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Abstract: Rockfill dams are among the most complex, significant, and costly infrastructure projects of
great national importance. A key issue in their design is the construction stage and zone optimization.
However, a detailed flow shop construction scheme that considers the opinions of decision makers
cannot be obtained using the current rock-fill dam construction stage and zone optimization methods,
and the robustness and efficiency of existing construction stage and zone optimization approaches
are not sufficient. This research presents a construction stage and zone optimization model based on
a data-driven analytical hierarchy process extended by D numbers (D-AHP) and an enhanced whale
optimization algorithm (EWOA). The flow shop construction scheme is optimized by presenting an
automatic flow shop construction scheme multi-criteria decision making (MCDM) method, which
integrates the data-driven D-AHP with an improved construction simulation of a high rockfill dam
(CSHRD). The EWOA, which uses Levy flight to improve the robustness and efficiency of the whale
optimization algorithm (WOA), is adopted for optimization. This proposed model is implemented
to optimize the construction stages and zones while obtaining a preferable flow shop construction
scheme. The effectiveness and advantages of the model are proven by an example of a large-scale
rockfill dam.

Keywords: rockfill dam; construction stage and zone optimization; flow shop construction; enhanced
whale optimization algorithm (EWOA); D-AHP

1. Introduction

Hydropower is an advantageous option for clean energy. Rockfill dams have become a popular
type of hydropower infrastructure because their raw materials are abundant [1,2]. In recent years,
rockfill dams have grown in size, and their construction time may exceed a decade [3]. Therefore,
the construction process of rockfill dams is divided into several stages to ensure an efficient and
successful construction, while the dam body is divided into several zones for different functions. The
arrangement of time for each stage and the division of zones by height represent the problem of the
rockfill dam construction stage and zone optimization, which is critical in planning the construction
process of rockfill dams. Figure 1 illustrates the work breakdown structure (WBS) of a high core
rockfill dam construction as an example. Each zone is constructed in the sequence of filling layers,
while each filling layer is constructed by means of flow shop. It is beneficial to determine a flow
shop construction scheme derived from every filling layer’s alternative. Traditional design of the
construction stages and zones is mainly based on expert experience of similar engineering [4], lacking
scientific basis. To address this problem, a construction stage and zone optimization model was
proposed in Reference [5]. Particle swarm optimization (PSO) and its enhanced variant, heterogeneous
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particle swarm optimization (HPSO), have been used to solve the optimization model [6–8]. However,
these researches simplified the filling process of rockfill dam construction, resulting in the difficulty of
obtaining the flow shop construction scheme.   
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Figure 1. Work breakdown structure (WBS) of high core rockfill dam construction.  Figure 1. Work breakdown structure (WBS) of high core rockfill dam construction.

Construction simulation of a high rockfill dam is regarded as an ideal tool to help analyze and
plan the dam construction process, due to its advantages of considering the elevation difference
constraints of each zone and the restrictions of time and space. Zhong [3] proposed construction
simulation of a high rockfill dam (CSHRD) based on CYCLONE. The CSHRD mainly considered
the effect of the haulage subsystem and simplified the placement subsystem. Based on the CSHRD,
an improved CSHRD that considers the haulage subsystem and placement subsystem by refining
flow shop construction is developed and applied [9,10]. Du [9] introduced the improved CSHRD
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to analyzed flow shop construction and used a genetic algorithm (GA) to optimize the construction
stages and zones. Although this research obtained a detailed flow shop scheme while construction
stage and zone optimization, a preferable flow shop scheme cannot be selected based on the opinions
of decision makers.

On the basis of different decision indicators obtained from rockfill dam construction simulation,
preferences of decision makers need to be considered to determine the flow shop construction schemes
at different elevations. This is a typical multi-criteria decision-making (MCDM) process. The improved
CSHRD is used to compute different flow shop construction scheme evaluation criteria for each filling
layer. Then, an MCDM approach is needed to identify the criteria and integrate expert assessments,
during which objective data are integrated with subjective judgments. With respect to the construction
scheme design, many MCDM approaches have been used, including the weighted sum method,
the analytical hierarchical process (AHP), the analytic network process (ANP), ESORD and technique
for order performance by similarity to ideal solution (TOPSIS) [11–14]. Shapira and Goldenberg [15]
developed an equipment selection model for construction projects based on the AHP. Lashgari et al. [16]
used fuzzy TOPSIS to establish an MCDM model for equipment selection. Zhong et al. [17] applied
TOPSIS and AHP to determine the best compromise construction scheme. Prascevic and Prascevic [18]
improved the fuzzy AHP based on the eigenvalue and eigenvector approach and applied it to rank
and select alternatives in construction project management. In these cases, alternative solutions
and corresponding decision indicators are countable and limited and can be immediately obtained,
allowing the MCDM approach to be applied directly. However, regarding the decision-making process
of flow shop construction schemes, the number of filling layers is enormous, and the procedure to
obtain decision indicators of solutions is complex. Consequently, both the efficiency of collecting and
aggregating the information and the effectiveness of combining the subjective and objective weights to
evaluate decision alternatives are challenges that need to be addressed. Accordingly, a data-driven
method and the analytical hierarchy process extended by D numbers (D-AHP) [19] are introduced in
this paper. The D-AHP method extends the AHP method with D numbers-based fuzzy preferences [20],
which overcomes the shortcomings of the AHP method that cannot represent and handle the
uncertain objective data. D numbers is a new representation of uncertain information developed
by Deng [21], which overcomes the deficiencies of the Dempster–Shafer evidence theory [22,23]
and contains the exclusiveness hypothesis and completeness constraint. Improving the traditional
AHP and Dempster–Shafer theories, the D-AHP method has been proven effective in various areas,
including the evaluation of the scientific research ability of universities [24], curtain grouting efficiency
assessment [25] and construction management [26]. Therefore, the D-AHP method is used in this
paper to integrate hard data with subjective judgments, which may be uncertain and fuzzy in the
MCDM process for flow shop construction schemes. Moreover, a data-driven method is introduced to
improve the D-AHP. The data-driven method uses simulation results data to generate the D matrix
automatically instead of collecting information according to decision makers’ intuition, which will
improve the efficiency of the MCDM process.

After determining the optimal flow shop construction scheme, construction filling intensity
can be obtained through the improved CSHRD model. Different plans of construction stages and
zones will be assigned different values of filling intensity disequilibrium, which is an important
indicator reflecting resource balance. The minimum of filling intensity disequilibrium is taken as
the objective of construction stage and zone optimization. At present, a number of meta-heuristic
algorithms inspired by phenomena in nature have been presented, such as Cuckoo Search (CS) [27],
Genetic algorithm (GA) [28], Simulated annealing (SA) [29], Ant colony algorithm (ACA) [30],
Bacteria Foraging Optimization Algorithm (BFOA) [31] Harmony Search (HS) [32], Grasshopper
Optimization Algorithm (GOA) [33], Salp Swarm Algorithm (SSA) [34], Particle Swarm Optimization
(PSO) [35], Ant Lion Optimization (ALO) [36], Grey Wolf Optimization (GWO) [37], Enhanced Grey
Wolf Optimization (EGWO) [38], Whale Optimization Algorithm (WOA) [39] and so on. These
meta-heuristic algorithms have played an important role in engineering optimization problems
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due to their minimal requirements for quantities of input parameters and higher computational
efficiency [40–42]. Among them, GA [9,17,43–45], ACA [46] and PSO [47] are usually used in
construction plan optimization. Besides, a smart BFOA is developed for dam construction [48]. SA and
GA were used to improve the quality of prediction [49]. SSA was utilized to locate and optimize
the size of renewable distributed generators (RDGs) [50]. HS was applied to training an echo estate
neural network [51]. GWO and its enhanced variants were utilized in various of researches, such as
optimizing controllers [52–54], solving Combined Heat and Power Dispatch (CHPD) problem [55] and
so on. Motived by the enormous success of meta-heuristic algorithms, a more mature meta-heuristic
algorithm with stronger ability to overcome the universal deficiencies existed, such as local optimum
points and prematurity, is interesting to be tried in the problem of construction stage and zone
optimization. The whale optimization algorithm (WOA), proposed by Mirjalili [39], has proved to
be a competitive metaheuristic algorithm in different applications [56,57]. The parameters of the
WOA are adaptive during the iterative process, which guarantees a good relationship between the
exploration and exploitation of the WOA. However, as noted by [58–60], the WOA has one major
drawback, namely, premature convergence, which reduces its robustness. Levy flight is a random
walking strategy discovered by Benoît Mandelbrot, widely employed in metaheuristic algorithms to
prevent a local optimal solution [61–63]. The step lengths of Levy flight have a heavy power law tail
distribution, and the large steps occasionally help an algorithm to jump out of the local optimum and
improve robustness. Therefore, the Levy flight trajectory is used in this paper to improve the WOA,
thus, a more robust optimization method for construction stage and zone optimization is obtained.

To summarize, a detailed flow shop construction scheme that considers decision-makers’ opinions
has not been obtained in previous rockfill dam construction stage and zone optimization studies.
Additionally, a more efficient and robust meta-heuristic algorithm is worth to be developed for
construction stage and zone optimization. In view of the problems mentioned above, this research
develops a construction stage and zone optimization model that considers the flow shop construction
scheme decision. A flow shop construction scheme is determined by balancing different decision
criteria, then the optimal construction stage and zone design with a minimum disequilibrium degree
of filling intensity is achieved. The main aim of this paper is to:

1. Establish a new construction stage and zone optimization model to determine detailed flow shop
construction scheme that considers decision-makers’ opinions while optimizing construction
stages and zones.

2. Present an automatic flow shop construction scheme optimization method integrated with an
improved CSHRD and data-driven D-AHP to determine a preferable flow shop scheme for each
filling layer and settle the decision-making efficiency problem caused by the enormous number
of filling layers.

3. Develop a competitive meta-heuristic algorithm, named the enhanced whale optimization
algorithm (EWOA), to optimize the construction stage and zone plan efficiently.

The proposed model is applied to a core rockfill dam in southwestern China and the optimal
construction stage and zone optimization as well as the construction scheme containing the division
of flow shop and the machinery allocation are obtained efficiently. Compared to other optimization
methods, the EWOA optimization model performs best in terms of both efficiency and robustness.

2. Research Framework

In this work, a construction stage and zone optimization model based on the data-driven D-AHP
and EWOA is proposed, which can determine a preferable flow shop construction scheme for each
filling layer while achieving the optimal construction stage and zone design. The research framework
is composed of three levels: optimization objective, method, and case study, as shown in Figure 2.
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Figure 2. Research framework.

At the optimization objective level, the objectives are divided into two parts: the objective
of the flow shop construction scheme MCDM, which aims at reducing the construction time,
decreasing the construction filling intensity and balancing the machinery allocation; and the
objective of the construction stage and zone optimization, which aims to reduce the filling intensity
disequilibrium degree.

At the method level, the flow shop construction scheme MCDM method is proposed, which
integrates the data-driven D-AHP and improved CSHRD; this method automatically generates and
collects decision information, effectively combines subjective information with objective preferences
in an uncertain environment, and determines a preferable flow shop construction scheme for each
filling layer. An EWOA is proposed that uses the Levy flight trajectory to improve the efficiency and
robustness of the WOA to optimize the construction stage and zone plan.

At the case study level, the proposed model is applied to a large-scale rockfill dam in southwestern
China, and the optimal plan of construction stages and zones as well as the construction scheme that
contains the division of the flow shop and machinery allocation is obtained. Compared with the scheme
made based on experience, the validity of the model is verified. Compared to other optimization
approaches, the EWOA optimization approach demonstrates the best performance in both efficiency
and robustness.

3. Methodology

This section presents the general description of the problem of construction stage and zone
optimization. And the improved CSHRD and the data-driven D-AHP are introduced for MCDM of
the flow shop construction scheme; Then the EWOA is presented for construction stage and zone
optimization. A total flowchart of the proposed construction stage and zone optimization model is
presented in the end of this section.

3.1. Problem Formulation

As shown in Figure 3, the problem of rockfill dam construction stage and zone optimization is
how to schedule each stage and how to divide the zones by height. With the help of the improved
CSHRD, a detailed flow shop construction scheme can be determined. EWOA is used to reduce the



Energies 2019, 12, 466 6 of 29

filling intensity disequilibrium degree Pσ in construction stage and zone optimization. In this process,
elevation node H is the optimization variable, which will influence monthly filling intensity pimon and
construction time CT, month. Determining a flow shop construction scheme requires that the method
of dividing flow shops (nv, np) and the allocating machinery be determined, including roller number
Nr, truck number Nt and dozer number Nd. Different criteria C will be comprehensively evaluated
through the improved CSHRD and the data-driven D-AHP. Results of the improved CSHRD, such as
construction time (CT), maximum filling intensity (MFI), truck utilization rate (TUR), dozer utilization
rate (DUR) and roller utilization rate (RUR), are taken as decision criteria in the MCDM process of the
flow shop scheme. Symbols used are listed in Table 1.

Energies 2019, 12 FOR PEER REVIEW  2 

 

 
Figure 2. Research framework. 

 
Figure 3. Sketch of construction stage and zone optimization. Figure 3. Sketch of construction stage and zone optimization.

Table 1. The meaning of symbols proposed in this paper.

Symbol Meaning

i, k, j, q, x, y, s Index of stage, zone, evaluation indicator, feasible construction scheme, material
field, road and constrained variable

I, K, J, Q, X, Y, S total number of stages, zones, evaluation indicators, feasible construction
schemes, material fields, roads and constraints

Hi
k, Himin

k , Himax
k

elevation of zone k in stage i and the minimum and maximum elevation of zone k
in stage i

Pσ filling intensity disequilibrium degree
pimon monthly filling intensity in stage i, 10,000 m3/month

mi number of months in stage i
µi average monthly filling intensity in stage i, 10,000 m3/month
Cj evaluation indicator j
Aq feasible construction scheme q

nv
q, np

q number of flow shops vertical or parallel to the dam axis in one filling layer in Aq
Nq machinery allocation in Aq

Nr
q, Nd

q, Nt
q number of rollers, dozers and transportation trucks in Aq

Nrc, Ndc, Ntc, number of available rollers, dozers and transportation trucks

Pi(x), P(Hi
k), Proadi(y)

feeding intensity of material field x in stage i, filling intensity of elevation h in
zone k and transport intensity of road y in stage i

Psi(x), Ps(Hi
k), Psroadi(y) specified maximum intensity of feeding, filling and transport
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Table 1. Cont.

Symbol Meaning

δ height of the thicker filling layer
L, B length of a zone parallel or vertical to the dam axis

Lmax, Lmin maximum and minimum economic length of compacting operations

Bmin, Cmin
minimum economic width of compacting operations and minimum width for

transportation truck operations
Tp, Th construction time when placement or haulage subsystem domains

tp, ts, td, tr, te period of preparation, spreading, paving, compacting and checking

k1, b1, k2, b2, k3, b3
k1, b1, k2, b2, k3, b3 are the coefficients of the linear equation when calculating tp,

ts, te
Pd, Pr work efficiency of dozer and roller

Az area of a zone
f (nv

q + np
q) function of work efficiency affected by the number of flow shops

Kt, Kp coefficient of time used and coefficient of slope influence
vd, vr speed of dozer and roller.

Cd bucket capacity of the dozer
Br roller width
nr compactor pass
p a random probability value in [0, 1]

X, X*, Xrand
initial agent position selected randomly, each agent position vector and position

vector of the best solution obtained so far
a a variable in [0, 2]
r random vector in [0, 1]
b logarithmic spiral shape constant
l random number in [−1, 1]

A, C a variable in [−2, 2], a random number in [0, 2]
d walkstep

levy(λ) random searching path calculated as Mantegna’s algorithm
µ, v normal stochastic distributions

β constant in Mantegna’s algorithm
σ2

µ, σ2
v variance of µ and v

Γ(x) Gamma function
fδ fitness function
θ penalty factor
M number of constraints
qt

s s th normalized strictly constrained variable at time t
Qs

tmin, Qs
tmax permitted minimum and maximum qt

s of dam

Note: for any variable x,
→
x means that x is a vector or that x is calculated with vectors.

The objective function of the problem for the construction stage and zone optimization is expressed
as follows: 

Opt(Pσ, C(A))

Pσ =

(
I

∑
i=1

√
mi
∑

mon=1
|pimon − µi|/mi

)
/I, i = 1, . . . , I

C =
{

C1, C2, . . . , Cj, . . . , CJ
}

, j = 1, . . . , J (J ≥ 2)
A =

{
A1, A2, . . . , Aq, . . . , AQ

}
, q = 1, . . . , Q (Q ≥ 2)

Aq =
{

nq
v, nq

p, Nq

}
Nq =

{
Nq

r , Nq
d , Nq

t

}
(1)

Constraints of the objective function are listed as follows:

• Feeding intensity limits
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The actual feeding intensity of the material field x in stage i, Pi(x) should be less than the specified
maximum intensity Psi(x).

Pi(x) ≤ Psi(x), i = 1, . . . , I, x = 1, . . . , X (2)

• Filling intensity limits

The filling intensity of the elevation h in zone k, P(Hi
k) should be less than the specified maximum

intensity Ps(Hi
k).

P
(

Hi
k

)
≤ Ps

(
Hi

k

)
, i = 1, . . . , I, k = 1, . . . , K (3)

• Road transport intensity limits

The transport intensity of road y in stage i, Proadi(y) should be less than the specified maximum
intensity Psroadi(y).

Proadi(y) ≤ Psroadi(y), i = 1, . . . , I, y = 1, . . . , Y (4)

• Elevation limits

The elevation of stage i, Hk
i should meet the limit progress of the minimum height Himin

k and the
maximum height Himax

k .

Himin
k ≤ Hi

k ≤ Himax
k , i = 1, . . . , I, k = 1, . . . , K (5)

• Limits to the elevation difference of adjacent zones

The elevation difference of the adjacent zones should be less than the height of the thicker
filling layer. ∣∣∣Hi

k − Hi
k−1

∣∣∣ ≤ δ, i = 1, . . . , I, k = 1, . . . , K (6)

• Machinery number limits

Nq
r ≤ Nrc, q = 1, . . . , Q (7)

Nq
t ≤ Ntc, q = 1, . . . , Q (8)

Nq
d ≤ Ndc, q = 1, . . . , Q (9)

• Flow shop dividing limits

nq
vnq

p = 0, q = 1, . . . , Q (10)

nq
v+nq

p > 0, q = 1, . . . , Q (11)

Int(L/Lmax) ≤ nq
v ≤ Int(L/Lmin), q = 1, . . . , Q (12)

1 ≤ nq
p ≤ min{Int(B/Cmin), Int(B/Bmin)}, q = 1, . . . , Q (13)

3.2. MCDM of the Flow Shop Construction Scheme Based on the Data-Driven D-AHP

Under the influence of the shape and size of the filling layers and construction resources, each
filling layer has more than one flow shop construction scheme, which consists of the division of the
flow shop and machinery allocation. This study proposes a flow shop construction scheme MCDM
method based on the data-driven D-AHP, which can determine a preferable flow shop construction
scheme via the balancing of different conflicting decision criteria. The proposed method consists
of two parts: the calculation of flow shop construction scheme decision criteria and MCDM of the
flow shop construction schemes. In the first part, different flow shop construction scheme decision
indicators for each filling layer are obtained through the improved CSHRD. Based on the first part,
Pearson correlation coefficients are calculated to filter out indicators that have high correlation; then,
an optimal flow shop construction scheme is selected through the data-driven D-AHP.
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3.2.1. Calculation of Flow Shop Construction Scheme Decision Criteria

An improved CSHRD [16], which has been proven to accurately simulate the construction process,
is implemented to calculate decision criteria. The improved CSHRD considers the haulage and
placement of the rockfill subsystem. As shown in Figure 4, the haulage subsystem is simulated with
CYCLONE, which provides constraints for the placement subsystem when the filling intensity exceeds
the transport intensity. The placement subsystem simulates flow shop construction using the event
marching method with the shortest time. In this process, the dam is constructed by filling layers,
and each filling layer is divided into several flow shops according to the construction environment.
The construction of each flow shop consists of five steps: unloading, paving, spreading, compacting,
and checking. Assuming the placement of the rockfill subsystem is the dominant process at the
beginning, construction time (CT) equals Tp. If the transport intensity of any road exceeds the
prescribed transport intensity, then there is a traffic jam; the dominant process changes to haulage
of the rockfill subsystem, and the construction time (CT) equals Th. Based on the improved CSHRD,
evaluation criteria for each flow shop construction scheme is achieved, including the CT, TUR, DUR,
RUR, max filling intensity (MFI), average filling intensity (AFI), and IUF. Among them, the mechanical
utilization rates, such as TUR, DUR and RUR, are the ratio of the mechanical working time to the
construction period, and the IUF is the ratio of the MFI to the AFI.
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3.2.2. MCDM of Flow Shop Construction Schemes

First, Pearson correlation coefficients are calculated to filter out the highly correlated indicators.
A Pearson correlation matrix was built, as shown in Figure 5. The numbers in the matrix diagram
represent the Pearson correlation coefficients between the parameters, and the radius of “#” represents
the magnitude of the correlation among the parameters. Three indicators of CT, AFI and IUF are
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strongly correlated because the AFI is the ratio of construction quantity (constant) to the CT and the
IUF is the ratio of the MFI to the AFI. Both indicators of the AFI and IUF are removed to avoid the
repetitive effect of the indicators of strong correlation and to improve accuracy of the evaluation results.

Then, a hierarchical structure is built for the flow shop construction scheme MCDM, and a
data-driven method is used to construct the D matrix, whose detailed steps will be explained in
Section 4.1. Finally, a D-AHP method is used to calculate the priority weights and rank the schemes.
The detailed procedures of the D-AHP method can be divided into four steps, as described by [19]:

1. convert the D matrix to a crisp matrix by using the integration representation of D numbers;
2. construct a probability matrix based on the derived crisp matrix;
3. determine the ranking of alternatives using the triangularization method;
4. calculate the priority weights of the alternatives to determine the optimal solution.
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Some basic knowledge regarding the D-AHP is given as follows:

Definition 1. Let Ω be a finite nonempty set, and a D number is a mapping formulated by

D : Ω→ [0, 1] (14)

with

∑B⊆Ω D(B) ≤ 1 and D(φ) = 0 (15)

where ∅ is an empty set and B is a subset of Ω.
For a discrete set Ω ={b1, b2, . . . , bi, . . . bn}, D numbers can simply be denoted as:

D = {(b1, v1), (b2, v2), . . . , (bi, vi), . . . , (bn, vn)} (16)

where bi ∈ R, whose value represents the evaluation of the object by the ith expert in the MCDM process; and
bi 6= bj if i 6= j; vi > 0, whose value represents the credibility of bi, and ∑n

i=1 vi ≤ 1.

Definition 2. The D numbers preference relation RD on a set of alternatives A is represented by a D matrix on
the product set A × A, whose elements are formulated by

RD : A×A→ D (17)
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The D numbers preference relation in matrix form is

RD =

A1 A2 · · · An

A1

A2
...

An


D11 D12 · · · D1n

D21 D22 · · · D2n
...

...
. . .

...
Dn1 Dn2 · · · Dnn

 (18)

where Dij = {(b1
ij, v1

ij),( b2
ij, v2

ij), . . . ,(bm
ij, vm

ij)}, Dji = {(1 − b1
ij, v1

ij),(1 − b2
ij, v2

ij), . . . ,(1 − bm
ij, vm

ij)},
∀i,j ∈ {1,2, . . . ,n}; bk

ij ∈ [0, 1], ∀k ∈ {1,2, . . . ,m}, bk
ij indicates the priority of the alternative Ai compared to

the alternative Aj based on the indicator k; and vk
ij represents the credibility of bk

ij.

3.3. Construction Stage and Zone Optimization Based on EWOA

In this section, a new optimization referred to as the EWOA is proposed for the construction stage
and zone optimization, which uses Levy flight to improve the robustness and global optimization
ability of the WOA. Then, the validity and superiority of the EWOA is demonstrated by comparison
with the PSO, grey wolf algorithm (GWO) and WOA. Finally, detailed procedures of the construction
stage and zone optimization based on the EWOA are provided.

3.3.1. Enhanced Whale Optimization Algorithm (EWOA)

The WOA [39] is a metaheuristic algorithm inspired by the bubble-net hunting technique of
humpback whales. The WOA updates the population position through the bubble-net attacking
method, which contains the shrinking encircling mechanism and the spiral updating position
mechanism. The WOA can provide very competitive results in solving optimization problems.

However, as with most metaheuristic algorithms, this approach has a shortcoming of premature
convergence. Levy flight can maximize the diversification of search agents, which help the algorithm
efficiently explore the search location and avoid local minima. Therefore, the Levy flight trajectory
is used to improve the WOA. The Levy flight produces a set of straight flight paths punctuated by a
sudden 90◦ turn, which allows it to jump out of the local optimum. Combining Levy flight with the
WOA algorithm can increase the diversity of the population and improve the robustness and global
optimization ability of the WOA algorithm. The WOA algorithm improved by Levy flight is named the
EWOA, whose pseudo code is shown in Appendix A. The EWOA contains three phases, namely the
strategy of encircling prey, the strategy of bubble-net attacking the prey and the strategy of searching
for prey improved by levy flight.

• The strategy of encircling prey

To model the humpback whale behavior in which whales swim around the prey within a shrinking
circle and along a spiral-shaped path simultaneously, a parameter p is used to generate a probability of
50% to choose between either the shrinking circle or the spiral model to update the whales’ position.
When p < 0.5, the EWOA updates the position of the current search agent with the shrinking encircling

mechanism represented by Equations (19) and (20).
→
A and

→
C are calculated with Equations (20) and

(21) when |A| is smaller than one.

→
X(t + 1) =

→
X∗(t)−

→
A·
→
D (19)

→
D =

∣∣∣∣→C·→X∗(t)−→X(t)
∣∣∣∣ (20)

→
A= 2

→
a ·→r −→a (21)
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→
C= 2·→r (22)

• The strategy of bubble-net attacking the prey

When p≥ 0.5, the position of the current search agent is updated with the spiral updating position
mechanism represented by Equations (23) and (24).

→
X(t + 1) = ebl ·cos(2π l)·

→
D +

→
X∗(t) (23)

→
D =

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ (24)

• The strategy of searching for prey improved by levy flight

When p ≥ 0.5 and |A| is greater than one, the search agent enters into the exploration phase. The
Levy flight is used to improve the global optimization capability. Whales in this phase update their

positions with Equations (25) and (26).
→
A and

→
C are calculated with Equations (21) and (22).

→
X(t + 1) =

→
Xrand −

→
A·
→
D (25)

→
D =

∣∣∣∣→C· →Xrand −
→
X
∣∣∣∣ (26)

→
X(t + 2) =

→
X(t + 1) + d·levy(λ) (27)

In Equation (27), d is the walk step and levy (λ) is a random searching path that can be calculated
according to Mantegna’s algorithm:

levy(λ) =
µ

|v|1/β
(28)

where β is a constant, and µ = N(0, σ2
µ) and v = N(0, σ2

v ) are both normal stochastic distributions with: σµ =
[

Γ(1+β)×sin(π×β/2)
Γ(1+β/2)×β×2(β−1)/2

]1/β

σv = 1
(29)

where Γ(x) = (x − 1)!

3.3.2. Evaluation of the Proposed EWOA

The numerical efficiency of the EWOA developed above in this study was tested on
23 mathematical optimization problems, which are classical benchmark functions utilized in related
literature [64,65]. PSO [35], GWO [37], ALO [36], WOA [39] were selected for comparison with
the EWOA. For all algorithms, the population size is 30, and the maximum iteration is 500. The
23 benchmark functions are depicted in detail in Appendix B. For each benchmark function, each
algorithm was repeated 30 times. The convergence curves of the test are shown in Figure 6.

Unimodal test functions (F1–F7) allow the exploitation capability to be evaluated. As shown in
Figure 6, the EWOA is very competitive with other algorithms. In particular, the EWOA has the fastest
convergence rates for functions F1, F2, F5 and F7.

Multimodal functions (F8-F23) are very useful to evaluate the exploration capability because they
have many local optima. In particular, F14-F23 are multimodal functions with fixed dimensions which
can reflect the ability of an algorithm to avoid a quantity of local optima. In Figure 6, it is clear that
the EWOA outperforms other algorithms in most of the functions F8-23 and is at least the second best
optimizer. The results shows that the EWOA has a strong ability to avoid local optima and enter the
global optimum.
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Figure 6. Comparison of convergence curves of enhanced whale optimization algorithm (EWOA) and
literature algorithms obtained in some of the benchmark problems. (a) Curves of the fitness values
for F1; (b) Curves of the fitness values for F2; (c) Curves of the fitness values for F3; (d) Curves of
the fitness values for F4; (e) Curves of the fitness values for F5; (f) Curves of the fitness values for F6;
(g) Curves of the fitness values for F7; (h) Curves of the fitness values for F8; (i) Curves of the fitness
values for F9; (j) Curves of the fitness values for F10; (k) Curves of the fitness values for F11; (l) Curves
of the fitness values for F12; (m) Curves of the fitness values for F13; (n) Curves of the fitness values for
F14; (o) Curves of the fitness values for F15; (p) Curves of the fitness values for F16; (q) Curves of the
fitness values for F17; (r) Curves of the fitness values for F18; (s) Curves of the fitness values for F19; (t)
Curves of the fitness values for F20; (u) Curves of the fitness values for F21; (v) Curves of the fitness
values for F22; (w) Curves of the fitness values for F23.
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3.3.3. Construction Stage and Zone Optimization

The proposed EWOA is applied to the construction stage and zone optimization, in which a
penalty function is used to prevent excessive advancement and the lag of the construction progress
to ensure that the simulation results of the dam meet the constraints. The specific steps are shown in
Figure 7.

1. Determine the preferable flow shop construction scheme: Determine the preferable flow shop
construction scheme through the method proposed in Section 3.2. Then, construction filling
intensity can be obtained using the improved CSHRD model.

2. Initialization and evaluation: First, initial parameters are set, including the number of populations
n, the maximum number of iterations M, the logarithmic spiral shape constant b, the current
number of iterations j, and the algorithm termination conditions. Then, the initial whale
population is randomly generated; specifically, the n initial schemes Xi (i = 1,2, . . . ,n) under
the constraints of the construction stages and zones are randomly generated. Next, the fitness
function of each initial construction stage and zone plan is calculated. The fitness function fδ

consists of two parts: the objective function Pσ and the penalty function:

fδ= min(Pσ + δ
m

∑
t=1

x

∑
i=1

max(0, gi)) (30)

gi(qit)= min(qit −Qict1, Qict2 − qit) (31)

where Pσ is the filling intensity disequilibrium degree, which is calculated by Equation (1); δ is
the penalty factor; m is the number of stages, x is the number of constraints; qit is the simulation
result of qi at time t; Qict1 is the permitted minimum qi of dam at time t; Qict2 is the permitted
maximum qi of dam at time t; and qi represents strictly constrained variables including schedule
and elevation, obtained from the simulation results of the optimal flow shop construction scheme,
which are normalized by the deviation standardization method in the calculation process. The
filling strength constraint, the upper dam strength constraint and mechanical constraints are set
in the improved CSHRD.

The fitness function of each scheme is compared, and the best position X* is recorded.

3. Update of the position: Update a, A, C, and l and p when j ≤ M. If p ≥ 0.5, then update the
whale positions with Equation (12). If p < 0.5 and |A| < 1, then update the whale positions with
Equation (8). If p < 0.5 and |A| > 1, select a random search agent Xrand and update the position
of the current search agent by Levy flight, which is calculated using Equation (14).

4. Judgment of the termination condition: Calculate the fitness of each search agent using Equation
(17), and the best search agent position X* is found and saved. Determine whether the algorithm
satisfies the termination condition. If yes, go to step 4; otherwise, let j = j + 1 and repeat steps 2–3.

5. Output: Output the best fitness and its position X*; X* is the best construction stage and zone plan.
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4. Case Study

In this section, the proposed construction stage and zone optimization model based on the
data-driven D-AHP and EWOA is applied to a core rockfill dam in southwestern China during the
design period. The maximum dam height of the core wall rockfill dam is 315.0 m, and the total length
of the dam is 666.2 m. The total volume is approximately 48.51 million m3. To manage the construction
process efficiently and satisfy the structural requirements, the dam needs to be divided into several
stages and zones. The proposed model is used to obtain the preferable flow shop construction scheme
while optimizing the construction stages and zones.

4.1. MCDM of the Flow Shop Construction Scheme

MCDM will be implemented repeatedly for each filling layer. Because the number of dam filling
layers is huge, perhaps exceeding one thousand, the MCDM process of the flow shop construction
scheme is illustrated by taking the 2780–2790 elevation section of the core area as an example. Table 2
shows the detailed flow shop construction schemes, including the division method of flow shops and
mechanical allocation, and Table 3 shows the simulation results from the improved CSHRD.
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Table 2. Flow shop construction schemes in the core wall at Elevation 2740 m to Elevation 2759 m.

Scheme Division of Flow Shops Truck (20 t) Dozer Roller

Scheme 1 Flow shop vertical to the
dam axis (nv = 3) 36 3 4

Scheme 2 Flow shop vertical to the
dam axis (nv = 4) 34 2 4

Scheme 3 Flow shop vertical to the
dam axis (nv = 5) 33 2 3

Scheme 4 Flow shop parallel to the
dam axis (np = 1) 30 2 2

Scheme 5 Flow shop parallel to the
dam axis (np = 2) 36 2 2

Table 3. Simulation results of schemes in the core wall at Elevation 2740 m to Elevation 2759 m.

Scheme
CT (d) UR (%) FI(10,000 m3/Month)

CT TUR DUR RUR MFI

Scheme 1 150 66.42 4.00 52.98 11.27
Scheme 2 169 50.89 4.21 38.93 11.30
Scheme 3 186 60.40 4.12 49.97 12.20
Scheme 4 235 45.83 3.98 50.02 12.68
Scheme 5 216 57.53 4.06 48.68 10.56

Construction of the D matrix is the key to using the D-AHP method for MCDM. A data-driven
method is used to construct the D matrix, which makes it easy to combine with the simulation and
increase the efficiency of the MCDM process. The procedures are as follows:

A hierarchical structure for flow shop construction MCDM is built according to expert experience,
as shown in Figure 8. According to Figure 8, the absolute weight of each subfactor can be calculated,
including CT (0.6), TUR (0.15), DUR (0.05), RUR (0.1) and MFI (0.1).
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The D matrix between scheme 1 and scheme 2 is taken as an example to illustrate how to construct
a D matrix with a D-AHP method. According to Table 3, the CT of scheme 1 (A1) is 150 days and CT of
scheme 2 (A2) is 169 days. A1 performs better than A2 with a preference degree of 0.5298, which is
calculated by 169/(150+169). A2 performs better than A1 with a preference degree of 0.4702. Therefore,
u(A1,A2) = 0.5298, and u(A2,A1) = 0.4702. As the absolute weight of the CT is 0.60, the belief of
u(A1, A2) = 0.5298 should be 0.60. Therefore, similarly, we have the following:
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On TUR, the belief of u(A1, A2) = 0.5662 is 0.15; On DUR, the belief of u(A1, A2) = 0.4994 is 0.05;
On RUR, the belief of u(A1, A2) = 0.5764 is 0.1; On MFI, the belief of u(A1, A2) = 0.5007 is 0.1; As a
result, the D matrix of A1 over A2 is

D(A1, A2) =


0.5298 0.6
0.5662 0.15
0.4994 0.05
0.5764 0.1
0.5007 0.1

 (32)

Through the above methods, D matrixes among A1, A2, A3, A4 and A5 can be built and converted
into a crisp matrix:

Rc =

A1 A2 A3 A4 A5

A1

A2

A3

A4

A5


0.5000 0.5355 0.5394 0.5851 0.5604
0.4645 0.5000 0.5039 0.5503 0.5266
0.4606 0.4961 0.5000 0.5480 0.5228
0.4149 0.4497 0.4520 0.5000 0.4675
0.4396 0.4734 0.4772 0.5325 0.5000


(33)

Next, the crisp matrix Rc is converted to a probability matrix Rp, which represents the preference
probability between pairwise alternatives according to the following rules: (i) if Rc(i,j) > 0.5; and (ii) if
Rc(i,j) ≤ 0.5. Moreover, the triangularization method is used to convert the probability matrix Rp to
the triangular matrix of probability RT

p:

RT
p =

A1 A2 A3 A5 A4

A1

A2

A3

A5

A4


0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0


(34)

According to RT
p, the ranking of schemes is obtained:

A1 � A2 � A3 � A5 � A4 (35)

As Equation (23) shows, scheme 1 (A1) is the best flow shop construction scheme.
Furthermore, the priority weight of each scheme can be obtained quantitatively through the

D-AHP method. In conformity with RT
p, the crisp matrix Rc is converted into a triangular matrix RT

c:

RT
c =

A1 A2 A3 A5 A4

A1

A2

A3

A5

A4


0.5000 0.5355 0.5394 0.5604 0.5851
0.4645 0.5000 0.5039 0.5266 0.5503
0.4606 0.4961 0.5000 0.5228 0.5480
0.4396 0.4734 0.4772 0.5000 0.5325
0.4149 0.4497 0.4520 0.4675 0.5000


(36)

A weight vector W =(w1, w2, w3, w4, w5)
T is defined to represent the priority weight of each

scheme, where wi is the priority weight of Ai. The elements adjacent to the main diagonal in the
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triangulated crisp matrix (i.e., 0.5355, 0.5039, 0.5228, 0.5325) represent the weight relationships of the
different schemes, as follows: 

λ(w1 −w2) = 0.5355− 0.5
λ(w2 −w3) = 0.5039− 0.5
λ(w3 −w5) = 0.5228− 0.5
λ(w5 −w4) = 0.5325− 0.5

w1 + w2 + w3 + w4 + w5= 1
λ>0

wi ≥ 0,∀i ∈ {1, 2, 3, 4, 5}

(37)

By solving the above equation set, we have:

w1= 1/5 + 0.04636/λ
w2= 1/5 + 0.01086/λ
w3= 1/5 + 0.00696/λ
w4= 1/5− 0.04834/λ
w5= 1/5− 0.01584/λ

λ ∈ [0.2417,+∞)

(38)

where parameter λ represents the credibility of information and is related to the level of experts
providing information. The greater the credibility of the information is, the smaller the value of λ is.
In this study, along with the changing value of λ, the priority of the scheme changes, as shown in
Figure 9. Although the priority of the scheme is increasingly less distinguished along with the decrease
in the credibility of the information, the rank of schemes is always unchanged. Since the simulation
model data have higher credibility, λ = 0.25 is taken, and the priorities of the schemes are 0.39, 0.24,
0.23, 0.01 and 0.13.Energies 2019, 12 FOR PEER REVIEW  6 
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According to the above process, the flow shop construction scheme for each filling layer can
be selected. If the flow shop construction schemes of a continuous filling layer are the same at a
certain elevation, these filling layers are classified into a group, and the final result of the flow shop
construction scheme MCDM is shown in Figure 10.
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Figure 10. Results of the flow shop construction scheme MCDM. (a) Optimal flow shop at Elevation
2587–2617; (b) Optimal flow shop at Elevation 2617–2707; (c) Optimal flow shop at Elevation 2707–2767;
(d) Optimal flow shop at Elevation 2767–2794; (e) Optimal flow shop at Elevation 2794–2869; (f) Optimal
flow shop at Elevation 2869–2902.

4.2. Construction Stage and Zone Optimization

The entire construction process of the core rock fill dam is divided into six stages, and there are
five key elevation constraints, as shown in Table 4. First, 10 initial populations are randomly generated
by the EWOA within the elevation limits, then the fitness function value of each initial construction
stage and zone plan is calculated with the simulation results of the optimal flow shop construction
scheme. Second, new populations are continually generated by EWOA until the optimal solution is
found. Optimization results are displayed as control elevations, and the comparison elevations of each
period of the optimal and initial plans are shown in Figure 11.

Table 4. Stages elevation limits.

Elevation
Constraints (m) I II III IV V VI

Minimum 2658 2697 2760 2810 2840 2902
Maximum 2660 2707 2770 2826 2850 2902
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4.3. Discussion

The construction progress of the rockfill dam is mainly restricted by the core construction, which
can be seriously impacted by cold and rainy weather. According to hydrological data, the peak of
effective days for core construction occurs in April, May, and October. Other zones are less affected by
the rainy season, and the peak period of construction is from April to October, as shown in Figure 12.
The initial construction stage and zone plan depends on the experts’ experience. The test of the EWOA
and the experiment of the case study were implemented in MATLAB R2017a (MathWorks, Natick,
MA, USA) on Windows 7 with 3.60 GHz Intel® Core™ i7-4790 processor and 16.0GB RAM (Microsoft,
Redmond, WA, USA). The results are as follows.
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4.3.1. Comparison between the Optimal and the Initial Plan

As shown in Figure 13, the optimal plan is more balanced than the initial one. The total duration
of the optimization plan is 3.9 months less than the total duration of the initial plan. In the optimization
scheme, the filling heights of the 1st to 6th phases are 72 m, 39.7 m, 61.4 m, 53.6 m, 26.4 m and 62 m,
respectively. The maximum filling volume is 13.855 million m3 in the third phase, and the longest
construction stage is 30.8 months. The minimum filling volume is 4.462 million m3 in the 5th stage,
whose CT is 9.9 months.
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A comparison of average machinery utilization rates between the optimization scheme and the
initial scheme is shown in Figure 14. The TUR and RUR are important indicators to control because of
the intensive use of trucks and rollers during construction. To prevent mechanical failure caused by
high intensity work, the TUR and RUR should be restricted to less than 80%. The TUR and RUR of the
optimal scheme are well restricted within 80%, while some RUR and TUR of the initial scheme exceed
the maximum threshold. In addition, the TUR, RUR and DUR of the optimal scheme all confer more
balance than in the initial scheme, which is conducive to the normal use of machinery.
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A comparison of filling intensity between the optimization scheme and the initial scheme is
shown in Figure 15. The values are the means ± the standard deviations (SDs) of the quarterly
filling intensity, which are calculated 50 times through construction simulation. The filling intensity
disequilibrium degree of the optimization scheme is 5.60, which is 29.6% lower than the initial
scheme of 7.96. The initial construction is less intensive at the initial stage of construction, and the
filling intensity increases after the 12th month. In the 51st month, the filling strength is as high as
1.893 million m3/3 month. In contrast, the optimal scheme obtained through optimization is more
balanced in each period, and the difference between the maximum filling strength and the minimum
filling strength is 801,000 m3/3 month. The difference between the maximum intensity and the
minimum intensity of the initial solution is 1.593 million m3/3 month, which is more conducive to the
balanced allocation of resources, making construction more efficient. The maximum filling intensity
of the optimization scheme is 1.686 million m3/3 month, which is 207,000 m3/3 month less than the
maximum filling strength of the initial scheme. This effect can alleviate the problems of unstable
construction quality and human-machine fatigue caused by high-strength construction.
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4.3.2. Algorithm Comparison

Four optimization algorithms, including the GA, simulated annealing algorithm (SA), PSO and
WOA, are employed instead of the EWOA to solve the stage and zone optimization problem to verify
the effectiveness and advantage of the EWOA in the rockfill dam stage and zone optimization study.
The iteration number of each algorithm is set as 300 for optimization, and a comparison of the evolution
curves of the fitness value are shown in Figure 16a. Considering the randomness of the simulation
model, it is necessary to verify the repeatability of the optimization algorithm. Each algorithm is
repeatedly calculated 50 times. Optimal fitness value results and their SDs are shown in Figure 16c.
Additionally, the time spent calculating the fitness values and their SDs are shown in Figure 16b.
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• Figure 16a shows the convergence results of the EWOA, GA, SA, PSO and WOA. Notably, all the
convergence curves in this picture are optimal curves. We can see that the SA (5.84) and WOA
(5.85) fell into a local optimum, while the EWOA (5.60), GA (5.62), and PSO (5.62) found the global
optimum with consistency. In terms of the convergence rate, the EWOA exhibited the fastest
convergence rate when finding the global optimum, and thus, we can conclude that the EWOA
outperformed all of the other four algorithms.

• Figure 16b shows the calculation time of the EWOA, GA, SA, PSO and WOA. The EWOA has a
maximum run time of 120.32 s and a minimum run time of 108.7 s, which is the shortest average
time. Compared with the SDs of WOA (8.08), GA (83.79), SA (167.92) and PSO (10.15), the EWOA
(6.95) demonstrated the smallest calculation time standard deviation. The above results indicate
that the EWOA has the highest optimization efficiency and the most stable run time.

• Figure 16c shows the optimal fitness value results of the EWOA, GA, SA, PSO and WOA. Due to
the randomness of the construction simulation, the results of the optimization fluctuated within
a certain range. The median of the EWOA optimization results is 5.76; this result is better than
those provided by the WOA (6.14), GA (6.02), SA (6.34) and PSO (5.90). The EWOA’s standard
deviation is clearly lower than that of the other four algorithms. Most optimization results of the
EWOA are concentrated between 5.6 and 5.73, except for a poorer value of 5.862; this algorithm is
more stable and robust than the other algorithms.

5. Validation

The case in Reference [3] was taken as an example to verify the model proposed. The optimal
result was compared with actual process data collected from the real-time monitoring system. The
analysis of schedule, machinery utilization rate, and construction disequilibrium degree is discussed
as follows.

In terms of schedule, the dam body construction was completed in September 2016. As shown
in Figure 17. The filling elevation of the optimization plan was basically consistent with the actual
construction. However, monthly filling elevation was unbalanced in the actual construction process
due to the problem of construction organization, especially in the early stage of construction. Total
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construction period of the optimization plan was 41 months, 4 months shorter than the design plan
and 2 months longer than the actual process.
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With respect to the machinery utilization rate, the utilization rate of the core wall is taken as a
comparison. Because the construction quality control of the core wall, whose role is to prevent seepage,
is the most strict, the construction of core is the critical path in dam body construction. Moreover,
trucks and rollers are busier than dozers, so our main concern is TUR and RUR. As shown in Table 5,
the TUR and RUR of the optimal plan are not much different from the actual situation and are more
balanced among stages.

Table 5. Comparison of machinery utilization rate in core.

UR Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 Stage7

Optimal plan TUR 91.51% 85.77% 90.83% 76.14% 90.86% 87.75% 74.58%
Actual TUR 90.5% 84.8% 93.86% 76.14% 95.83% 85.77% 95.51%

Optimal plan RUR 65.79% 66.38% 61.73% 62.06% 57.49% 58.36% 80.2%
Actual RUR 77.99% 74.92% 57.49% 62.06% 61.73% 66.38% 65.79%

Regarding the disequilibrium degree, the filling disequilibrium degrees of actual construction,
the initial plan and the optimal plan can be obtained with Equation (2), with values of 2.9, 1.8, and
1.21 respectively.

The reasonability of the propose construction stage and zone optimization model based on the
data-driven D-AHP and EWOA was able to be validated through comparison between the above three
indicators. Consequently, the model proposed could provide guidance for the design and construction
of a rockfill dam.

6. Conclusions

To ensure efficient and successful construction, the construction of a rockfill dam must be divided
into several stages and zones due to its long construction period and large engineering scale. This
study proposes a construction stage and zone optimization model based on the data-driven D-AHP
and EWOA, which can optimize the construction stages and zones while determining a preferable flow
shop construction scheme for each filling layer. The major contributions of this study are summarized
as follows:

• An automatic flow shop construction scheme MCDM method is presented based on a data-driven
D-AHP and an improved CSHRD; this method ensures both the efficiency of collecting and
aggregating information and the effectiveness of combining subjective and objective weights to
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evaluate decision alternatives. Based on the optimal flow shop construction scheme, an accurate
filling intensity disequilibrium degree, which requires optimization during the construction stage
and zone optimization, is generated.

• An EWOA is proposed by using the Levy flight trajectory to overcome the trend of the local
optimum in the WOA. Compared to the construction stage and zone optimization model with the
GA, SA, PSO and WOA, the efficiency and robustness of the EWOA are greater.

• A construction stage and zone optimization model based on the data-driven D-AHP and EWOA
is proposed using the proposed automatic flow shop construction scheme MCDM method. The
model has been successfully applied to the construction stage and zone scheme optimization of
a hydropower project in China. Comparative results show that this model can shorten the CT,
improve machinery utilization and reduce the filling intensity disequilibrium degree.

In future research, if the proposed model is embedded into a decision support system for
engineering scheme optimization, then it can be conveniently used by designers and project managers,
and its advantage of automation will be apparent.
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Appendix A

Pseudo code of EWOA

Initialize the whale population Xi (i=1,2, . . . ,n)
Calculate the fitness of each search agent
X* = the best search agent
While (t < max number of iterations)

for each search agent
Update a, A, C, I and P

If1 (p < 0.5)
If2 (|A| < 1)
Update the position of the current search agent by the Equations (19) and (20)
else if2 (|A| ≥ 1)
Select a random search agent(Xrand)
Update the position of the current search agent by the Equations (25) and (26)
Update the position of the current search agent using the levy flight Equation (27)
end if2

else if1(p ≥ 0.5)
Update the position of the current search by Equations (23) and (24)
end if1

end for
Check if any search agent goes beyond the search space, and amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
t = t + 1

end while
return X*

Appendix B

The benchmark functions.
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Function Dimension Range fmin

F1(x) =
n
∑

i=1
x2

i −30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2

30 [−100, 100] 0

F4(x) = max
i
{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28] 0

F8(x) =
n
∑

i=1
−xi sin

(√
|xi|
)

30 [−500, 500] −12569

F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
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F12(x) = π
n

{
10 sin(πy1) +

n
∑

i=1
(y1 − 1)2[1 + sin2(πyi+1

)]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k, m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a) xi < −a

30 [−50, 50] 0

F13(x) = 1
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{
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∑
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(xi − 1)2 +
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1 + sin2(3πxi + 1)

]
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+

n
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1
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1
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i=1(xi−aij)
6

)−1
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x1(b2
i +bix2)

b2
i +bix3+x4

]2
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1
3 x6

1 + x1·x2 − 4x2
2 + 4x4
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F17(x) =
(
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4π2 x2
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5
πx1 − 6

)2
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(
1− 1

8π
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F18(x) =
[
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2
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∑
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ci exp
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aij

(
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ci exp
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aij
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∑
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[
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T + ci
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