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Abstract: It is well known that each year the wind sector has profit losses due to wind turbine failures
and operation and maintenance costs. Therefore, operations related to these actions are crucial for
wind farm operators and linked companies. One of the key points for failure prediction on wind
turbine using SCADA data is to select the optimal or near optimal set of inputs that can feed the
failure prediction (prognosis) algorithm. Due to a high number of possible predictors (from tens
to hundreds), the optimal set of inputs obtained by exhaustive-search algorithms is not viable in
the majority of cases. In order to tackle this issue, show the viability of prognosis and select the
best set of variables from more than 200 analogous variables recorded at intervals of 5 or 10 min by
the wind farm’s SCADA, in this paper a thorough study of automatic input selection algorithms
for wind turbine failure prediction is presented and an exhaustive-search-based quasi-optimal (QO)
algorithm, which has been used as a reference, is proposed. In order to evaluate the performance,
a k-NN classification algorithm is used. Results showed that the best automatic feature selection
method in our case-study is the conditional mutual information (CMI), while the worst one is the
mutual information feature selection (MIFS). Furthermore, the effect of the number of neighbours (k)
is tested. Experiments demonstrate that k = 1 is the best option if the number of features is higher
than 3. The experiments carried out in this work have been extracted from measures taken along
an entire year and corresponding to gearbox and transmission systems of Fuhrländer wind turbines.

Keywords: feature selection; failure prediction; wind energy; health monitoring; sensing systems;
wind farms; condition monitoring; SCADA data

1. Introduction

Each year, the wind sector has profit losses due to wind turbine failures that can range from
around 200 M€ in Spain or 700 M€ in Europe to 2200 M€ in the rest of the world. Additionally,
if operation costs are taken into account, these losses can be tripled. Owing to the volume of losses and
the actual economic situation in the sector, without any bonuses to the generation and furthermore
with generation selling prices policy restricted by new energy directives (see for example [1,2]), tasks
related to maintenance and operation improvement are key for wind farm operators, maintenance
companies, financial institutions, insurance companies and investors.

The operating and environmental conditions of virtually all wind turbines (WT) in use today
are recorded by the turbines’ “supervisory control and data acquisition” (SCADA) system in 10-min
intervals [3]. The number of signals available to the turbine operator varies considerably between
turbines of different manufacturers as well as between generation of turbines by the same manufacturer.
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This is because of its complex nature as indicated on the IEC [4]. The minimum data-set typically
includes 10 min-average values of wind speed, wind direction, active power, reactive power, ambient
temperature, pitch angle and rotational speed (rotor and/or generator). An example of these sensors
are depicted in Figure 1.

Figure 1. Example of Wind Turbine sensors types. Adapted from TE connectivity (available via license:
CC BY 4.0) http://www.te.com/.

One of the main tasks of the Operation and Maintenance (O&M) process is to find out the possible
causes of a fault manifested by a specific alarm or a set of alarms that stops the wind turbine production.
This process is crucial to reduce the downtime or detect critical faults in earlier stages. Methodologies
and tools that can support this type of process can benefit wind farm owners not only to increase
availability and production but also to reduce costs.

The earlier O&M processes were corrective, meaning that the maintenance was carried out when
turbines broke down and faults were detected. This is an expensive strategy because of a lack of
planning. By contrast, a preventive maintenance tries to either repair or replace components before
they fail, but is expensive because maintenance tasks are completed more frequently than is absolutely
necessary. Condition based maintenance (CBM) are a trade-off between both aforementioned strategies
in which continuous monitoring and inspection techniques are employed to detect incipient faults early,
and to determine any necessary maintenance tasks ahead of failure [5]. This is achieved using condition
monitoring systems (CMS), which involve acquisition, processing, analysis and interpretation of data
using the SCADA systems.

In modern wind turbines, however, the SCADA data often comprises of hundreds of signals,
including temperature values from a variety of measurement positions in the turbine, pressure data,
for example from the gearbox lubrication system, electrical quantities such as line currents and
voltages or pitch-motor currents or tower vibration, among many others [6–9]. Comprehensive
SCADA data-sets often contain not only the 10-min or even 5-min averaged values, but also minimum,
maximum and standard deviation values for each interval. Therefore, due to the high number of
available variables and data, analyzing them can be a high time consuming task [10–12] and when
just well-known related variables are analyzed, hidden causes (or not common causes) cannot be,
or are hard to be, found. As these data are already being collected and are available for the purpose
of condition monitoring, some research has been carried out in the recent years for the purpose of
predicting fault-detection in a non-invasive manner.

Amongst the state of the art research, some authors focus on methods for the signal analysis,
mathematical models or an ensemble of statistical methods sequentially connected. Authors such as
Shafiee et al. [13] develop methods to calculate the number of redundant converters and to determine

http://www.te.com/usa-en/industries/sensor-solutions/applications/wind-turbine-sensors.html?tab=pgp-story
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the number of failures needed before reporting a maintenance task in the case of turbines offshore,
located in hard-to-reach places. On the other hand, Hameed et al. [14] apply transformations for spectral
analysis with the aim of detecting deviations before failures. Astolfi et al. [15] use statistical methods
to extract indicators showing miss-alignment of the nacelle with respect to the wind direction; these
indicators are checked with real SCADA data. The same authors, in Astolfi et al. [16], show different
algorithms that generate performance indicators (Malfunctioning index, Stationarity index and
Miss-alignment index) for the analyzed turbine. Unlike other authors, Qiu et al. [17] work with
the data from alarms and also introduce methods of temporal and probabilistic analysis, generating
a diagnosis of the current state of the WT and a forecast of their future state. There are also authors
who have focused on creating a physical-statistical model to detect faults [18]. A statistical analysis of
the duration of each type of alarm can be found in [19].

In the area of artificial intelligence (AI) there is a wide variety of techniques largely based on
support-vector machines (SVM) and artificial neural networks (ANN). One of the first examples of
a system based on ANN is the SIMAP (Intelligent System for Predictive Maintenance) [20] developed
for detecting and diagnosing gearbox faults. The system was able to detect a gearbox fault two days
before the actual failure, which is an interesting result but the system is not developed enough to be
used for other types of applications. In 2007, Singh et al. [21] also use an ANN approach for wind
turbine power generation forecasting, showing that the ANN offered -over a monthly period- a much
more accurate estimation closer to actual generated power than the traditional method. Zaher et al. [22]
propose an ANN-based automated analysis system. The study describes a set of techniques that can be
used for early fault identification for the main components of a WT, interpreting the large volume of
SCADA data and highlighting the important aspects of interest before presenting them to the operator.

Neural networks are used in [23] for the estimation of the wind farm’s power curve. This curve
links the wind speed to the power that is produced by the whole wind farm, which is non-linear and
non-stationary. The authors model the power curve of an entire wind farm using a self-supervised
neural network called GMR (Generalized Mapping Regressor). The model allows them to estimate the
reference power curve (on-line profile) for monitoring the performance of the wind farm as a whole.
Another example related to forecasting wind parameters can be found in [24], where a combination of
Wavelet Decomposition (WD), Empirical Mode Decomposition (EMD) and Elman Neural Networks is
presented for wind speed forecasting.

An ANN is also used in the work of Bangalore and Tjernberg [25] and Cui et al. [26], with four
continuous variables as input and one as output. The objective is to compare the output of the model
with the real data. In the training step they obtain the threshold from which a positive output will be
generated. This threshold is determined using the error distribution and with a p-value of 0.05 the
corresponding value is found. In this other work, Bangalore and Tjernberg [27], they present another
methodology to detect the deviation from the ANN model using the Mahalanobis distance and with
a p-value of 0.01 the threshold value is obtained.

In Mazidi et al. [28] the authors propose to use an ANN, again with continuous variables, in order
to detect anomalies. As in the previous work, the input variables are selected manually. Pearson
correlation is used to eliminate the more correlated ones. They define various error indicators that are
compared to an experimentally derived threshold. A post-analysis based on PCA is then performed
to identify the variable that exceeds the threshold. In a posterior study, Mazidi et al. [29] improve
this methodology. First they apply PCA to visualize the correlations between variables and to select
some of them, by means of the Pearson correlation, Spearman correlation, Kendall correlation, Mutual
Information, RReliefF or Decision-Trees. Then, and based on experiments, they choose the variables to
be used as inputs for the ANN model, which will have the Power as output variable. The output error
is used to create a stress model that will be used to indicate the status of the WT. We refer the reader
to [30] where a detailed explanation of these techniques can be found.

Authors such as [31] have used a different type of ANN, Neuro-Fuzzy Inference System (ANIFS),
to characterize normal behaviour models in order to detect abnormal behaviour of the captured signals
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using the prediction error to indicate component malfunctions or faults; whil [32] use an ANN to
perform a regression using two to four input variables and one output variable.

On the SVM side, authors such as Vidal et al. [33] focus on using a multiclass SVM classifier to
detect different failures. They use a pre-analysis of the contribution of each variable by the means of
PCA. It should be noted that these authors work with data simulated by the FAST system [34] which
does not have the handicap of noise and the low quality of data in real datasets. Leahy et al. [35] use
a SVM classifier with five output classes. An important contribution of this work is that it carries
out the tasks of cleaning and sampling, which are necessary when dealing with real data, although
the selection of variables is done manually. Works such as [36] use an ensemble of models based
on ANN, Boosting Tree Algorithm (BTA), Support Vector Machine (SVM), Random Forest (RF) or
Standard Classification and Regression Tree (CART), generating an interval of probability of failure.
Leahy et al. [37] also use an ensemble of SVM, RF, Logistic regression (LR) and ANN to generate
a model that is capable of classifying 3 classes (Fault, No Fault, Previous Fault) from SCADA data and
alarms. The author achieves a prediction rate of 71% with 35 hours in advance, in some cases.

We can also find works that use models based on clustering like SOM (Self Organizing Maps)
in Du et al. [38], which sets the target variable (power) and selects the input variable by correlation.
Then, a SOM map is created from a WT in good conditions. Using this map, the distribution of
distances to the BMU (Best Matching Unit) is generated and the threshold is established as the quartile
value. The data of new wind turbines are mapped to this SOM obtaining the distance to the BMU and
determining the points that are out of normality. To determine the origin, they compute a statistic of
which variable has had the greatest contribution to generate the distance from the BMU. Following with
the SOM techniques, authors such as Blanco-M. et al. [39] propose a process that includes a clustering
technique on the result of the turbines after applying SOM, in order to identify the health status of
the turbines. Other authors, such as Leahy et al. [40], focus on clustering groups of alarms, detecting
particular sequences before a failure. Gonzalez et al. [41] uses similarity measurements between
turbines, KNN, RF and Quantile Regression Forests to determine the error and dispersion of data from
each turbine to detect an anomaly. SCADA alarms are used to find the system that generated it.

In many papers of the state of the art research we can see that the selection of the variables is
done manually by an expert, or based on the perception of the author according to the subsystem to
analyze. Some authors, such as [29,33,42,43], include some type of reduction stage by correlations
or PCA, but do not make a comparison of selection methods, or this comparison does not contain
methods that include the interaction of more than two variables such as those presented in this paper.

As we have seen in previous studies, choosing the optimal and adequate number of variables
related to a failure is a key step when making the model. To address this issue, this paper explores
the possibility of using automatic methods for feature selection and studies their performance in real
SCADA data. In this work, an exhaustive search-based quasi-optimal algorithm (QO), which has been
used as a reference for the automatic algorithms, is proposed. This will allow us to consider the whole
set of variables of the subsystem and automatically select the smallest subset of relevant variables,
which in turn will simplify the models and permit a graphical representation of their time evolution.

The paper is organized as follows: Section 2 is dedicated to review and present the automatic
feature selection algorithms based on Information Theory measures; Section 3 describes a QO algorithm
for feature selection in order to define a reference for the experiments; Section 4 details the study case
and methodology; Section 5 is then devoted to the experimental results and discussion. Finally Section
6 provides conclusions to the work.
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2. Automatic Feature Selection Algorithms

When dealing with classification systems, the selection of optimal features is of great importance
because even if theoretically having more features should give us more discriminating power, in real-world
scenarios this is not always the case. The reason for that is because some features can be irrelevant with
respect to predicting the class, or can be redundant to other features (highly correlated, sharing mutual
information, etc.) which can decrease the performance of the classification system.

To explore all the available features, and due to the impossibility of testing all the possible
combinations, feature selection algorithms are needed to sort the features according to a balance
between its relevance and its redundancy. As the goal is to solve a classification problem from
a subset of variables, the employed algorithms should automatically provide the smallest subsets of
non-redundant and most-relevant features.

One way to do this is to apply a criterion that allows us to obtain a score of each feature Xk by
employing information theory measures. Naming J the score function, the scores of each characteristics
Xk will be obtained as J(Xk). That measure must establish a descending-order ranking of features.

One of the first and simplest heuristic rules to score features employs the Mutual Information (MI)
measure I(Xk; Y), where in that expression Y is the class label and Xk, is the feature under analysis.
Then J(Xk) = I(Xk; Y) provides the scores of all features Xk according to their individual mutual
information content [44] and the feature selection is performed by choosing the first K ones, according
to the needs of a given application. Note that the term I(Xk; Y) gives a measure of the relevance of
a feature, so that sometimes it is known as relevance index (RI). Note also that in a feature selection
stage for a classification problem, the use of RI is only optimum when the features are mutually
independent. When features are interdependent this criteria is known to be sub-optimal because it can
select a set of individually relevant features which also should be redundant to each other [45].

To overcome that limitation, some other criteria have been proposed in order to also take into
account their possible redundancy. One way to do this is not only by considering the RI of a new
feature but also by measuring and extracting the mutual information that a new feature shares with the
previously selected features (referred as S) in order to aggregate only its contribution in the set. That is
what the Mutual Information Feature Selection (MIFS) criterion implements [46]. Its corresponding
score function JMIFS(Xk) is shown in Equation (2). Note that its first term is again I(Xk; Y) which
takes into consideration the relevancy of Xk. Its second term, which contributes with negative sign,
is ∑Xj∈S I(Xk; Xj) and accumulates the mutual information of Xk with all Xj already selected in S.
This term clearly introduces a penalty to enforce low correlations with the features previously selected,
those Xj ∈ S. Note that in Equation (2), the term ∑Xj∈S I(Xk; Xj) increases with the number of selected
features whereas I(Xk; Y) keeps constant. Therefore, when dealing with a large set of features the
second term could be the predominant one.

A new refinement can be done if each new feature selected to be aggregated in S is the one which
increases the complementary information between features previously selected. That criteria is fulfilled
when working with the Joint Mutual Information (JMI) [47,48]. In that case, the JMI score function
for Xk is JJMI(Xk) = ∑Xj∈S I(XkXj; Y) and computes the mutual information between the targets Y
and the joint random variable XkXj, defined by pairing the candidate Xk with each Xj ∈ S. After
some mathematical manipulations, JJMI(Xk) can be written as shown in the right part of Equation (4)
in which the RI term appears, followed by the term that penalizes the redundancy (present also in
MIFS approach) and finally a new term: ∑Xj∈S I(Xk; Xj|Y). This last term contributes with positive
sign to JJMI increasing it with some class-conditional dependence of Xk with the existing features in S.
This means that the inclusion of some correlated features can improve feature selection performance
thanks to the complementary of the new added features with the ones already present in S. A similar
term can be observed in Equation (4). The improvement in the feature selection performance that can
be observed in some data-sets due to the inclusion of this third term was also reported by [45].
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What is interesting in this point is that according to the framework presented in Brown et al. [45],
although many other criteria have been reported in the literature, most of the linear score functions
can always be rewritten as a linear combination of the exposed three terms as follows:

Jx(Xk) = I(Xk; Y)− β ∑
Xj∈S

I(Xk; Xj) + γ ∑
Xj∈S

I(Xk; Xj|Y) (1)

where β and γ are configurable parameters.

Not all the methods found in the literature have all three terms. It’s also obvious that the
performance of different criteria will depend on the statistical properties of each feature data-set.
Consequently, in order to evaluate the best criteria for our data-set, different methods have been
employed in the feature selection stage.

In the next subsection, the expressions of information theory based feature selection algorithms
that have been used in this work are detailed. For all these algorithms, Table 1 contains the list of
acronyms, names, references and if the method employs a second term to avoid redundancy in features
or has some way to capture the inter-class correlation that improves the classification performance (as
it is observed in some data-sets). A detailed description of all these algorithms can be found in [45].

Table 1. Information-based criteria used in the experiments.

Criterion Full Name Authors Relevance/Redundance

MIFS Mutual Information Feature Selection [46] no
CMI Conditional Mutual Information [49] yes
JMI Joint Mutual Information [47] yes

mRMR Min-Redundancy Max-Relevance [50] no
DISR Double Input Symmetrical Relevance [48] yes

CMIM Conditional Mutual Info Maximisation [51] yes
ICAP Interaction Capping [52] yes

Compilation of Used Criteria

The feature selection algorithms used in the experiments are mainly described as a function of
the Mutual Information and the Conditional Information. Given the discrete variables X, Y and Z,
these functions are denoted by I(X; Y) and I(X; Y|Z) respectively. Both expressions can be written in
terms of Shannon entropy expressions [53] which are used directly in Equation (6) as a normalization
parameter. In the following expressions Xk is the feature under analysis and Y is the class label.
The group of previously selected features is indicated by S. All sums are performed considering all the
features already included in S which is denoted as Xj ∈ S. Symbol |S| stands for the cardinality of S and
it is employed in Equations (4) and (5) so that, as the cardinality of S increases, its inverse reduces the
effect of the term to whom it multiplies. Note that Equations (8) and (9), corresponding to Conditional
Mutual Information Maximization (CMIM) and Interaction Capping (ICAP) criteria, are non-linear
due to max and min operations and therefore the interpretations are not as straightforward as in the
linear case.

Mutual Information Feature Selection

JMIFS(Xk) = I(Xk; Y)− ∑
Xj∈S

I(Xk; Xj) (2)

Conditional Mutual Information

JCMI(Xk) = I(Xk; Y)− ∑
Xj∈S

I(Xk; Xj) + ∑
Xj∈S

I(Xk; Xj|Y) (3)
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Joint Mutual Information

JJMI(Xk) = ∑
j∈S

I(XkXj; Y) = I(Xk; Y)− 1
|S| ∑

Xj∈S

[
I(Xk; Xj)− I(Xk; Xj|Y)

]
(4)

Minimum-Redundancy Maximum-Relevance

JmRMR(Xk) = I(Xk; Y)− 1
|S| ∑

Xj∈S
I(Xk; Xj) (5)

Double Input Symmetrical Relevance

JDISR(Xk) = ∑
Xj∈S

I(XkXj; Y)
H(XkXjY)

(6)

Conditional Mutual Information Maximization

JCMIM(Xk) = min
Xj∈S

[I(Xk; Y|Xj)] (7)

or:
JCMIM(Xk) = I(Xk; Y)−max

Xj∈S

[
I(Xk; Xj)− I(Xk; Yj|Y)

]
(8)

Interaction Capping

JICAP(Xk) = I(Xk; Y)− ∑
Xj∈S

max[0, I(Xk; Xj)− I(Xk; Xj|Y)] (9)

To perform the experiments, the original code from [45] was adapted to R language, the speed
of calculations were optimized and a new functionality was included in the functions to provide
a set of features to be used as mandatory for the feature selection functions and then allowing the
algorithm to add other features, ranking them according to the optimization process. This functionality
was not provided by the original code. The R code of the library (FEASTR) is freely available at
http://mon.uvic.cat/data-signal-processing/software/.

3. Exhaustive-Search-Based Quasi-Optimal Algorithm

In this section a quasi-optimal (QO) algorithm for feature selection is presented, in order to
establish a reference or gold standard for the rest of experiments performed using automatic feature
selection algorithms. Optimal feature selection implies to test all possible combinations and select
the one that give us the best classification rate. Unfortunately this is only possible when the number
of features is sufficiently small, due to the exponentially growing of possible combinations when
increasing the number of features. This effect is know as curse of dimensionality. Indeed, the number
of combinations of n features taking k at a time (without repetition) is equal to the binomial coefficient.

In our specific case each sub-system has 4 variables (minimum value, maximum value, average
value, standard deviation) which gives us 36 features (4 variables × 9 sub-systems) coming from
the gearbox, transmission and nacelle wind sensors systems of wind turbines (see Table 2 for the
exact list of variables). This implies, for example, that we have 7140 combinations of three features,
58,905 combinations of four features and 376,992 combinations of five features. The worst case,
when taking 18 features, gives a total of 9,075,135,300 combinations.

http://mon.uvic.cat/data-signal-processing/software/.
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Therefore, all the possible combinations of 1, 2 and 3 features will be calculated and a QO
strategy for 4, 5, and 6 features will be implemented. In all the cases, the criteria for selecting the best
combination is based on the classification rate obtained with the k-NN classifier. The following strategy
(see Figure 2 for a block diagram) gives the details on how the QO feature selection is implemented.
Suppose you want to determine the best combination of n characteristics. Then:

1. Calculate the frequency of selection of the characteristics for the case n-1 using the best 500 results.
2. Sort the features according to its frequency.
3. Select the subset of S features with highest frequency.
4. Calculate all possible combinations of these S features taking n at a time (without repetition).
5. Select the best combination based on the classification rate obtained with the k-NN classifier.

Table 2. Variable code to variable name.

Group Variable Code Variable Name Description

A

1 WGDC.TrfGri.PwrAt.cVal.avgVal

Active power2 WGDC.TrfGri.PwrAt.cVal.minVal
3 WGDC.TrfGri.PwrAt.cVal.maxVal
4 WGDC.TrfGri.PwrAt.cVal.sdvVal

B

1 WTRM.TrmTmp.Brg1.avgVal

Main bearing 1 Temperature2 WTRM.TrmTmp.Brg1.minVal
3 WTRM.TrmTmp.Brg1.maxVal
4 WTRM.TrmTmp.Brg1.sdvVal

C

1 WTRM.TrmTmp.Brg2.avgVal

Main bearing 2 Temperature2 WTRM.TrmTmp.Brg2.minVal
3 WTRM.TrmTmp.Brg2.maxVal
4 WTRM.TrmTmp.Brg2.sdvVal

D

1 WTRM.Brg.OilPres.avgVal

Main bearing oil pressure (inside bearing)2 WTRM.Brg.OilPres.minVal
3 WTRM.Brg.OilPres.maxVal
4 WTRM.Brg.OilPres.sdvVal

E

1 WTRM.Gbx.OilPres.avgVal

Gearbox oil pressure2 WTRM.Gbx.OilPres.minVal
3 WTRM.Gbx.OilPres.maxVal
4 WTRM.Gbx.OilPres.sdvVal

F

1 WTRM.Brg.OilPresIn.avgVal

Main bearing oil pressure (inlet hose)2 WTRM.Brg.OilPresIn.minVal
3 WTRM.Brg.OilPresIn.maxVal
4 WTRM.Brg.OilPresIn.sdvVal

G

1 WNAC.WSpd1.avgVal

Wind Speed sensor 12 WNAC.WSpd1.minVal
3 WNAC.WSpd1.maxVal
4 WNAC.WSpd1.sdvVal

H

1 WNAC.Wdir1.avgVal

Wind direction sensor 12 WNAC.Wdir1.minVal
3 WNAC.Wdir1.maxVal
4 WNAC.Wdir1.sdvVal

I

1 WNAC.Wdir2.avgVal

Wind director sensor 22 WNAC.Wdir2.minVal
3 WNAC.Wdir2.maxVal
4 WNAC.Wdir2.sdvVal

For the case n = 4 the best 20 frequent features (S = 20) of the case n = 3 will be used, generating
a total of 4845 combinations of 4 characteristics. For the case n = 5 the best 15 features (S = 15) of the
case n = 4 will be used, generating a total of 3003 combinations of 5 characteristics. Finally, for the case
n = 6 the best 15 features (S = 15) of the case n = 5 will be used, generating a total of 3003 combinations
of 6 characteristics.
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Figure 2. Proposed exhaustive-search-based quasi-optimal algorithm.

The advantage of optimal feature selection is that all possible combinations (interactions) between
features are tested. The disadvantage is the impossibility of implementing the large number of
combinations when the number of characteristics is huge and you want to consider a substantial
number of characteristics in each group. The QO strategy presented above gives an approximation
to the selection of optimal features, but even so some combinations that could be better are probably
ignored, and even if the number of combinations decreases, there are still a lot of cases to try with the
classification algorithm. On the other hand one is usually interested in a fast algorithm for automatic
characteristic selection, which can deal with all 36 characteristics and classify them according to
their importance for the classification problem. Therefore, the aim is to replace the QO characteristics
selection with an automatic characteristic selection algorithm without losing performance and allowing
all available characteristics to be exploited.

4. Study Case and Methodology

In the following section, the data-set used in the experiments and the classification system
employed are detailed. The general scheme of experiments is depicted in Figure 3.

4.1. Data-Set Description

The collected data-set used in this work covers an entirely year (2014) of a farm with five
Fuhrländer wind turbines in Catalonia. The original set of more than 200 variables comes in 5-min
format for analogous variables and as a record of events for digital data (alarms) from the wind farm’s
SCADA. Among all these features, a subset of them related to wind turbine gearbox and transmission
system was selected to be used in the experiments. The events are labeled as 0 for normal functioning,
1 for warning and 2 for alarm. The difference between warning and alarm is in the state of the wind
turbine, on working for the warning state but stopped for the alarm state. Considering that a warning
is a signal that something wrong may occur, the warnings and alarms are integrated and the developed
system will focus on improving the classification events between the operating and fault conditions
(warning or alarm).

4.2. Classification System

The k nearest neighbours (k-NN) is one of the simplest and oldest classification methods that
classifies an unknown observation in the same class as the majority of their neighbour observations,
where the proximity between observations is defined by a distance metric [54]. Among its advantages,
k-NN is a simple method that offers comparable results and sometimes even outperforms other more
sophisticated machine learning (ML) strategies. However, characteristics of data that do not contain
useful information, and that commonly appear in high-dimensional problems, cause a decrease in
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their performance. Improvements have been obtained by employing ensemble techniques, as reported
in [55–58]. Analyzing big data-sets can consume huge computational resources and execution time.
Taking into account that sometimes not all characteristics of the data contribute equally to the final
results, it is reasonable to try to identify the main contributing characteristics and use them instead
of the whole set of features. Therefore, features with low contribution can be eliminated to reduce
complexity and computational time.

Figure 3. General scheme of the experiments

In general, using k-NN classification, k = 1 is often not the best case as the classification accuracy
can be easily degraded by noise. With the increase of k, multiple nearest neighbors help to improve
the classification accuracy. However, if k is very large, the classification accuracy of k-NN tends to
decrease as the nearest and farthest neighbors have assigned equal weights in the decision making
process. To sum up, the classification accuracy of the k-NN algorithm experiences a rise–peak–drop
process and in practical situations it is important to determine the optimal k value. We will discuss the
used value in Section 5.

To measure the performance of our system, the Classification Rate (CR) and the F1-score (F1) are
used. The CR is calculated as the percentage of well-classified instances divided by the total number
of instances, while the F1 is obtained as the harmonic mean of precision and recall. In order to have
statistically consistent results, 100 different cases are computed. These different cases are obtained by
randomly splitting the database in two subsets: the first for deriving the model (training subset) and
the second to test it (test subset). Due to the fact that almost all the time the wind turbines (WT) are
in normal state, the database is clearly biased and presents a high number of instances of this class.
Therefore the training set is balanced by keeping the same number of instances for each class (down
sampling the majority class). As the splitting process is totally random, all the instances will be used at
the end of all 100 experiments.

5. Experimental Results and Discussion

All the experiments (see Figure 3) use the data-set presented in Section 4.1, which contains
36 features, and each target has a label indicating normal state, warning state or alarm state. Warnings
and alarms are integrated, therefore it becomes a binary classification problem. The selection of the
best features to be used as input to the classification system is implemented as detailed in Section 2.
Several experiments were performed using all the WT, and the best features, from 1 to 6, were obtained
trough several feature selection algorithms. Panel (a) of Figure 4 shows the CR against the number of
features for the quasi-optimal algorithm and all the WT. Results are very good in all the WT, reaching
above 85% of CR when the number of features is 3 or higher. Adding new features slightly increases
the CR, but for more than 4 features the change is almost imperceptible. Numerical results for these
experiments (in terms of CR and F1) are detailed in Table 3. All results are obtained with k = 1 and we
can see that the F1-score is close to 1 and highly correlated with the CR results.
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Table 3. CR (a) and F1-score (b) numerical results for the best features of the quasi-optimal feature
selection algorithm. Results are grouped in sub-tables for each WT and each sub-table contains the top
5 results for this WT. The selected features are coded with the variable codes detailed in Table 2.

(a) CR(%)

CR(%) 1F CR(%) 2F CR(%) 3F CR(%) 4F CR(%) 5F CR(%) 6F

WT1

91.79 A1 93.67 A2 E3 93.71 A2 B2 B3 93.71 A1 B1 B2 B3 93.73 A3 A4 B1 B3 B4 93.66 A1 A2 A3 B1 B2 B3
91.78 A3 93.66 A1 E3 93.70 A3 B4 E2 93.70 A1 A3 B4 E3 93.69 A1 A2 A3 B4 E3 93.64 A1 A4 B1 B2 B3 B4
91.71 A2 93.65 A3 B1 93.70 A2 B1 B3 93.68 A1 A2 A3 E3 93.68 A1 A3 A4 B4 E3 93.61 A1 A2 A3 A4 B4 E2
81.70 B3 93.64 A3 E3 93.69 A1 A3 E3 93.68 A3 A4 B2 B3 93.67 A1 A4 B1 B3 B4 93.61 A1 A3 A4 B1 B2 B3
81.63 B2 93.62 A2 B3 93.69 A1 B1 B2 93.67 A2 A4 B2 B3 93.65 A3 B1 B2 B3 B4 93.60 A1 A2 A3 A4 B1 B2

WT2

88.01 B3 95.48 A3 C2 96.10 A2 C2 D1 96.43 B1 C2 D1 G3 96.67 A3 B1 C2 D2 G3 96.77 A2 A3 B3 C2 D2 H1
87.87 B1 95.46 A1 C2 96.05 A3 C2 D1 96.42 A3 C2 D1 G3 96.62 A2 B2 C2 D1 G3 96.74 A1 A3 B1 C2 D2 H1
87.85 B2 95.31 A2 C2 95.99 A3 C2 D2 96.38 A2 C2 D1 H1 96.56 A1 A3 C2 D2 H1 96.73 A1 A2 B3 C2 D1 G3
85.83 C2 95.20 B2 C2 95.89 A1 C2 D1 96.38 B1 C2 D2 G3 96.55 A2 A3 C2 D1 H1 96.73 A2 A3 B1 C2 D2 G3
85.60 E1 94.99 B3 C2 95.77 A2 C2 D2 96.38 A1 C2 D2 G3 96.55 A3 B3 C2 D1 G1 96.73 A1 A2 B1 C2 D1 H1

WT3

87.02 C3 91.54 A2 E3 91.74 A3 B1 E3 92.45 A3 C1 D3 E3 92.67 B3 C1 C3 D2 E3 92.89 B3 C1 C3 D2 E1 E3
86.90 C2 91.44 A1 E3 91.73 B1 C3 E3 92.36 A1 C1 D3 E3 92.66 B3 C1 C3 D2 E1 92.85 B1 C1 C3 D2 E1 E3
79.33 B1 91.37 A3 E3 91.67 A2 B3 E3 92.23 B1 C1 D1 E3 92.61 A3 C1 D2 E1 E3 92.82 A2 C1 C3 D2 E1 E3
78.95 B2 91.10 B2 E3 91.65 A3 A4 E3 92.18 B3 C1 D3 E3 92.58 B1 C1 C3 D2 E3 92.80 A3 C1 C3 D2 E1 E3
78.79 B3 91.01 B1 E3 91.62 B3 C3 E3 92.17 B2 C1 D2 E3 92.58 B2 C1 C3 D2 E1 92.78 B1 B4 C1 C3 D2 E3

WT4

93.30 C2 94.44 C2 D2 95.18 B1 C2 D2 95.56 B1 C2 D2 E2 95.56 B1 B2 C2 D2 H3 95.74 B1 C2 D2 D3 E2 H3
92.27 C3 94.32 D1 E2 95.14 C2 D2 H3 95.47 B1 C2 D2 H3 95.54 B3 C2 D2 E2 H3 95.59 A4 B1 C2 D2 D3 H3
91.46 C1 94.32 D2 E2 94.97 B3 C2 D2 95.37 B1 B4 C2 D2 95.42 B1 B3 C2 D2 D3 95.55 B2 B3 B4 C2 D2 E2
91.29 D2 94.22 C2 D1 94.94 C2 D1 H3 95.30 B1 B3 C2 D2 95.42 B1 B4 C2 D2 E2 95.55 B1 B2 C2 D1 D2 E2
90.98 D3 93.74 B3 C2 94.92 D1 E2 H3 95.29 B2 C2 D2 H3 95.40 B1 C2 D2 D3 H3 95.47 A4 B3 C2 D2 E2 H3

WT5

67.37 A2 86.25 A1 E2 90.23 A3 C3 E2 90.70 A2 C3 E2 E3 91.23 A1 B2 C3 E2 E3 91.49 A1 B3 C1 C3 E3 G1
67.28 A3 86.08 A3 E2 90.12 A2 C3 E2 90.64 A3 C3 E2 E3 91.22 A3 B2 C3 E2 E3 91.47 A2 B3 C1 C3 E3 G1
67.21 A1 86.05 A2 E2 90.12 A1 C3 E2 90.63 A1 C3 E2 E3 91.22 A2 B3 C3 E2 E3 91.46 A2 B1 C1 E2 E3 G1
66.31 B3 85.96 A3 E3 90.01 A2 C2 E3 90.62 A1 B1 C3 E2 91.22 A1 B1 C3 E2 E3 91.42 A3 B3 C1 C3 E3 G1
66.27 B2 85.92 A3 E1 89.98 A2 C3 E3 90.59 A1 B3 C3 E2 91.22 A1 B3 C3 E2 E3 91.42 A2 B2 C1 C3 E2 E3

(b) F1-score

F1-Score 1F F1-Score 2F F1-Score 3F F1-Score 4F F1-Score 5F F1-Score 6F

WT1

0.9238 A1 0.9397 A2 E3 0.9403 A2 B2 B3 0.9403 A1 B1 B2 B3 0.9404 A3 A4 B1 B3 B4 0.9398 A1 A2 A3 B1 B2 B3
0.9237 A3 0.9396 A1 E3 0.9398 A3 B4 E2 0.9399 A1 A3 B4 E3 0.9399 A1 A2 A3 B4 E3 0.9395 A1 A4 B1 B2 B3 B4
0.9231 A2 0.9397 A3 B1 0.9402 A2 B1 B3 0.9398 A1 A2 A3 E3 0.9397 A1 A3 A4 B4 E3 0.9398 A1 A2 A3 A4 B4 E2
0.8448 B3 0.9394 A3 E3 0.9399 A1 A3 E3 0.9400 A3 A4 B2 B3 0.9398 A1 A4 B1 B3 B4 0.9393 A1 A3 A4 B1 B2 B3
0.8442 B2 0.9395 A2 B3 0.9401 A1 B1 B2 0.9399 A2 A4 B2 B3 0.9397 A3 B1 B2 B3 B4 0.9392 A1 A2 A3 A4 B1 B2

WT2

0.8875 B3 0.9557 A3 C2 0.9616 A2 C2 D1 0.9646 B1 C2 D1 G3 0.9671 A3 B1 C2 D2 G3 0.9680 A2 A3 B3 C2 D2 H1
0.8862 B1 0.9553 A1 C2 0.9612 A3 C2 D1 0.9646 A3 C2 D1 G3 0.9666 A2 B2 C2 D1 G3 0.9677 A1 A3 B1 C2 D2 H1
0.8858 B2 0.9539 A2 C2 0.9606 A3 C2 D2 0.9642 A2 C2 D1 H1 0.9659 A1 A3 C2 D2 H1 0.9677 A1 A2 B3 C2 D1 G3
0.8730 C2 0.9526 B2 C2 0.9596 A1 C2 D1 0.9642 B1 C2 D2 G3 0.9659 A2 A3 C2 D1 H1 0.9677 A2 A3 B1 C2 D2 G3
0.8555 E1 0.9505 B3 C2 0.9584 A2 C2 D2 0.9642 A1 C2 D2 G3 0.9658 A3 B3 C2 D1 G1 0.9676 A1 A2 B1 C2 D1 H1

WT3

0.8825 C3 0.9198 A2 E3 0.9205 A3 B1 E3 0.9264 A3 C1 D3 E3 0.9289 B3 C1 C3 D2 E3 0.9309 B3 C1 C3 D2 E1 E3
0.8827 C2 0.9190 A1 E3 0.9194 B1 C3 E3 0.9255 A1 C1 D3 E3 0.9288 B3 C1 C3 D2 E1 0.9306 B1 C1 C3 D2 E1 E3
0.8229 B1 0.9182 A3 E3 0.9196 A2 B3 E3 0.9244 B1 C1 D1 E3 0.9285 A3 C1 D2 E1 E3 0.9301 A2 C1 C3 D2 E1 E3
0.8197 B2 0.9158 B2 E3 0.9207 A3 A4 E3 0.9239 B3 C1 D3 E3 0.9281 B1 C1 C3 D2 E3 0.9299 A3 C1 C3 D2 E1 E3
0.8189 B3 0.9150 B1 E3 0.9185 B3 C3 E3 0.9242 B2 C1 D2 E3 0.9279 B2 C1 C3 D2 E1 0.9300 B1 B4 C1 C3 D2 E3

WT4

0.9369 C2 0.9453 C2 D2 0.9521 B1 C2 D2 0.9559 B1 C2 D2 E2 0.9562 B1 B2 C2 D2 H3 0.9578 B1 C2 D2 D3 E2 H3
0.9261 C3 0.9442 D1 E2 0.9518 C2 D2 H3 0.9551 B1 C2 D2 H3 0.9556 B3 C2 D2 E2 H3 0.9562 A4 B1 C2 D2 D3 H3
0.9179 C1 0.9441 D2 E2 0.9499 B3 C2 D2 0.9541 B1 B4 C2 D2 0.9544 B1 B3 C2 D2 D3 0.9560 B2 B3 B4 C2 D2 E2
0.9157 D2 0.9431 C2 D1 0.9499 C2 D1 H3 0.9533 B1 B3 C2 D2 0.9546 B1 B4 C2 D2 E2 0.9557 B1 B2 C2 D1 D2 E2
0.9124 D3 0.9383 B3 C2 0.9500 D1 E2 H3 0.9534 B2 C2 D2 H3 0.9543 B1 C2 D2 D3 H3 0.9551 A4 B3 C2 D2 E2 H3

WT5

0.7532 A2 0.8767 A1 E2 0.9072 A3 C3 E2 0.9115 A2 C3 E2 E3 0.9159 A1 B2 C3 E2 E3 0.9165 A1 B3 C1 C3 E3 G1
0.7526 A3 0.8755 A3 E2 0.9062 A2 C3 E2 0.9109 A3 C3 E2 E3 0.9160 A3 B2 C3 E2 E3 0.9163 A2 B3 C1 C3 E3 G1
0.7522 A1 0.8752 A2 E2 0.9063 A1 C3 E2 0.9108 A1 C3 E2 E3 0.9158 A2 B3 C3 E2 E3 0.9163 A2 B1 C1 E2 E3 G1
0.7472 B3 0.8742 A3 E3 0.9053 A2 C2 E3 0.9104 A1 B1 C3 E2 0.9159 A1 B1 C3 E2 E3 0.9159 A3 B3 C1 C3 E3 G1
0.7469 B2 0.8680 A3 E1 0.9050 A2 C3 E3 0.9100 A1 B3 C3 E2 0.9159 A1 B3 C3 E2 E3 0.9177 A2 B2 C1 C3 E2 E3

The specific features selected by the algorithms are included in Table 3, coded with a letter and
a number. The letter indicates the group of the feature, while the number stands for the exact
variable code (1: average; 2: min; 3: max; 4: sdv (standard deviation)). Table 2 contains the
translation from the variable code to the variable name. For instance, in Table 3 and using only
one feature, the best result for WT1 is 91.79% with the feature A1. Table 2 indicates that this feature is
“WGDC.TrfGri.PwrAt.cVal.avgVal”, meaning the active power (letter A), averaged value (number 1).
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Figure 4. Evolution of the CR(%) against the number of features. (a) Quasi-optimal feature selection
algorithm, all WT. (b–f) Specific results for each WT and all the automatic feature selection algorithms
analyzed. The dashed line in each panel corresponds to the quasi-optimal result for that specific WT.

5.1. Quasi-Optimal vs. Automatic Feature Selection

The next step is to look for a feature selection algorithms able to obtain similar results with a few
number of features. Results for those feature selection algorithms are presented in panels (b) to (f)
of Figure 4. Each panel corresponds to a WT and contains the result obtained for the quasi-optimal
method (as a reference, dashed line) and the results obtained with all the others algorithms for this
WT. As can be observed, some WT are easy to model (see for example WT4) while others are more
challenging (see for example WT5). Numerical results for all the experiments are detailed in Table 4,
again showing the CR and the F1. When comparing results obtained by the quasi-optimal exploratory
method and the automatic feature selection methods, QO results are always the best ones, as expected,
but several automatic methods obtain also very good results.
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Table 4. CR (a) and F1-score (b) numerical results for best features for the automatic feature selection
algorithms analyzed and each WT. Results are grouped in sub-tables for each algorithm, and each row
of each sub-table corresponds to wind turbines (WT1 to WT5). The selected features are coded with the
variable codes detailed in Table 2.

(a) CR(%)

CR(%) 1F CR(%) 2F CR(%) 3F CR(%) 4F CR(%) 5F CR(%) 6F

CMI

64.73 E1 66.93 E1 E4 83.19 E1 E4 F1 85.89 E1 E4 F1 H1 88.52 A1 E1 E4 F1 H1 89.9 A1 C4 E1 E4 F1 H1
53.58 E4 91.76 C2 E4 92.72 C2 E4 H1 94.68 A2 C2 E4 H1 95.51 A2 C2 D3 E4 H1 95.26 A2 C2 D3 E2 E4 H1
66.03 D3 82.92 B1 D3 86.97 B1 C2 D3 89.24 B1 C2 D3 G3 90.31 B1 C2 D3 E3 G3 89.90 B1 C2 D3 E3 F4 G3
91.62 D2 90.45 D2 F3 93.27 D2 E2 F3 93.15 D2 E2 E3 F3 92.95 A1 D2 E2 E3 F3 92.50 A1 D2 E2 E3 F3 H4
53.24 E2 70.03 C3 E2 85.71 C3 E2 H3 84.16 C3 E2 F4 H3 85.03 C3 E2 F4 H1 H3 86.72 A1 C3 E2 F4 H1 H3

CMIM

64.68 E1 66.74 E1 E4 67.66 E1 E2 E4 83.59 C1 E1 E2 E4 84.94 C1 C2 E1 E2 E4 85.46 C1 C2 E1 E2 E3 E4
53.68 E4 89.29 D1 E4 93.73 A1 D1 E4 94.64 A1 D1 E2 E4 94.78 A1 D1 E2 E3 E4 95.14 A1 D1 E1 E2 E3 E4
66.02 D3 84.37 C3 D3 88.71 B1 C3 D3 85.15 B1 C3 D3 H3 86.13 B1 C3 D3 F1 H3 86.25 A1 B1 C3 D3 F1 H3
91.60 D2 92.63 D2 E3 93.55 D2 E2 E3 92.91 A1 D2 E2 E3 93.21 A1 D2 E2 E3 F4 93.03 A1 D2 E2 E3 F3 F4
53.24 E2 56.31 E2 E3 71.53 E2 E3 F4 72.64 E1 E2 E3 F4 72.62 E1 E2 E3 E4 F4 81.87 C1 E1 E2 E3 E4 F4

DISR

64.84 E1 66.9 E1 E4 66.98 B4 E1 E4 79.69 B4 C4 E1 E4 80.83 B4 C4 E1 E2 E4 80.72 A4 B4 C4 E1 E2 E4
53.62 E4 53.05 A4 E4 62.10 A4 C4 E4 92.83 A4 C2 C4 E4 94.40 A1 A4 C2 C4 E4 94.46 A1 A4 C1 C2 C4 E4
65.84 D3 65.91 A4 D3 84.76 A4 C3 D3 84.57 A4 C3 D1 D3 86.08 A4 C1 C3 D1 D3 86.43 A4 C1 C3 D1 D2 D3
91.52 D2 91.19 A4 D2 91.25 A4 D1 D2 92.07 A4 D1 D2 D3 91.96 A4 B4 D1 D2 D3 93.05 A4 B4 D1 D2 D3 E3
53.19 E2 70.07 C3 E2 69.99 C3 E1 E2 70.51 C3 E1 E2 E3 70.80 C2 C3 E1 E2 E3 70.89 C2 C3 C4 E1 E2 E3

ICAP

64.64 E1 66.84 E1 E4 82.66 C1 E1 E4 83.48 C1 E1 E3 E4 86.50 C1 E1 E3 E4 G1 89.53 A1 C1 E1 E3 E4 G1
53.65 E4 89.30 D1 E4 93.45 A1 D1 E4 94.84 A1 D1 E2 E4 95.02 A1 D1 E1 E2 E4 95.08 A1 D1 E1 E2 E3 E4
66.28 D3 84.43 C3 D3 88.25 B1 C3 D3 85.13 B1 C3 D3 H3 86.34 B1 C3 D3 F1 H3 86.55 A1 B1 C3 D3 F1 H3
92.08 D2 92.80 D2 E3 92.71 A1 D2 E3 92.31 A1 D2 E3 F4 91.65 A1 D2 E3 F3 F4 92.54 A1 D2 E3 F3 F4 H1
53.23 E2 56.35 E2 E3 71.69 E2 E3 F4 73.97 C4 E2 E3 F4 82.60 C1 C4 E2 E3 F4 79.92 C1 C4 E2 E3 F2 F4

JMI

64.67 E1 66.82 E1 E4 67.75 E1 E2 E4 68.35 E1 E2 E3 E4 81.13 C4 E1 E2 E3 E4 85.78 C2 C4 E1 E2 E3 E4
53.30 E4 91.96 C2 E4 94.45 A1 C2 E4 95.17 A1 C2 D1 E4 95.07 A1 A2 C2 D1 E4 94.99 A1 A2 C2 D1 E2 E4
66.26 D3 82.39 B1 D3 88.40 B1 C3 D3 89.12 B1 C3 D2 D3 88.44 B1 C3 D1 D2 D3 89.94 B1 C1 C3 D1 D2 D3
91.43 D2 91.30 D2 F3 92.02 D2 D3 F3 92.73 D2 D3 E3 F3 92.84 D1 D2 D3 E3 F3 93.49 D1 D2 D3 E2 E3 F3
53.28 E2 69.95 C3 E2 69.96 C3 E1 E2 81.29 C3 E1 E2 F4 82.09 C3 E1 E2 E3 F4 82.68 C2 C3 E1 E2 E3 F4

MIFS

64.68 E1 64.76 B4 E1 65.05 A4 B4 E1 71.76 A4 B4 D4 E1 72.57 A4 B4 D4 E1 G4 82.56 A4 B4 C4 D4 E1 G4
53.62 E4 53.54 A4 E4 53.11 A4 B4 E4 69.82 A4 B4 E4 G4 72.06 A4 B4 E4 F4 G4 86.47 A4 B4 D4 E4 F4 G4
66.27 D3 66.10 B4 D3 66.43 A4 B4 D3 72.47 A4 B4 C4 D3 74.91 A4 B4 C4 D3 G4 81.55 A4 B4 C4 D3 G1 G4
91.71 D2 91.48 A4 D2 91.77 A4 B4 D2 91 A4 B4 D2 G4 91.81 A4 B4 C4 D2 G4 92.56 A4 B4 C4 D2 G3 G4
53.23 E2 53.42 A4 E2 54.09 A4 B4 E2 66.56 A4 B4 E2 G4 76.26 A4 B4 E2 G4 H2 80.36 A4 B4 C4 E2 G4 H2

mRMR

64.83 E1 64.94 B4 E1 64.74 A4 B4 E1 78.19 A4 B4 C4 E1 81.16 A4 B4 C4 D4 E1 83.89 A4 B4 C4 D4 E1 H1
53.44 E4 53.26 A4 E4 69.94 A4 E4 G4 70.05 A4 B4 E4 G4 71.76 A4 B4 E4 F4 G4 86.77 A4 B4 D4 E4 F4 G4
65.81 D3 66.14 B4 D3 66.14 A4 B4 D3 72.29 A4 B4 C4 D3 74.63 A4 B4 C4 D3 G4 81.33 A4 B4 C4 D3 G1 G4
91.45 D2 91.32 A4 D2 91.88 A4 B4 D2 90.68 A4 B4 D2 G4 91.37 A4 B4 C4 D2 G4 93.12 A4 B4 C4 D2 G3 G4
53.24 E2 53.44 A4 E2 54.16 A4 B4 E2 66.37 A4 B4 E2 G4 76.29 A4 B4 E2 G4 H2 80.40 A4 B4 C4 E2 G4 H2

(b) F1-score

F1-Score 1F F1-Score 2F F1-Score 3F F1-Score 4F F1-Score 5F F1-Score 6F

CMI

0.7015 E1 0.7198 E1 E4 0.8326 E1 E4 F1 0.8608 E1 E4 F1 H1 0.8874 A1 E1 E4 F1 H1 0.9010 A1 C4 E1 E4 F1 H1
0.6630 E4 0.9195 C2 E4 0.9279 C2 E4 H1 0.9477 A2 C2 E4 H1 0.9555 A2 C2 D3 E4 H1 0.9528 A2 C2 D3 E2 E4 H1
0.7341 D3 0.8359 B1 D3 0.8731 B1 C2 D3 0.8966 B1 C2 D3 G3 0.9072 B1 C2 D3 E3 G3 0.9040 B1 C2 D3 E3 F4 G3
0.9178 D2 0.9051 D2 F3 0.9333 D2 E2 F3 0.9322 D2 E2 E3 F3 0.9298 A1 D2 E2 E3 F3 0.9252 A1 D2 E2 E3 F3 H4
0.6812 E2 0.7618 C3 E2 0.8597 C3 E2 H3 0.8436 C3 E2 F4 H3 0.8522 C3 E2 F4 H1 H3 0.8695 A1 C3 E2 F4 H1 H3

CMIM

0.7015 E1 0.7185 E1 E4 0.7262 E1 E2 E4 0.8403 C1 E1 E2 E4 0.8537 C1 C2 E1 E2 E4 0.8592 C1 C2 E1 E2 E3 E4
0.6633 E4 0.8953 D1 E4 0.9385 A1 D1 E4 0.9472 A1 D1 E2 E4 0.9484 A1 D1 E2 E3 E4 0.9520 A1 D1 E1 E2 E3 E4
0.7338 D3 0.8480 C3 D3 0.8901 B1 C3 D3 0.8567 B1 C3 D3 H3 0.8637 B1 C3 D3 F1 H3 0.8683 A1 B1 C3 D3 F1 H3
0.9188 D2 0.9273 D2 E3 0.9363 D2 E2 E3 0.9295 A1 D2 E2 E3 0.9325 A1 D2 E2 E3 F4 0.9314 A1 D2 E2 E3 F3 F4
0.6812 E2 0.6933 E2 E3 0.7382 E2 E3 F4 0.7489 E1 E2 E3 F4 0.7490 E1 E2 E3 E4 F4 0.8302 C1 E1 E2 E3 E4 F4

DISR

0.7022 E1 0.7194 E1 E4 0.7194 B4 E1 E4 0.8088 B4 C4 E1 E4 0.8201 B4 C4 E1 E2 E4 0.8188 A4 B4 C4 E1 E2 E4
0.6638 E4 0.6584 A4 E4 0.7063 A4 C4 E4 0.9302 A4 C2 C4 E4 0.9449 A1 A4 C2 C4 E4 0.9455 A1 A4 C1 C2 C4 E4
0.7330 D3 0.7319 A4 D3 0.8515 A4 C3 D3 0.8484 A4 C3 D1 D3 0.8637 A4 C1 C3 D1 D3 0.8681 A4 C1 C3 D1 D2 D3
0.9179 D2 0.9146 A4 D2 0.9140 A4 D1 D2 0.9223 A4 D1 D2 D3 0.9210 A4 B4 D1 D2 D3 0.9313 A4 B4 D1 D2 D3 E3
0.6810 E2 0.7620 C3 E2 0.7572 C3 E1 E2 0.7612 C3 E1 E2 E3 0.7623 C2 C3 E1 E2 E3 0.7629 C2 C3 C4 E1 E2 E3

ICAP

0.7009 E1 0.7188 E1 E4 0.8310 C1 E1 E4 0.8389 C1 E1 E3 E4 0.8666 C1 E1 E3 E4 G1 0.8970 A1 C1 E1 E3 E4 G1
0.6627 E4 0.8949 D1 E4 0.9358 A1 D1 E4 0.9490 A1 D1 E2 E4 0.9508 A1 D1 E1 E2 E4 0.9514 A1 D1 E1 E2 E3 E4
0.7358 D3 0.8480 C3 D3 0.8858 B1 C3 D3 0.8562 B1 C3 D3 H3 0.8696 B1 C3 D3 F1 H3 0.8715 A1 B1 C3 D3 F1 H3
0.9226 D2 0.9291 D2 E3 0.9275 A1 D2 E3 0.9234 A1 D2 E3 F4 0.9174 A1 D2 E3 F3 F4 0.9252 A1 D2 E3 F3 F4 H1
0.6811 E2 0.6935 E2 E3 0.7394 E2 E3 F4 0.7617 C4 E2 E3 F4 0.8371 C1 C4 E2 E3 F4 0.8129 C1 C4 E2 E3 F2 F4

JMI

0.7006 E1 0.7186 E1 E4 0.7272 E1 E2 E4 0.7324 E1 E2 E3 E4 0.8229 C4 E1 E2 E3 E4 0.8623 C2 C4 E1 E2 E3 E4
0.6613 E4 0.9212 C2 E4 0.9454 A1 C2 E4 0.9523 A1 C2 D1 E4 0.9514 A1 A2 C2 D1 E4 0.9505 A1 A2 C2 D1 E2 E4
0.7350 D3 0.8307 B1 D3 0.8872 B1 C3 D3 0.8950 B1 C3 D2 D3 0.8883 B1 C3 D1 D2 D3 0.9024 B1 C1 C3 D1 D2 D3
0.9167 D2 0.9133 D2 F3 0.9204 D2 D3 F3 0.9276 D2 D3 E3 F3 0.9285 D1 D2 D3 E3 F3 0.9354 D1 D2 D3 E2 E3 F3
0.6814 E2 0.7613 C3 E2 0.7568 C3 E1 E2 0.8242 C3 E1 E2 F4 0.8319 C3 E1 E2 E3 F4 0.8377 C2 C3 E1 E2 E3 F4

MIFS

0.7013 E1 0.7014 B4 E1 0.7035 A4 B4 E1 0.7238 A4 B4 D4 E1 0.7259 A4 B4 D4 E1 G4 0.8275 A4 B4 C4 D4 E1 G4
0.6635 E4 0.6610 A4 E4 0.6579 A4 B4 E4 0.6979 A4 B4 E4 G4 0.7203 A4 B4 E4 F4 G4 0.8659 A4 B4 D4 E4 F4 G4
0.7351 D3 0.7329 B4 D3 0.7335 A4 B4 D3 0.7326 A4 B4 C4 D3 0.7528 A4 B4 C4 D3 G4 0.8213 A4 B4 C4 D3 G1 G4
0.9195 D2 0.9172 A4 D2 0.9199 A4 B4 D2 0.9103 A4 B4 D2 G4 0.9180 A4 B4 C4 D2 G4 0.9258 A4 B4 C4 D2 G3 G4
0.6812 E2 0.6815 A4 E2 0.6841 A4 B4 E2 0.6888 A4 B4 E2 G4 0.7639 A4 B4 E2 G4 H2 0.8058 A4 B4 C4 E2 G4 H2

mRMR

0.7025 E1 0.7027 B4 E1 0.7004 A4 B4 E1 0.7948 A4 B4 C4 E1 0.8169 A4 B4 C4 D4 E1 0.8414 A4 B4 C4 D4 E1 H1
0.6618 E4 0.6594 A4 E4 0.6994 A4 E4 G4 0.6988 A4 B4 E4 G4 0.7182 A4 B4 E4 F4 G4 0.8689 A4 B4 D4 E4 F4 G4
0.7322 D3 0.7331 B4 D3 0.7315 A4 B4 D3 0.7301 A4 B4 C4 D3 0.7507 A4 B4 C4 D3 G4 0.8199 A4 B4 C4 D3 G1 G4
0.9168 D2 0.9159 A4 D2 0.9212 A4 B4 D2 0.9071 A4 B4 D2 G4 0.9137 A4 B4 C4 D2 G4 0.9316 A4 B4 C4 D2 G3 G4
0.6812 E2 0.6816 A4 E2 0.6843 A4 B4 E2 0.6869 A4 B4 E2 G4 0.7646 A4 B4 E2 G4 H2 0.8063 A4 B4 C4 E2 G4 H2
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Among all the automatic algorithms, CMI emerges as stable along all the WT and obtaining
(almost) always a very good result, comparable to that obtained with the quasi-optimal method for
a number of features equal or higher than 4.

By exploring all possible combinations of features, the optimal number of features is determined.
As can be seen, CR saturates for 6 features, therefore the system will not increases its performance by
adding new features. It is important to keep the number of features as small as possible in order to develop
less complex classification systems. Besides, if systems are less complex it will be easier to train the
models and the risk of overfitting will be lower. Finally, using a small number of features can allow to
graphically represent the information, if having up to 3 features. This is of great importance as a tool in
the front-end of real applications for the managers of the wind farms. Hence, CMI with 3 or 4 features
is a good choice in the experiment, with CR and F1 comparable to the quasi-optimal one for all WT.

5.2. Effect of the Number of Neighbors Considered

To analyze the effect of the number of neighbors in the k-NN algorithm, experiments exploring all
the cases for k = 1 to k = 50 in all the algorithms are performed, using the best combination of features
for each case.

When analyzing the quasi-optimal case, k = 1 is the best option for all the WT. When using any
of the automatic feature selection algorithms, if the number of features is small then the number
of neighbors affects the CR and habitually k = 1 is not the best. Nevertheless, even increasing the
number of neighbors, the obtained CR is lower that the QO case for the number of features analyzed.
If the number of features increases, and therefore also the CR increases, k = 1 becomes again the best
option and CR tends to the QO case. The advantage of increasing the neighbors is compensated
by increasing the number of features. This effect can be observed in Figure 5: On the left column,
the evolution of the CR as a function of k, for the quasi-optimal set of features (1 to 6) for WT1 and WT3,
is presented. On the right column, the same WT but now using features obtained with the best feature
selection algorithm among all the analyzed algorithms. Note that increasing the number of neighbors
is only useful for the CMI algorithm when the number of features used is small (1 or 2), but does not
help increase the CR when the number of features is larger. For the quasi-optimal feature selection
algorithm, k = 1 is (almost) always the best option regardless of the number of features. Therefore,
changing the number of neighbors has only impact when using 1 or 2 features in the CMI algorithm
and degrades CR when the number of features is large or when the QO method is used.

Figure 5. Cont.
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Figure 5. Effect of the number of neighbors for WT1 and WT3. Each colored curve corresponds to a specific
number of features, from 1 to 6. Only the QO and the CMI feature selection algorithms are reported here.

6. Conclusions

In this paper, several methods for automatic feature selection for wind turbine failure prediction
are explored and their performances are compared against the proposed quasi-optimal feature selection
method detailed in Section 4.2. Experimental results using the 36 sensor variables listed in Table 2
show that CMI algorithm obtains good CR for all the wind turbine with up to six features and only
one neighbour. Therefore, the speed of the system can be increased by using this algorithm instead of
exhaustive search-based quasi-optimal strategy. The advantages are its low computational costs and
fast speed calculations in order to find the best subset of features for wind turbine failure prediction.
Although our study confirms that a selected set of three to six more discriminant variables are required
to obtain the best prognosis performance, that selection is rather difficult to be represented. This is why
sets of three selected variables, admitting a 3D Cartesian plot, becomes interesting. In this scenario,
time evolution can be included generating plot animations. These dynamic representations provide
powerful and intuitive insights about the behaviour of variables 21 days before failure occurs and
becomes a useful tool to improve the models used for prognostic. In future works the dynamic
representations of three features will be explored, allowing to visualize interactions between them,
with the aim of simplifying and facilitating the management of wind farms.
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