward
by our study group. In this mode, the combustion process of several pure fuels, among which
the cetane number/spontaneous combustion performance differs vastly, are dominated by the
self-combustion/compression combustion characteristic and chemical atmosphere [2]. Differences
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in the spontaneous ignition performance make a step-by-step combustion realizable. The “critical
spontaneous ignition boundary” is used to stabilize the combustion, and the “step-by-step” exothermic
characteristic is used to control the rough degree of combustion and the load expansion simultaneously.
The critical element ensuring a “step-by-step” spontaneous ignition lies in that the spontaneous ignition
boundary of the fuels has an adequate threshold value, i.e., in the circumstance where the forestage
combustion cannot reach the self-ignition point of its composition, some extra energy (compression or
heating) should be added. In this paper, through the study of the combustion boundary conditions
of hydrocarbon fuel and alcohol fuel with large cetane number difference along with the analysis of
subsequent reaction path, it is concluded that the difference in the spontaneous ignition temperature
between hydrocarbon fuel and alcohol fuel is quite large, and the reason for this phenomenon was
explained from the perspective of the reaction mechanism using CHEMKIN software (4.1, Reaction
Design, San Diego, CA, USA).

In-depth study of the formation, transformation, and extinction of key harmful substances
in the fuel combustion process under different boundary combinations and clarification of the
sensitive boundaries of various harmful substances provide an important reference for the selection of
strategies and methods for the realization of cascade spontaneous combustion and accurately use the
thermochemical atmosphere in the cylinder. To achieve cascade combustion, we must first study the
self-ignition/step spontaneous ignition specificity of the reaction control homogeneous mixture; that is,
from the perspective of the chemical reaction kinetics of fuel, the reaction history of fuel is studied.

There have been many studies on the chemical reaction kinetics of fuel combustion in recent years.
Jilin University studied the mechanism of the methanol combustion process in detail and introduced
the molecular collision theory, ignition mechanism, and thermal spontaneous combustion theory in
chemical reaction kinetics. Fieweger et al. [3] studied the self-ignition characteristics of several fuels,
including stoichiometric methanol/air mixtures at pressures of 13 and 40 bar and temperatures of
approximately 800–1200 K. Ultan Burke et al. [4] measured new ignition delay times for methanol in a
shock tube (ST) and a rapid compression machine (RCM). The newly measured experimental data were
used to develop a new, detailed chemical kinetic model. Noorani et al. [5] studied the high temperature
ignition of C1–C4 primary alcohols, methanol, ethanol, n-propanol, and n-butanol at 2, 10, and 1212
kPa. The ignition delay times of methanol are comparable with those of the other alcohols but show a
slightly lower activation energy than the other fuels. V. Aranda et al. [6] studied a detailed chemical
kinetic model for oxidation of CH3OH at high pressure and intermediate temperatures were developed
and validated experimentally. J.M. Smith et al. [7] studied ignition delay times for the oxidation of four
isomers—n-heptane, 2,2-dimethylpentane, 2,3-dimethylpentane, and 2,2,3-trimethylbutane—under
stoichiometric conditions at a reflected shock pressure of 202 kPa. Shucheng Xu et al. [8] investigated
kinetics and mechanisms for reactions of OH with methanol and ethanol at the CCSD (Coupled
Cluster with Singles and Doubles) (T)/6-311 + G(3df, 2p)//MP2/6-311 + G(3df, 2p) level of theory.
X. Lu et al. [9] studied ignition timing in the homogeneous charge compression ignition (HCCI) of
n-heptane by port injection of reaction inhibitors and obtained chemical mechanistic information
relevant to the ignition behavior. In this paper, we focus on the chemical reaction mechanism of
methanol and n-heptane in CHEMKIN and find the cause of the macroscopic spontaneous ignition
temperature difference and provide a theoretical basis for the possibility of achieving the cascade
spontaneous combustion mode.

2. Experimental Methods and Results

The alcohol and hydrocarbon fuels were slowly heated to spontaneous ignition on a
constant-volume combustion bomb experimental platform. Taking the steep change of pressure as the
main criterion and using the temperature rise as the reference criterion, the critical spontaneous ignition
temperature of various fuels under different boundary combinations was determined. There are
three experimental methods for each test fuel: Air constant, fuel constant and stoichiometric ratio.
The experimental platform is shown in Figure 1 [10]. The main instruments and equipment of the
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experiment are shown in Table 1. Here, we take methanol as an example and the specific parameters
are shown in Tables 1–4.
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Figure 1. Constant volume bomb system.

Table 1. The main equipment of the experiment.

Apparatus Manufacturer Type

Temperature transducer MingYang (Tianjin, China ) WRNK-191
Pressure transducer Kistler (Winterthur, Switzerland) KISTLER6125B

Temperature transmitter PARAGON (Forestville, CA, USA) PA-15-4-1 (K)
Charge amplifier Kistler (Winterthur, Switzerland) 5051A

Electrical control unit Freescale (Austin, TX, USA) MC9S12XEP100MAL
USB DAM-C3110 (Beijing, China) USB-CAN

Multi-function data USB HengRuiFeng (Suzhou, China) USB2.0

Table 2. Methanol equivalent ratio test data.

Intake
Pressure (psi)

Intake
Pressure (kPa)

Temperature
(K)

Air Amount
(mol)

Equivalent
Ratio Fuel (mol)

240 1655 473 0.427 1 0.0596
220 1517 473 0.391 1 0.0546
200 1379 473 0.356 1 0.0497
180 1241 473 0.320 1 0.0447
160 1103 473 0.284 1 0.0397
140 965 473 0.249 1 0.0348
120 827 473 0.213 1 0.0298
100 689 473 0.178 1 0.0248
80 552 473 0.142 1 0.0199
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Table 3. Methanol air amount constant test data.

Intake
Pressure (psi)

Intake
Pressure (kPa)

Temperature
(K)

Air Amount
(mol)

Equivalent
Ratio Fuel (mol)

200 1379 473 0.356 2.0 0.0993
200 1379 473 0.356 1.8 0.0894
200 1379 473 0.356 1.6 0.0795
200 1379 473 0.356 1.4 0.0695
200 1379 473 0.356 1.2 0.0596
200 1379 473 0.356 1.0 0.0497
200 1379 473 0.356 0.8 0.0397
200 1379 473 0.356 0.6 0.0298
200 1379 473 0.356 0.4 0.0199

Table 4. Methanol constant fuel test data.

Intake
Pressure (psi)

Intake
Pressure (kPa)

Temperature
(K)

Air Amount
(mol)

Equivalent
Ratio Fuel (mol)

100.00 689.48 473 0.178 2.0 0.0497
111.1.1 766.08 473 0.198 1.8 0.0497
125.00 861.84 473 0.222 1.6 0.0497
142.86 984.97 473 0.254 1.4 0.0497
166.67 1149.13 473 0.296 1.2 0.0497
200.00 1378.95 473 0.356 1.0 0.0497

250 1723.69 473 0.444 0.8 0.0497
333.33 2298.25 473 0.593 0.6 0.0497
500.00 3447.38 473 0.889 0.4 0.0497

The relationship between the critical spontaneous ignition temperature and equivalence ratio
of fuel under a constant amount of fuel as well as air volume and the relationship between critical
spontaneous ignition temperature and inlet pressure of several fuels at stoichiometric ratio are shown
in Figures 2 and 3.
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Figure 2. The relationship between equivalence ratio and spontaneous ignition temperature at 1379 
kPa, 473 K. 
Figure 2. The relationship between equivalence ratio and spontaneous ignition temperature at 1379 kPa,
473 K.
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According to Figures 2 and 3, in the same equivalence ratio, the spontaneous ignition temperature
of alcohol fuel changed rapidly, with a maximum variation of 50 K under a constant amount of air and
fuel in the condition of 1379 kPa and 473 K. The spontaneous ignition temperature of Hydrocarbon
fuel remained an invariable value of 553 K within a large changeable scope of temperature, and only a
maximum temperature of 10 K was observed. The difference of the spontaneous ignition temperature
between methanol and n-heptane can reach 270 K. The spontaneous ignition temperature of alcohol
fuels is more sensitive to the change of external conditions than that of hydrocarbon fuels.

In order to explain the difference between the spontaneous ignition temperature of alcohol fuel
and hydrocarbon fuel and their sensitivity to the change of external conditions, the chemical reaction
mechanism is inferred as follows [11,12].

Fuel combustion is composed of a series of chemical reactions. The combustion of alcohol fuels
always has some specific reactions, which are called leading reactions, and the reaction path of alcohol
fuels is relatively single. When the external condition of equivalent ratio or inlet pressure is changed,
there will be a great influence on the critical spontaneous combustion temperature of fuel [13].

Hydrocarbon fuel reactions are more complex [14]. The reaction is carried out by many major
reactions. When the external conditions change, the internal main reactions rise and fall. There is
always a new major reaction to promote ignition or to suppress ignition [15], so the spontaneous
ignition temperature of hydrocarbon fuels shows insensitive characteristics to the outside.

3. Establishment of Simulation Model and Selection of Mechanism

From the experiment results, we can see the great difference of spontaneous combustion
temperature between alcohol fuel and hydrocarbon fuel, especially methanol and n-heptane. This is in
line with the conditions of our proposed new combustion mode, one of which is that the cetane
number/spontaneous combustion performance differs vastly, and our group want to study the
possibility of methanol and n-heptane co-combustion. Thus, we chose methanol and n-heptane
to analyze the reaction mechanism so that we can get the detailed reaction and explore the possibility
on the cross-coupling mechanism of critical natural boundary of n-heptane-methanol spontaneous
combustion. In this paper, the detailed oxidation mechanism of n-heptane was provided by the
National key Laboratory of Lawrence Livermore, including 560 components and 2827 elementary
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reactions. The mechanism of methanol was derived from Princeton University, consisting of 21
components and 90 elementary reactions. The mechanism, which has been verified by many authorities,
has an excellent universality using the closed homogeneous batch reactor (4.1, Reaction Design,
San Diego, CA, USA) of CHEMKIN-PRO [16], as shown in Figure 4. The chemical mechanism of
the fuel chemical reaction was introduced to simulate the combustion of methanol and n-heptane
in a constant volume combustion bomb. The boundary conditions involved in the simulation were
consistent with the experimental conditions of the test bench. The combustion chain reaction of
different fuel differs a lot; i.e., the reaction path is different. Based on the production rate of methanol
and n-heptane, the main reaction characteristics of methanol and n-heptane spontaneous combustion
were obtained by drawing the reaction path diagram. Firstly, the temperature and the concentration
curve of important substances were plotted to discover the key substances of the mark ignition, and
then the sensitivity of the substance was analyzed to further investigate the most critical reactions
with large sensitivity coefficients. Meanwhile, the production rate of the substances in the reaction was
analyzed to draw a reaction path diagram of the alcohols fuel and hydrocarbons fuel.
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4. Analysis of Dominant Reaction Characteristics of Methanol Spontaneous Ignition

4.1. Determination of Methanol Ignition Markers

It can be seen from Figure 5 that a small amount of methanol undergoes a slow oxidation reaction
before combustion occurs, and methanol is consumed in a small amount, accompanied by a small
amount of H2O2 and CH2O. After a delay of about 0.079 s, temperature rises sharply and CO2 starts
to form, and methanol is quickly consumed until the mol fraction becomes zero, accompanied by a
sudden increase of the OH mol fraction and temperature curve. Therefore, OH is used as the symbolic
product of alcohol fuel ignition [17].
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4.2. Sensitivity Analysis Based on OH Group Generation and Consumption

Sensitivity analysis is to study the influence of the system for small disturbances under certain
boundary conditions, that is, to measure the change of system characteristic quantity caused by the
small change of each reaction rate constant in the chemical reaction by the magnitude of sensitivity.
Through sensitivity analysis, it is very convenient and effective to find the reaction that has the greatest
impact on the parameters. In order to make the comparison more convenient, the sensitivity coefficient
of each reaction is standardized, that is, the sensitivity coefficient of each reaction is divided by the
absolute value of the reaction sensitivity coefficient, and the normalization coefficient is obtained.
The OH sensitivity analysis of the methanol ignition moment is shown in Figure 6.

Figure 6 shows the sensitivity analysis of OH group formation and consumption reaction during
methanol oxidation at different temperatures, pressures, and equivalent ratios [18]. The positive
sensitivity coefficient shows that the OH group production and the overall reaction activity increase,
while the sensitivity coefficient is negative. From Figure 6, it can be found that the reactions that affect
OH under different conditions are consistent, and the most influential ones are as follows:

R91:CH3OH + HO2 = CH2OH+H2O2

R89:CH3OH + O2 = CH2OH+HO2

R46:CH2O + HO2 = HCO+H2O2

R20:H2O2 (+M) = 2OH
R19:2HO2 = H2O2 + O2

R18:2HO2 = H2O2 + O2

The reaction with the highest sensitivity coefficient under each condition is R91, and its value
is 1. Although the dominant reaction types are the same at temperatures of 1000 K and 800 K,
the OH sensitivity coefficients are quite different. The hydroxyl sensitivity coefficient of R25 is 1 at
a temperature of 1000 K, but the hydroxyl sensitivity coefficient is almost 0 at 800 K. The hydroxyl
sensitivity coefficient of R20 reaction is −0.4 at 1000 K, while the sensitivity coefficient is +0.8 at 800 K.
At 1000 K, the sensitivity coefficient of the R18.R19 reaction is almost 0, and the sensitivity coefficients
of the R18 and R19 reactions are −0.3 and −0.2, respectively. Changing the temperature has a greater
effect on the hydroxyl sensitivity coefficient of the dominant reaction [19].

From the production rate analysis diagrams of important intermediates of methanol spontaneous
ignition [20] in Figures 7 and 8, it can be seen that methanol is mainly consumed by six reactions,
i.e., R84, R85, R86, R87, R88, and R91, in which CH2OH was formed by the R84, R86, R88, and
R91 reactions, accounting for 71.89%; that is, 71.89% of methanol combustion produced CH2OH,
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and the remaining 28.11% formed CH3O by the reaction of R85 and R87. Both CH2OH and CH3O
produced CH2O, which shows that CH2O is an important intermediate for methanol combustion. The
consumption of CH2O is mainly through the reaction of R42 and R44 to generate HCO, so that the
small molecular substances are further increased. Most of the HCO is converted into CO2 through
reaction to form CO to terminate the reaction chain, and a small part directly generates CO2. The
reaction was terminated.
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Figure 6. Reaction diagram of methanol hydroxyl sensitivity under different conditions. (a) tempature
1000 k; (b) tempature 800 k; (c) pressure: 3861 kPa; (d) pressure: 772 kPa. (e) equivalent ratio 1;
(f) equivalent ratio 0.2.
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Figure 7. Production rate analysis of methanol. (a) CH3OH production rate; (b) CH2OH production
rate; (c) CH3O production rate; (d) CH2Oproduction rate; (e) HCO production rate; (f) CO production
rate; (g) H2 production rate; (h) CO2production rate.
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Figure 8. Reaction path diagram of methanol.

It can be obtained from Figures 6–8 that the methanol oxidation reaction process is relatively
simple, the reaction path is comparatively single, and the spontaneous ignition temperature is
extremely susceptible to external influence. Therefore, the change of external conditions has a great
influence on the ignition of methanol. If only the external conditions are not reached by the energy
barrier of the dominant reaction of methanol, the reaction will not proceed, and the subsequent reaction
is difficult to carry out.

5. Analysis of the Dominant Reaction Characteristics of N-heptane Spontaneous Combustion

5.1. N-Heptane Ignition Marker

Figure 9 shows the variation of main substances, such as OH, HO2, H2O2, CH2O, and NC7H16,
over time during the ignition process. At 983.73 ms, NC7H16 fuel is quickly consumed, but the fuel
heat release is small, and the corresponding temperature curve increases little at this time. At 983.76
ms, the NC7H16 mole fraction decreases to 0. At this time, the OH mole fraction and the temperature
curve increase almost simultaneously, that is, OH consumes a lot of fuel during fuel ignition [21].
At the moment of rapid consumption of NC7H16, the HO2 mole fraction accumulated to the peak,
and HO2 partially remained after the first consumption of NC7H16, and the HO2 mole fraction also
fell back to 0 after the second fuel was completely consumed. Therefore, both OH and HO2 affect the
ignition reaction of n-heptane; in particular, the concentration (molar fraction) of OH and the reaction
rate determine the ignition reaction process of the fuel. It can be concluded that OH can be used as a
marker for the ignition of paraffin fuels [22].
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Figure 9. Mole fraction of major substances and temperature variation with time.

5.2. Sensitivity Analysis Based on OH Group Generation and Consumption

Hydroxyl sensitivity analysis of heptane was also carried out via CHEMKIN software. In this part,
for the purpose of investigating the influence of original temperature to –OH (ignition delay), twenty
representative reactions with great significance were studied at different original temperatures—550 K,
725 K, 900 K, and 1250 K, respectively, with simulation parameters set at a fixed equivalence ratio (its
value equals 1) and an original pressure of 4000 kPa in a homogeneous reactor.

Analyses from Figures 10–13 clearly showed that at different original temperatures, hydroxyl
sensitivity between n-heptane and methanol differed sharply. Compared with methanol, where merely
6 oxidation reactions were involved, n-heptane had more than 20 oxidation reactions. In addition,
the main reaction characteristics of n-heptane promoting ignition at different temperatures varied
greatly. In this process, a trade-off correlativity of all the new reactions might either promote or
hinder the ignition. The reaction of R2233 functioned dominantly and was subsequently followed
by isomerization of the peroxyheptyl group to the peroxyhydroxyalkyl group (R2234, R2228, R2227),
dehydrogenation of the n-heptane and hydroxyl group (R1980, R1981), and decomposition of hydrogen
peroxide ketone to form the hydroxyl group and aldehyde, a ketone small molecule (R1574, R2344,
R2349, R2350, R2355, R2359). At 725 K, the most important reaction to promote ignition becomes
R16, which is the decomposition reaction of hydrogen peroxide. Due to hydrogen, there is less
peroxide at the early low temperature stage and, therefore, it is difficult for decomposition to proceed.
When accumulation occurs at the middle temperature stage, the decomposition reaction occurs. The
initial temperature is in the mid-temperature phase of 900 K. In addition to peroxyalkyl isomerization,
n-heptane, and HO2 or OH dehydrogenation reaction at the low temperature stage, the reaction to
form hydrogen peroxide ketone and hydroxyl group is also increased (R2331, R2337, R2341) [23].
At a high temperature of 1250 K, R16 is no longer the most important reaction to the ignition delay.
After the temperature exceeds 1200 K, the high activation energy barrier of R1:H + O2 = O + OH is
broken down, replacing R16 as the main source of OH, to speed up the reaction process and undertake
the decisive chain branching reaction to promote the fire [24].
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Figure 10. OH sensitivity analysis of N-heptane in the condition of 550 K.
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Figure 11. OH sensitivity analysis of N-heptane in the condition of 725 K.
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Figure 12. OH sensitivity analysis of N-heptane in the condition of 900 K.

 

2 

 

 

 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

R14:H2O2+O2=2HO2
R15:H2O2+O2=2HO2

R16:H2O2(+M)=2OH(+M)
R1980:NC7H16+OH=C7H15-1+H2O

R1985:NC7H16+HO2=C7H15-2+H2O2
R1986:NC7H16+HO2=C7H15-3+H2O2

R2215:C7H15O2-1=C7H14-1+HO2
R2216:C7H15O2-2=C7H14-1+HO2
R2217:C7H15O2-2=C7H14-2+HO2
R2218:C7H15O2-3=C7H14-2+HO2
R2219:C7H15O2-3=C7H14-3+HO2
R2220:C7H15O2-4=C7H14-3+HO2
R2222:C7H15O2-1=C7H14OOH1-3
R2227:C7H15O2-2=C7H14OOH2-4
R2233:C7H15O2-3=C7H14OOH3-5
R2237:C7H15O2-4=C7H14OOH4-2

R2281:C7H14OOH2-4=C7H14O2-4+OH
R2331:C7H14OOH2-4O2=NC7KET24+OH
R2337:C7H14OOH3-5O2=NC7KET35+OH
R2341:C7H14OOH4-2O2=NC7KET42+OH

Standardized sensitivity coefficient

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

R1:H+O2=O+OH
R13:HO2+OH=H2O+O2
R14:H2O2+O2=2HO2

R16:H2O2(+M)=2OH(+M)
R21:H2O2+OH=H2O+HO2

R47:CH2O+HO2=HCO+H2O2
R109:CH3+HO2=CH3O+OH
R110:CH3+HO2=CH4+O2

R151:2CH3(+M)=C2H6(+M)
R184:C2H5+O2=C2H4+HO2
R205:C2H3O1-2=CH2CHO

R230:CH2CHO+O2=CH2O+CO+OH
R251:C2H4+OH=C2H3+H2O
R252:C2H4+CH3=C2H3+CH4
R264:C2H3+O2=C2H2+HO2
R266:C2H3+O2=CH2CHO+O

R499:C3H5-A+HO2=C3H5O+OH
R723:C4H8-1=C3H5-A+CH3

R733:C4H8-1+OH=C4H71-3+H2O
R782:C4H71-3+HO2=C4H7O+OH

Standardized sensitivity coefficient

Figure 13. OH sensitivity analysis of N-heptane in the condition of 1250 K.

Comparing the reaction schemes of n-heptane in Figures 14 and 15, it was found that the reaction
path of n-heptane was very complicated. Due to the complexity of the multistage reaction, the reaction
path map was relatively large and, therefore, a four-stage reaction diagram was drawn. The reaction
path of n-heptane varied when the temperature was changed [25]. As a result of the complexity of
the reaction path, in the circumstance where the external energy was insufficient to break the energy
barrier of a reaction, the reaction proceeded toward the other reaction path, which kept the oxidation
process continuing all the time.
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Figure 15. N-heptane reaction path analysis, temperature 1250 K, pressure 4000 kPa, equivalent ratio 1.

6. Conclusions

In a large temperature range (ϕ = 0.2–2.0, P = 550–4000 kPa), the spontaneous ignition temperature
of n-heptane was always maintained approximately at 553 K and presented no significant sensitivity to
the change of molar concentration of air due to the complexity of the n-heptane reaction pathways and
the dominant reactions [26,27]. Five dominant reaction types, as well as multiple elementary reactions,
were contained in the process of n-heptane oxidation, which suggested that an appropriate ignition
condition was guaranteed due to the accumulation and development of active base pool from other
same type elementary reactions, even in the circumstances where some certain reaction was restrained.

Whereas for the methanol counterpart, its spontaneous ignition temperature varied remarkably
in the experimental conditions (ϕ = 0.2–2.0, P = 550–4000kPa), a maximum temperature variation of 50
K proved that the spontaneous ignition temperature was extraordinarily sensitive to fuel/air molar
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concentration. Based on the sensitivity analysis of OH production and consumption, the conclusion
would be easily drawn that the dominant reactions and active groups in the process of methanol
oxidation were quite simple, with only six elementary reactions included. Therefore, when a certain
chemical reaction was inhibited or the reaction conditions were not reached, the accumulation and
development of the active base pool was difficult to establish, consequently making it hard to achieve
the ignition condition [15,28,29]. In this circumstance, what was needed to ensure a steady ignition
was for extra energy to be added to further improve the temperature of the inner composition.
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