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Abstract: Energy storage system (ESS) technology is still the logjam for the electric vehicle (EV)
industry. Lithium-ion (Li-ion) batteries have attracted considerable attention in the EV industry
owing to their high energy density, lifespan, nominal voltage, power density, and cost. In EVs, a
smart battery management system (BMS) is one of the essential components; it not only measures the
states of battery accurately, but also ensures safe operation and prolongs the battery life. The accurate
estimation of the state of charge (SOC) of a Li-ion battery is a very challenging task because the Li-ion
battery is a highly time variant, non-linear, and complex electrochemical system. This paper explains
the workings of a Li-ion battery, provides the main features of a smart BMS, and comprehensively
reviews its SOC estimation methods. These SOC estimation methods have been classified into four
main categories depending on their nature. A critical explanation, including their merits, limitations,
and their estimation errors from other studies, is provided. Some recommendations depending on
the development of technology are suggested to improve the online estimation.

Keywords: battery management system; energy storage system; electric vehicle; lithium-ion battery;
state of charge

1. Introduction

The global reserves of diesel, petrol, and other fossil fuels are decreasing rapidly due to their
extensive use in transportation operation. The far-flung use of the traditional fuels produces tons of
CO2 yearly, which have harmful implications for the environment, such as greenhouse gas emissions
(GHGE) and global warming [1]. In addition, the costs of these fuels are increasing exponentially, so
there is a need for a secondary energy source for transportation, such as electric vehicles (EVs), new
energy vehicles (NEVs), plug-in hybrid electric vehicle (PHEVs), battery electric vehicles (BEVs), and
fuel cell electric vehicles (FCEVs) [2,3]. In recent years, rechargeable batteries (RBs) have attracted
considerable attention owing to their high demand in EVs, HEVs, and PHEVs [4–7]. With the use of
renewable energy, these transportation sources can reduce their GHGE by up to 40% [8]. The alternative
energy sources, such as wave, wind, tidal, and solar, are episodical, so these energy resources also
require an energy storage system (ESS) to maintain a smooth and reliable supply to the consumer [9].
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In recent years, United States, Japan, China, and Germany have taken keen interest in the performance
improvement of RBs and accomplished some significant results [10].

Different energy storage systems, such as lead-acid, lithium ion (Li-ion), sodium nickel chloride
(NaNiCl), vanadium redox flow battery (VRFB), nickel cadmium (NiCd), zinc bromine flow battery
(ZBFB), and sodium sulphur (NaS) batteries have been widely accepted for transportation in recent
years [11]. Among them, the Li-ion battery offers high reliability, high power density, long lifespan,
high energy density, low discharge rate, and high efficiency [3]. In addition, the cost of Li-ion batteries
is declining, which enhances their use in the EV industry [12] and therefore, the Li-ion battery market
is growing [13].

An efficient battery management system (BMS) is one of the primary components in EVs to
guarantee the safe, reliable, efficient, and long-lasting operation of a Li-ion battery while dealing
with the electric grid and challenging driving conditions [14–16]. Furthermore, an efficient BMS
also provides information on the battery states, such as the state of available power (SOP), state of
charge (SOC), state of life (SOL), and state of health (SOH). The BMS can sense the battery voltage,
battery current, and temperature to avoid overcharge and over discharge conditions. These measured
parameters can be utilized to estimate the states of the Li-ion battery [15,16].

Accurate SOC estimations have always been a critical and important concern in the design of
BMS in EVs. Accurate and precise estimations can not only be used to evaluate the reliability of a
battery, but also provide some important information, such as the remaining energy and/or remaining
useable time [17]. In other words, the SOC shows the vehicle driving range or the remaining power of
the battery in EVs. Furthermore, it prevents the Li-ion battery from over- charge/discharge. The Li-ion
battery is a highly complex, time varying and nonlinear electrochemical system; its performance
changes due to different factors, such as the charge-discharge current, aging, and temperature
variations. Therefore, accurate SOC estimation of Li-ion battery is a tricky task because it cannot be
directly assessed using any physical sensor [18]. Currently, the Li-ion battery SOC estimation is a hot
topic for researchers. An assortment of SOC estimation techniques has been reported over the last
decade. Figure 1 shows the trend of research articles published on SOC estimations for Li-ion batteries.

Figure 1. Number of publications on SOC estimation of Li-ion batteries per year.

These published research articles were found using the Web of Science database (http://isiknowledge.
com). The search criterion was the “state of charge” then “lithium ion battery” from 2006 to August 2018.
Figure 1 highlights the considerable interest in Li-ion battery SOC estimations in recent years.

This review paper discusses working and advantages of the Li-ion battery in EVs over other
energy storage systems. The general working of an effective BMS is presented in detail. This review
paper classifies the reported Li-ion battery SOC estimation techniques in different categories according
to their nature. This review also discusses their respective advantages and limitations. Finally, future
perspectives and recommendations are presented.

http://isiknowledge.com
http://isiknowledge.com


Energies 2019, 12, 446 3 of 33

2. Energy Storage Systems for EVs

EVs consist of four main parts: an energy storage system (battery), mechanical transmission
system, motor, and power converter [19]. Many energy storage systems are available, such as lead-acid,
NaS, NaNiCl, NiCd, VRFB, ZBFB, and Li-ion. Table 1 lists the properties of the aforementioned batteries.
Only ambient temperature batteries have been considered in EVs for safe and reliable operation.

Table 1. Properties of the different types of energy storage systems [20].

Battery Type Energy Density
(Wh/L)

Power Density
(W/L)

Nominal Voltage
(V) Life Cycle Depth of Discharge

(%)
Round Trip Efficiency

(%)
Estimated Cost

(USD/kWh)

Lead-acid 50–80 10–400 2.0 1500 50 82 105–475
NaS 140–300 140–180 2.08 5000 100 80 263–735
NaNiCl 160–275 150–270 - 3000 100 84 315–488
NiCd 60–150 80–600 1.3 2500 85 83 -
VRFB 25–33 1–2 1.4 13,000 100 70 315–1050
ZBFB 55–65 1–25 1.8 10,000 100 70 525–1680
Li-ion 200–400 1500–10,000 4.3 10,000 95 96 200–1260

Table 1 shows that among all the storage devices, the VRFB has the highest life cycle. The Li-ion
battery has the highest energy and power densities as compared to the others. In addition, the cost,
life cycle, and nominal voltage of the battery are also critical factors. The nominal voltage of a cell
is a critical point because it decides the quantity of single cells required in a battery pack for safe
and reliable operation. The Li-ion battery appears to be a better option because of its energy density,
lifespan, nominal voltage, power density, and cost. Figure 2 presents a spider chart of the different cell
chemistries for a better understanding and comparison [6].

Figure 2. Spider chart for the different battery chemistries.

Lithium Ion Battery

Figure 3 presents the simplified working diagram of a Li-ion battery. The Li-ion cell is made
of a positive electrode (anode), negative electrode (cathode), a separator, and two current collectors.
Li+ is transferred from the anode to the cathode through an electrolytic separator to complete the
discharging cycle. The negative electrode is generally formulated from graphite and the anode general
contains one of the following materials: Li-ion manganese oxide (LMO), Li-iron-phosphate (LFP), and
Li-nickel-manganese-cobalt-oxide (LNMC). Diethyl carbonate or ethylene carbonate are used as the
electrolyte. Aluminum and copper are used as positive and negative current collectors, respectively.
The chemical reactions of LMO/graphite are reported as an example of both charging discharging.

For charging:
LibMn2O4 → Lib−aMn2O4 + aLi+ + ae−

Li0C6 + aLi+ + ae− → LixC6

For discharging:
Lib−aMn2O4 + aLi+ + ae− → LibMn2O4
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LixC6 → Li0C6 + aLi+ + ae−

Figure 3. Schematic diagram of the Li-ion battery during the charging and discharging condition.

Different chemistries of Li-ion battery have been reported in the literature [21–24]. Table 2
compares the different types of Li-ion battery.

Table 2. Properties of the different types of Li-ion battery [10].

Type Energy Density
(Wh/kg)

Power Density
(W/kg)

Life Cycle
(100% DOD)

Estimated Cost
(US$/kWh) Safety Maturity

LMO 160 200 ≥2000 ~360 Good Commercial
LFP 120 200 ≥2500 ~360 Good Commercial
LNMC 200 200 ≥2000 ~360 Good Commercial
Li-titanate oxide 70 1000 ≥10,000 ~860 Good Demo
Li-sulfur 500 - ~100 - Good R&D stage

Although Li-ion battery is the best choice for EVs, it still needs a reduction in its capital cost along
with improving performance and high life cycle. The reduction in its capital cost can be achieved in
different ways, such as manufacturing and technology perspectives. A lot of efforts have been made to
improve the round-trip efficiency and depth of discharge of Li-ion battery. According to a report, the
reduction in the capital cost of Li-ion battery will be 77–574 USD/kWh from 200–1260 USD/kWh, the
improvement in the energy density will be 200–735Wh/L, and the round-trip efficiency will increase
2% till 2030 [20].

3. Battery Management System (BMS) for EVs

After substantial progress in ESS, an effective and reliable BMS is needed. According to the
most adopted definition, a BMS is a system that is capable of managing a battery [15]. The BMS in
EVs consists of different types of sensors, actuators, and controllers. An efficient BMS performs the
following main tasks: (i) protects the battery; (ii) operates the battery with a safe limit of current,
voltage and temperature; and (iii) measures and estimates the battery states precisely. Figure 4 presents
a schematic diagram of an efficient BMS.

The voltage and current measurement unit is installed to measure the voltages and currents of
the entire string as well as that of a single cell. The temperature control unit is added to measure the
temperature of the battery and coolant. The cooling and heating system can be controlled through
this unit. This system also contains some analogue and digital inputs, such as an accelerating pedal
sensor, brake pedal sensor, charging control, and engine ON/OFF switch. The balancing control unit
consists of power dissipation resistors and capacitors. This is used to equalize the SOC of the cells in



Energies 2019, 12, 446 5 of 33

battery packs. The safety unit is used to avoid physical damage to the battery packs. The system also
protects the battery packs from overcharge and over-discharge conditions. The digital output of the
BMS contains the SOC, SOH, balancing work indicator, and failure alarm. Considering the non-linear
and inconsistent behavior of a battery, a precise and accurate SOC estimation is a difficult task. For a
comprehensive diagram of an effective BMS, see Figure A1 of Appendix A.

Figure 4. General diagram of a BMS.

4. Methods to Estimate SOC

As discussed earlier, an accurate SOC estimation is the most crucial part of the BMS design in
EVs. This not only provides information on the useful energy, but also prevents the battery from
over charge/discharge condition. Therefore, the SOC estimation has attracted considerable interest, and
different methods have been presented in the literature, to estimate the SOC accurately and precisely. In
the present study, the estimation methods are classified into four main categories, as shown in Figure 5.
The direct measurement method estimates the SOC using the physical properties. Book keeping estimation
methods use the battery charge and discharge current as an input. In model-based methods, the battery
parameters and SOC are estimated using adaptive filters and observers. The last methods are based
purely on computer intelligence; they require high computational time and storage size.

The mean average error (MAE), maximum error (ME), and root mean square error (RMSE) can
be utilized to quantitatively appraise the performance of different SOC estimation methods. The
difference between the true and estimated value in continuous variables over the total number of
samples is known as MAE. The RMSE can be calculated by taking square root of the average of squared
difference between the true and estimated values in continuous variables. The mathematical forms of
MAE and RMSE can be expressed as:

MAE = 1
n

n
∑

i=1
(true value− predicted value) (1)

RMSE =

√
1
n

n
∑

i=1
(true value− predicted value)2 (2)

In Tables 3–21 the MAE and ME have been utilized to compare the results of different approaches.
The computational complexity of all the methods cannot be compared because every operating system
has different specs. The advantages and disadvantages of each method will be discussed in next section.
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Figure 5. Classification of the SOC estimation methods.
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4.1. Direct Measurements

A direct measurement SOC estimation method can be classified into the following four categories:
electromotive force (EMF) method, impedance spectroscopy (IS) method, internal resistance (IR)
method, and open circuit voltage (OCV) method. An explanation of each category is presented in their
relative section. Table 3 provides the estimation errors summary of all direct SOC methods at the end
of Section 4.1.

4.1.1. Open Circuit Voltage (OCV)

The OCV method can be utilized to measure the SOC after an adequate pause to allow the battery
to reach the equilibrium state. The Karhunen–Loeve expansion and linear regression method were
used to predict the OCV curves at different charging currents [25]. The relationship between the
SOC and OCV vary from battery to battery [26]. This method is very simple and highly accurate,
but it needs long resting time to reach the equilibrium state. The resting time also depends on the
environmental conditions. Moreover, careful measurements of the voltages are required due to the
hysteresis characteristics of the battery [27]. This method is generally used in laboratories or as
calibration auxiliary technology [28,29].

Figure 6 shows the working cycle of the OCV method. Initially, fully charge the Li-ion battery
and then relax it for a fixed time to depolarize. After depolarization, discharge the Li-ion using current
pulses until its full discharge, relax the battery for a fixed interval after each interval to depolarize and
then measure the OCV of the Li-ion battery. The same process has to perform to measure OCV during
charging mode.

Figure 6. Working cycle of OCV-SOC estimation methods.

4.1.2. Electromotive Force (EMF)

The SOC can also be measured using the EMF of the Li-ion battery. The EMF can be determined
to be the OCV when the battery is in equilibrium. The EMF is associated with the battery SOC. The
OCV using the EMF was modeled using different methods [30–32]. The SOC was then determined
using the modeled OCV value. Coleman et al. [31] proposed a model to predict the EMF voltage
for a SOC estimation. The authors divided the battery’s voltage curve into two parts. The first part
contained the linear region (full to partial SOC) and other has a hyperbolic region (partial to low SOC)
of the curve. In this method, the EMF was estimated using the load current and terminal voltage with
some coefficients for the linear region, impedance, and the terminal voltage; the battery current was
considered for the hyperbolic region. This model showed good results for a SOC estimation. Similarly,
another study [32] presented an approach to estimate the EMF by considering the short OCV relaxation
time after battery current stoppage. The proposed model has an EMF source with a parallel resistance
and a constant phase element. The EMF was estimated using the battery current and terminal voltage.
The algorithm took some time after interrupting the current to determine the EMF of the battery.
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4.1.3. Internal Resistance (IR)

This SOC estimation method used the battery charging/discharging current and terminal voltage
to estimate the resistance of the Li-ion battery, which is also known as the DC resistance. The terminal
voltage was measured with the change in current for a small interval of less than 10 milliseconds [33].
This small-time duration was always set to minimize the transfer reaction and acid diffusion effect; a
large time duration is associated with some error. This method is highly accurate at the end points of
the discharge. Recently, a direct current short pulse (DCSP) method has been proposed to determine
the IR [34]. The value of the resistance is very low which is challenging to measure [15]. Therefore, this
method is not a good choice for SOC estimation.

4.1.4. Impedance Spectroscopy (IS)

The internal impedance can be utilized to characterize a Li-ion battery under different conditions.
IS was applied to measure the SOC of a Li-ion battery. In the IS method, different current frequencies
are applied across the Li-ion battery to determine the impedance [35–38]. Once the internal impedance
is known, it can be plotted easily against the SOC. IS method can also be used for online SOC
estimation [39]. Different studies that used IS method for the SOC estimation are shown in Table 3.

Table 3. MAE of the direct SOC estimation methods.

Method Reference MAE (%)

OCV
Truchot et al. 2014 [28] Unspecified
V. Pop et al. 2006 [29] ≤± 1.2%

EMF Waag and Sauer. 2013 [32] ≤± 2%

IR
Wang and Liu. 2013 [33] Unspecified
Bao et al. 2018 [34] ≤± 1.4%

IS

Coleman et al. 2007 [31] Unspecified
Xu et al. 2013 [37] ≤± 1%
Westerhoff et al. 2016 [36] ≤± 2.75%
Wu et al. 2018 [38] ≤± 4%

4.2. Book-Keeping Estimations

Coulomb Counting (CC)

The CC method is based purely on the battery charging or discharging current. This method
integrates the battery charging or discharging current over time to find SOC [40]. The mathematical
form of the CC method can be expressed as:

SOC(t) = SOC(to)− 1
Q
∫ t

to
(η.ibat(t)− sd)dt, (3)

where SOC(to) and SOC(t) are the SOCs at initial time and sampling time t respectively; η is the
Columbic efficiency; ibat(t) is the instantaneous charging or discharging current (+ve for discharging
and -ve for charging); sd is the self-discharge rate, and Q is the nominal capacity. The implementation
of this method is quite simple with very low computational complexity. The initial unknown SOC is
the main concern in the CC. Moreover, the sensor error also has a negative effect on the accuracy of the
SOC estimation. Therefore, this method works more efficiently, where the SOC needs to be estimated
for the short period and the initial SOC is known [40]. Table 4 provides the estimation error summary
of the bookkeeping estimation method [41–45].
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Table 4. MAE/ME of the CC SOC estimation method.

Reference MAE (%)

Zhang et al. 2014 [41] ≤± 4%
Wu et al. 2017 [42] ≤± 1.905%
Xie et al. 2018 [43] ME ≤ ± 2.69%
Xu et al. 2009 [44] ME ≤ ± 6.5%
Cheng et al. 2011 [45] Unspecified

4.3. Model-Based Methods

The aforementioned conventional methods have some issues related to their efficiency and high
estimation accuracy in real time. Model-based SOC estimation methods overcome the deficiencies
of the conventional methods. Model-based methods use the Li-ion battery parameters to deploy the
battery model and then estimate its SOC using some advanced algorithms. The electrochemical model
(EChM) [46–50] and equivalent circuit model (ECM) [50–53] are the most commonly used model
for the Li-ion battery. For further details on the type of battery models, merits, and demerits, see
Rivera-Barrera et al. [40]. Figure 7 presents a general diagram of the model-based SOC estimation
methods. The voltage, current and, the temperature has been measured to model the Li-ion battery. The
difference between the estimated and true voltage value generated the error signal. The model-based
methods utilized this error signal to estimate the SOC of the Li-ion battery. The model-based estimation
methods are discussed herein separately in the subsequent sections.

Figure 7. General diagram of model-based SOC estimation methods.

4.3.1. Adaptive Filters (AF)

The adaptive filtering (AF) algorithm has been used frequently in model-based SOC estimations
of Li-ion batteries. The AF algorithm provides robustness and high accuracy to estimate the SOC of
Li-ion batteries. Over the past few years, the use of the AF algorithm has increased owing to its high
accuracy and self-correcting nature against varying input signals (current).

H Infinity Filter (H∞F)

The H infinity Filter (H∞F) is a popular methodology to solve the time-variant system like
Li-ion battery [54]. H∞F is a simply designed and highly robust SOC estimation methodology. The
method constructs a sub filter that can restrict the effects of uncertainty and perturbation of the
system model. H∞F does not require any specification of the disturbances and model uncertainties,
and it can also reduce the estimation error under the worst conditions; it is also known as a robust
version of the Kalman filter [54]. The performance of H∞F is more sensitive to the design parameters.
Zhang et al. [55] used the H∞F to address the issue of a battery SOC estimation in a 500kV transmission
line inspection robot under unknown statistical properties and errors. Their proposed H∞F showed better
result compared to the Kalman filter. In [56], a robust H∞F was presented to measure the SOC. Their
proposed methodology considered the time varying parameters to model a Li-ion battery. The proposed
algorithm was verified using six UDDS tests. The ME of their proposed algorithm was 2.49%. Different
variants of H∞F have also been reported [57–61]. The researchers mostly used the ECM battery model
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for SOC estimation. The H∞F method formulates the linear matrix inequalities (LMIs), which lessen the
effects of a NG system and disturbances. The recursive least square method and its variants has been
employed to identify the parameters [58,61]. The H∞F has also been merged with some other methods
to improve the SOC estimation accuracy [62–67]. This has been combined with neural networks [62],
genetic algorithms (GAs) [63], and unscented Kalman filters (UKFs) [64,66]. The accuracy of all the
joint estimators was high but the system was relatively complex. Table 5 lists the previous studies.

Table 5. MAE/ME of the H∞F and its variant-based method to estimate the SOC.

Reference MAE (%)

Zhang et al. 2012 [55] Unspecified
Zhang et al. 2014 [56] ≤±0.8436%
Zhu et al. 2017 [57] ≤± 3.96%
Zhang et al. 2017 [58] ≤± 0.02%
Xiong et al. 2017 [59] ≤± 1%
Xia et al. 2018 [60] ≤± 0.8%
Liu et al. 2018 [61] ≤± 0.6%
Alfi et al. 2014 [62] ME ≤ ± 1.1%
Lin et al. 2016 [63] ≤± 0.95%
Yu et al. 2017 [64] ≤± 0.5%
Lin et al. 2017 [66] Unspecified

Kalman Filter (KF)

This is another method for the state estimation of a dynamic system. This method is most
frequently used in the field of process control, surveying, transportation planning, biomedical field,
and BMS design of EVs [68–70]. In recent years, in addition to its high computational complexity,
the KF has attracted considerable interest to measure the SOC. The set of KF equations processes the
measurements recursively [71]. The main feature of the KF is that it can filter out the disturbance
(noise), high variations of measurements, and other inaccuracies of the system to estimate the states
accurately. The KF tackles the uncertainty of the input values by taking the weighted average between
the predicted and measured value [72]. To identify the system parameters, the KF can be used as a
unit Jacobian transformation [68]. Urbain et al. [73] implemented the KF in real time to measure the
SOC using simple ECM model. They showed that the maximum noted error was less than 5%. The
KF has also been merged with other SOC estimation techniques, such as the CC, OCV [72], GA [74],
and back-propagation neural network [75]. Some variants of KF, such as the square root cubature KF
(SRCKF) [76] and dual square root cubature KF (DSRCKF) [77] have been also reported. Table 6 lists
the previous studies.

Table 6. MAE/ME of KF based SOC estimation method.

Reference MAE (%)

Urbain et al. 2007 [73] ME ≤ ± 5%
Yatsui et al. 2011 [72] ≤± 1.76%
Zhao et al. 2018 [75] ≤± 0.04%
Cui et al. 2018 [76] ≤± 0.71%
Chen et al. 2017 [77] ≤± 1.2%

Extended Kalman Filter (EKF)

Different variants of the KF, such as the extended Kalman filter (EKF), have been used to deal
with nonlinearities of the system [54]. Recently, the EKF has attracted substantial interest as a method
to measure the SOC [78]. In the EKF, nonlinear system dynamics and model measurements have been
expanded through a linearization method, which linearize the battery model at each time step. The
state space model compares the predicted and measured value to increase the SOC estimation accuracy
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of a Li-ion battery [68]. The OCV-SOC estimator were designed using the EKF [79–82]. The EChM was
also adopted [79]. The adaptive extended Kalman filter (AEKF) scheme was implemented on the ECM
for SOC estimation [80,81]. The results highlighted the robustness and high accuracy of the proposed
techniques. In the Thevenin ECM, an extra RC branch was added to improve the estimation accuracy
using the EKF [83–85]. The hysteresis, Coulomb efficiency and polarization characteristics of Li-ion
battery were also analyzed [83,86]. Mastali et al. [87] implemented the EKF and dual EKF to predict
the SOC. They also discussed the battery geometry effects on the battery parameters. Some variants
of the EKF have also been reported [88–90]. The robust EKF (REKF) addresses the uncertainty in the
battery modelling and linearization error. The model also provides robustness against system noise.
Xiong et al. [91] proposed a dual time scale EKF SOC estimator. They used a macro scale for battery
parameter identification and a micro scale for the SOC prediction. Similarly, another study [92] used
the temperature compensated model with the EKF to address the effects of temperature on the battery
parameters. A grey predicted EKF was proposed to eliminate the effects of the truncation error [93].
The EKF in conjunction with a stochastic fuzzy neural network (SFNN) has been utilized for SOC
estimation [94]. The SFNN modeled the nonlinear dynamic characteristics of the battery and the EKF
estimated the SOC of a Li-ion battery. Table 7 lists the comparison of the previous studies.

Table 7. MAE/ME of the EKF, variants of the EKF and hybrid EKF-based SOC estimation method.

Reference MAE (%)

He et al. 2011 [83] ≤± 1.06%
Zhu et al. 2012 [84] ME ≤ ± 4.2%
Xiong et al. 2012 [81] ≤± 2.0%
Jiang et al. 2013 [82] ≤± 1.0%
Hu et al. 2013 [88] ≤± 1.0%
Chen et al. 2013 [85] ≤± 3.0%
Xiong et al. 2014 [91] ≤± 1.5%
Sepasi et al. 2014 [89] ≤± 1.5%
Wang et al. 2017 [90] Unspecified
Xie et al. 2018 [86] ME ≤ ± 2.0%
Yang et al. 2017 [92] ME ≤ ± 3.0%
Pan et al. 2017 [93] ≤± 1.3%
Huang et al. 2018 [78] Unspecified
Xu et al. 2012 [94] ME ≤ ± 0.6%

Unscented Kalman Filter (UKF)

When a system, such as a Li-ion battery, has severe non-linearities, tuning of the EKF becomes
arduous and it provides uncertain estimates because the EKF depends mainly on linearization to
disseminate the mean and covariance of the state [54]. Therefore, an UKF is used to minimize the
linearization error of EKF. The basic concept of the UKF is that it is simpler to assess a probability
distribution than a random non-linear function [68]. A deterministic “sigma point filter” approach
is used to obtain the covariance and mean of the state with minimum sample points. The UKF
carefully calculates the selected perturbations about the current state. The perturbed state propagates
to calculate the samples for the estimated state and predicted measurement. In the UKF, there is no
need to calculate the Jacobian matrix. The correctness of the UKF is better than EKF because it can
predict the high order non-linear system states accurately. The UKF is more complex than EKF because
of the modeling uncertainties and perturbations.

The UKF was implemented in several studies for the SOC estimation of the batteries [95–99]. The
CC and simple model was considered with the UKF for a SOC estimation [95]. Tian et al. [96] used the
UKF with a modified ECM to study the effects different temperatures and charge rates. Some variants
of the UKF have also been reported [100–107]. In [100,102], an adaptive UKF (AUKF) adaptively
adjusts the perturbation covariance of the state’s value; the zero-state battery hysteresis model was
selected to reduce the complexity [100]. A machine learning algorithm was used to train the battery
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model [101]. The comparison showed that the AUKF has a better accuracy and convergence rate than
the EKF, AEKF, and UKF. Cai et al. [103] addressed the issue of the battery model accuracy. They
proposed a fractional variable order model, which updates the value of the battery model adaptively.
The UKF was implemented to estimate the SOC for a fractional system. Another variant of UKF
method was used to calculate the noise directly [104]. This algorithm ensures symmetry in the matrices.
The particle filter (PF) was also combined with the UKF to increase its robustness [108]. The PF helps to
decrease the convergence time at the start because of the high initial error. Table 8 lists the performance
of the UKF and its variants.

Table 8. MAE/ME of the UKF, variants of the UKF and hybrid UK-based SOC estimation method.

Reference MAE (%)

He et al. 2013 [95] ME ≤ ± 4%
Tian et al. 2014 [96] ≤± 1.25%
Wang et al. 2018 [97] Unspecified
Sun et al. 2011 [100] ≤± 1.0%
Du et al. 2014 [101] ≤± 1.5%
Partovibakhsh et al. 2015 [102] ≤± 0.028%
Cai et al. 2017 [103] ME ≤ ± 1.51%
Liu et al. 2017 [104] ≤± 0.5%
Peng et al. 2017 [105] ≤± 1.49%
Chen et al. 2017 [106] ≤± 2.88%
Li et al. 2018 [107] ≤± 1.5%
Li et al. 2018 [108] ≤± 0.31%

Sigma Point Kalman Filter (SPKF)

This method is another way to improve the efficiency and correctness of a SOC measurement
of a nonlinear dynamic state space model, such as a Li-ion battery. The SPKF calculates the
statistics of arbitrary variables that experience a nonlinear transformation, and then forms the Kalman
time and measurement equations, which are the Gaussian assumption-based Bayesian estimation
equations [109]. The variance of the error in the posterior covariance was considered to compensate
for the linearization error. The posterior covariance and mean were calculated for limited values [16].
In the SPKF, there is no need to calculate the analytical derivatives (Jacobians and Hessians), as in the
case of EKF. The SPKF depends only on a functional evaluation. The SPKF has better accuracy and
robustness with same complexity as the EKF [71,109,110].

Plett [71] implemented the SPKF and EKF for SOC measurement. The results showed that the
SPKF has high accuracy than the EKF. In his subsequent work, Plett [110] introduced a variant of
the SPKF to increase its robustness. The UDDS test was performed to check the robustness of the
proposed SOC estimation strategy for a Li-ion battery. The joint estimation of the inner resistance and
SOC of a Li-ion battery by keeping other parameters constant was also proposed [111]. Another study
compared the Luenberger observer, EKF and SPKF [112]. Another variant is strong tacking sigma point
Kalman filter (STSPKF) [113], which used a strong tacking factor to adjust the process and measure the
perturbation in real time. Table 9 summarizes the performance of the SPKF and its variants.

Table 9. MAE/ME of the SPKF and variants of the SPKF-based SOC estimation method.

Reference MAE (%)

Plett. 2006 [71] ME ≤ ± 0.9%
He et al. 2012 [111] Unspecified
Li et al. 2013 [112] Unspecified
Li et al. 2015 [113] ≤± 0.83%
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Particle Filter (PF)

In the particle filter (PF), a Monte Carlo approximation approach is used to make a state
estimation [54]. In the PF, some random large particles have been chosen to approximate the conditional
probability density function [68]. This method has higher efficiency but at the cost of more complexity.
Different researchers used the PF to SOC estimation [114–117]. The PF was merged with other
techniques to improve its efficiency [118–120]. Fuzzy rules were used to model the battery and
the PF was utilized to provide a co-estimation of the state of maximum power available (SoMPA)
and SOC [118]. Furthermore, the forgetting factor RLS method was also used to determine the
battery parameters with the PF as a SOC estimator [120]. Different variants of the PF have also been
reported [121,122]. Recently, Ye et al. [123] proposed an online double scale and adaptive particle
filter. They reduced the computational cost of the algorithm by considering that the battery parameters
change more slowly than the SOC. They showed that the MAE of SOC estimation is less than 1%
after the systems stability, and the convergence time of the proposed algorithm was only 136 second.
Table 10 lists the performance of the UKF and its variants.

Table 10. MAE/ME of the PF, variants of the PF and hybrid PF-based SOC estimation method.

Reference MAE (%)

Gao et al. 2011 [114] Unspecified
Schwunk et al. 2013 [115] Unspecified
He et al. 2013 [117] ≤± 3.5%
Burgos-Mellado et al. 2016 [118] Unspecified
Zhou et al. 2016 [119] ME ≤ ± 1.61%
Xia et al. 2017 [121] ≤± 0.5%
Li et al. 2018 [122] ≤± 1%
Du et al. 2018 [120] ME ≤ ± 3.5%
Ye et al. 2018 [123] ≤± 1%

Recursive Least Square (RLS)

This is a very useful method to identify the parameters of a time-varying system. The least
square (LS) method identifies the system parameters by minimizing the least square error between
the measured and estimated value [68]. The RLS is utilized in AF to determine the gain; it makes this
process recursive and estimates the parameters of the system by amalgamating new information at
each time step.

The RLS and its variants have been used widely to determine the parameters of Li-ion battery
model [124–133]. The RLS has been applied to identify the characteristic of the battery for a 1st order
ECM [124,129,132]. The OCV estimator was designed to determine the SOC. The results highlighted the
robustness and high accuracy of the RLS. A recurrent neural network and RLS with a time dependent
forgetting factor was utilized to SOC estimation [125]. The fading KF (FKF) was also implemented for
SOC estimation [126]. The exponential and variable forgetting factor RLS methods were also used to
estimate the SOC [127,128,130]. Table 11 lists the performance of the RLS SOC estimation method.

Table 11. MAE/ME of the RLS, variants of the RLS and hybrid RLS-based SOC estimation method.

Reference MAE (%)

Hu et al. 2011 [124] ME ≤ ± 2.12%
Eddahech et al. 2012 [125] ≤± 1.03%
Safwat et al. 2017 [128] ≤± 3%
Duong et al. 2017 [129] ≤± 1.8%
Xia et al. 2017 [130] ≤± 1.41%
Ali et al. 2018 [132] ≤± 1.93%
Zhang et al. 2018 [133] ≤± 1%
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4.3.2. Observer-Based estimation (OBE)

Non-Linear Observer (NLO)

Recently, the linear observer (LO) and NLO has been utilized for state estimation of batteries.
The main drawback of the LO is the high estimation error compared to the NLO [134]. Xie et al. [135]
introduced the NLO SOC estimator methodology. Their proposed methodology did not use a complex
matrix operation for the estimation. The SOC was estimated using the OCV state space equations. The
proposed methodology showed less complexity, higher precision, and better robustness than the EKF
and sliding mode observer. An optimal adaptive gain nonlinear observer (OAGNO) was proposed
in another study to state estimation of a battery [136]. Recently, the particle-swarm optimization
algorithm was used to tune the observer. which showed high accuracy and robustness [137]. Other
variants of NLO were also proposed for the improvement of estimation accuracy of SOC of a Li-ion
battery [138,139]. For comparison of NLO-based SOC estimation methods, see Table 12.

Table 12. MAE/ME of the NLO-based SOC estimation method.

Reference MAE (%)

Xia et al. 2014 [135] ME ≤ ± 2.89%
Tian et al. 2017 [136] ≤± 0.74%
Ma et al. 2017 [137] ≤± 2.0%
Li et al. 2017 [138] ≤± 0.35%
Chen et al. 2018 [139] ME ≤ ± 2.98%

Sliding Mode Observer (SMO)

This method enhances the control, robustness, and stability of a Li-ion battery system against
perturbation [140–145]. The state equations are used to establish a battery model, and these equations
are used for the observer. Feedback is taken to control the sliding regtime to ensure robustness. The
SMO can compensate for modelling errors. Du et al. [146] proposed an adaptive SMO to address the
effect of chattering to during state estimation of a battery.

The 2nd order ECM was selected to compare the conventional and proposed SMO. The proposed
SMO showed better accuracy with a high convergence rate. The chattering effect was also addressed
using a second-order discrete-time SMO [147]. In [148], the dual SMO was proposed considering
the capacity fading effect for SOC estimation. To improve the efficiency, accuracy, and robustness of
the SMO, some variants, such as the adaptive gain SMO (AGSMO) [149], adaptive switching gain
SMO (ASGSMO) [150], super-twisting SMO (STSMO) [151], fractional order SMO (FOSMO) [152], and
Fuzzy SMO (FSMO) [153], have been reported in the literature. Table 13 shows the comparison of the
SMO-based SOC estimation methods.

Table 13. MAE/ME of the SMO-based SOC estimation method.

Reference MAE (%)

Kim et al. 2008 [140] ME ≤ ± 3%
Ning et al. 2016 [143] ME ≤ ± 2%
Ma et al. 2016 [144] ME ≤ ± 3%
Xia et al. 2017 [145] ≤± 0.86%
Chen et al. 2013 [150] Unspecified
Zhong et al. 2017 [153] ≤± 1%
Huangfu et al. 2018 [151] ≤± 2%
Chen et al. 2018 [148] ≤± 1%
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Proportional Integral Observer (PIO)

The proportional integral observer (PIO) is a widely adopted, simple, and efficient method,
because the feedback control system can be replaced easily using PIO. Xu et al. [154] adopted the 1st
order ECM for SOC estimation of a battery through the use of a PIO. The UDDS cycle was used for
validation. The robustness of their proposed methodology was quite high with acceptable accuracy.
In their subsequent work, Xu et al. [155] jointly used the CC and model-based estimation method
to improve the efficiency. They utilized a GA and PIO to determine the parameters and the SOC of
a battery, respectively. The highpoint of their second work was that it could work easily without
laboratory testing data. A comparison of the KF, SMO, Luenberger observer, and PIO was done
in [156,157]. The results highlighted the superior performance of the PIO. The PIO is also used in
combination with drifting corrector to address the issues of a flat OCV-SOC relation and current sensor
error for a LiFePO4 battery [26]. The issue of sensor error was addressed by dividing the measured
current into a true value, current sensor drifting, and zero-mean noise of the sensor. Zheng et al. [158]
merged the PIO and CC to estimate the SOC, capacity, and resistance of EChM. The influence of
aging on the estimation was also addressed. Recently [159], the PIO was employed to enhance the
linearization performance of the EKF. The RLS method was used to identify the 1st order ECM. The
proposed methods show good robustness with a dynamic current at different temperatures. Also in
another study [160], the two PIO were used to compensate for the inaccuracy of the SOC and current
sensor error. Furthermore, they compared their proposed method with the EKF. They showed that their
proposed method showed less complexity and higher accuracy than the EKF. For further comparison
of the PIO-based SOC estimation methods, see Table 14.

Table 14. MAE/ME of the PIO-based SOC estimation method.

Reference MAE (%)

Xu et al. 2014 [154,155] ME ≤ ± 2%
Tang et al. 2015 [26] ME ≤ ± 2.5%
Zheng et al. 2016 [158] ME ≤ ± 3.58%
Wei et al. 2017 [159] ME ≤ ± 5%
Meng et al. 2018 [160] ME ≤ ± 1.86%

Luenberger Observer (LO)

The Luenberger observer (LO) has been also used to provide state estimations of non-linear
and time varying systems [157,161]. Hu et al. [162] applied the LO for SOC estimation. They used a
1st order ECM for the estimation; the nonlinear least square method was utilized to identify the
battery parameters and a stochastic gradient approach was used to set the observer gain. The
proposed observer had low computational complexity. LO-based SOC estimator for EChM was
also proposed by including the effects of variable temperature to improve the SOC estimation accuracy
for Li-ion battery [163]. Recently, Tang et al. [164] presented another variant of the LO, a multi-gain
Luenberger observer (MGLO). They showed that the proposed observer addressed the issues of
modeling inaccuracy and sensor error for the SOC estimation. Their proposed method has higher
robustness, better accuracy, and similar complexity to the LO. Table 15 provides the comparison of the
LO-based SOC estimation methods.

Table 15. MAE/ME of the LO-based SOC estimation method.

Reference MAE (%)

Hu et al. 2010 [162] ME ≤ ± 2.5%
Tanim et al. 2015 [163] ME ≤ ± 2.6%
Tang et al. 2017 [164] Unspecified
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4.4. Computer Intelligence-Based Estimation Methods

4.4.1. Genetic Algorithm (GA)

The genetic algorithm (GA) is a biologically inspired optimization method to find the unknown
model parameters of a nonlinear system, such as a Li-ion battery. The GA generates a string of
chromosomes randomly and uses biological operators, such as crossover, selection, and mutation,
mutation, to find the optimal values. Zheng et al. [165] used the voltage-capacity rate curve and
implemented a GA to model the battery pack. They used four cell series-connected Li-ion batteries and
determined the capacities of the entire pack and individual cells. The maximum average SOC error of
a cell in a string was 0.54%. The GA was also implemented to find the second order ECM parameters
of a battery [166]. The formula using identified diffusion capacitance was derived to determine the
SOH of a Li-ion battery. The GA fused with some other model-based estimation methods was used
to estimate the SOC [155,167–171]. The GA was also utilized in tuning of the fading KF to further
improve the estimation of the SOC for a Li-ion battery [126]. Recently, the 3D OCV-SOC method was
proposed in which GA was utilized to find the SOC and SOH of a battery with high accuracy and
good convergence rate [172]. Table 16 reports the MAE for the GA and its variants.

Table 16. MAE/ME of the GA, variants of the GA and hybrid GA-based SOC estimation method.

Reference MAE (%)

Zheng et al. 2013 [165] ≤± 0.55%
Xu et al. 2014 [155] ≤± 2.0%
Khan et al. 2014 [168] ME ≤ ± 5.0%
Lim et al. 2016 [126] ME ≤ ± 2.0% (in UDDS); ≤± 3.0% (in real driving EV)
Mu et al. 2017 [171] ≤± 2.98%
Yang et al. 2017 [172] ME ≤ ± 2.1%
Chen et al. 2018 [169] ≤± 1.0%

4.4.2. Bacterial Foraging Algorithm (BFA)

The bacterial foraging algorithm (BFA) is a nature-inspired optimization technique that is
established on the social foraging behavior of Escherichia coli bacteria. The BFA has been successfully
used to solve many engineering and mathematical problems because of its simplicity and high
efficiency [173,174]. The BFA was also used to estimate the unknown parameters of the single particle
EChM of a Li-ion battery [175].

4.4.3. Particle Swarm Optimization (PSO)

PSO is also a nature-inspired approach. The basic idea of this methodology is stimulated from
the social behavior of different species, such as birds or fishes, interacting with each other or with
the surroundings [176]. In this methodology, the main objective is information sharing in the group,
where every individual bird in the flock does not know the precise location of the food, but they
can track down the food site easily through information sharing [177]. PSO has been implemented
successfully in many engineering problems to find optimal solutions [174,177–179]. PSO has been
used to identify the model parameters of a Li-ion battery [180–186]. Recently, an improved EKF SOC
estimator has been proposed in which PSO was utilized to identify the time varying parameters of the
Li-ion battery [187]. Their proposed estimator produced a better result compared to the traditional
EKF. Table 17 compares the MAE for PSO and its variants.
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Table 17. MAE/ME of the PSO, variants of the PSO and hybrid PSO-based SOC estimation method.

Reference MAE (%)

Sheikhan et al. 2012 [178] ≤± 1.9%
Aung et al. 2015 [185] ME ≤ ± 3.35%
Yu et al. 2017 [183] Unspecified
Ye et al. 2017 [186] ME ≤ ± 1.0%
Lai et al. 2018 [187] ME ≤ ± 1.0%

4.4.4. Fuzzy Logic (FL)

FL is another method to identify the unknown parameters of a highly complex and nonlinear
system, such as a Li-ion battery. FL does not require a precise mathematical model of the system,
as it only uses the input data and identifies the parameters using the fuzzy rule base. The working
principle of FL can be divided easily into the following stages: fuzzification, fuzzy rule base, inference
engine, and defuzzification [3]. FL requires however high storage and computational time to determine
the parameters of a complex and nonlinear system. FL was also used to estimate the parameters
of the SOC with improved accuracy [188–190]. Furthermore, the use of FL fused with other SOC
estimation techniques has also been reported [118,191–193]. Li et al. [194] used RLS with a fuzzy
adaptive forgetting factor to identify the time-varying parameters of a Li-ion battery; the adaptive
UKF was used to estimate the SOC of the Li-ion battery [194]. For further comparison, see Table 18.

Table 18. MAE/ME of the FL-based SOC estimation method.

Reference MAE (%)

Salkind et al. 1999 [188] ME ≤ ± 5.0%
Singh et al. 2006 [189] Unspecified
Malkhandi 2006 [190] ME ≤ ± 5.0%
Li et al. 2016 [194] ≤± 0.59%

4.4.5. Neural Network (NN)

The neural network (NN) is a computing system that is basically inspired by the human brain.
The NN is a framework of many different machine learning algorithms to perform different tasks [195].
The NN has self-adaptability and learning abilities to establish a highly complicated and non-linear
system, such as a Li-ion battery. The basic NN uses a three-layer formation, and input and output
layer-containing neurons with system specifications. The relationship between the I/O layer is
developed through neurons and hidden layers. The measurements of electric charge and the internal
impedance were considered to form an NN [196,197]. The fused NN and EKF were applied to
predict the SOC of a battery [198,199]. The NN was trained offline using the battery charge/discharge
data [198]. The feed forward NN (FFNN) was introduced to SOC estimation [199]. The parameters of
the battery were the inputs, and the UKF was used to decrease the prediction error. Dong et al. [200]
proposed a wavelet NN-based battery model. They also considered temperature and current to further
improve the modeling accuracy. Then, PF was employed to find the SOC. Another study compared the
open and closed loop NN SOC estimators, in which they showed that the closed-loop NN estimator
gives better performance than open loop NN [201]. Furthermore, the dual SOC and state of energy
(SOE) estimator can be constructed using a NN [202]. Some variants of the NN were also used to SOC
estimation [203–209]. Recently, Cui et al. [210] combined the discrete wavelet transform and wavelet
NN methods to estimate the SOC. The wavelet NN was trained using the Levenberg Marquardt (L-M)
technique. The inputs of the wavelet NN were managed by a discrete wavelet decomposition and
reconstitution. Their proposed methodology produced better results than the BPNN, FFNN, L-M
based BPNN, discrete wavelet transforms back propagation NN, and EKF. The backtracking search
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algorithm (BSA) can be used to improve the performance of BPNN [211]. The comparison of MAE for
NN-based SOC estimation methods is shown in Table 19.

Table 19. MAE/ME of the NN-based SOC estimation method.

Reference MAE (%)

Affanni et al. 2003 [196] ME ≤ ± 4.6%
Rui-hao et al. 2011 [197] ME ≤ ± 4.91%
Chen et al. 2011 [212] ≤± 1.0%
He et al. 2014 [199] ME ≤ ± 2.5%
Dong et al. 2015 [200] ME ≤ ± 4.0%
Wang et al. 2016 [202] ME ≤ ± 2.5%
Hussein 2015 [203] ≤± 0.03%
Tong et al. 2016 [204] ≤± 3.8%
Dang et al. 2016 [205] ≤± 0.75%
Shi et al. 2010 [207] ≤± 1.25%
Kang et al. 2014 [208] ≤± 3.0%
Cui et al. 2018 [210] ≤± 0.93%
Hannan et al. 2018 [211] ≤± 0.87%

4.4.6. Adaptive Neuro Fuzzy Inference System (ANFIS)

An ANFIS is an advanced form of the artificial NN, which is based mainly on the Takagi–Sugeno
fuzzy inference system. The ANFIS has the benefits of FL and NN in a single framework. ANFIS
is an extraordinary tool for modeling, optimization, and nonlinear mapping. Shen et al. [213]
implemented the ANFIS-based SOC estimator using different discharge current profiles to validate
the proposed technique. Five inputs and one output ANFIS model were also presented in [214]. The
inputs were selected using linear correlation analysis, partial correlation analysis, and nonparametric
correlation analysis. A gradient and least square algorithm were used to train the ANFIS. The
comparison showed the better performance of ANFIS over BPNN. In another study [215], capacity and
temperature distributions were taken into account to estimate the SOC. The experiments with different
battery discharging current were carried out to validate their proposed technique. Furthermore, the
performance of CC and ANFIS based Li-ion battery SOC estimator were also compared in [216].
Table 20 shows the studies using ANFIS method and their MAE.

Table 20. MAE/ME of the ANFIS-based SOC estimation method.

Reference MAE (%)

Shen et al. 2002 [213] ≤± 0.92%
Cai et al. 2003 [214] ME ≤ ± 4.44%
Chau et al. 2004 [215] ≤± 1.0%
Fotouhi et al. 2015 [216] ≤± 2.0%
Dai et al. 2015 [217] Unspecified
Awadallah and Venkatesh 2016 [218] Unspecified

4.4.7. Support Vector Machine (SVM)

In recent years, support vector machine (SVM) techniques have attracted considerable attention.
The SVM is becoming a powerful tool to solve regression problems in nonlinear systems. The SVM
uses different kernel functions and regression algorithms to transmute a nonlinear model into a linear
model. On the other hand, the complexity of the SVM system is very high due to the complex quadratic
programming. The voltage, current and temperature were considered to SOC estimation using the
SVM [219–221]. The least square algorithm was used to improve the efficiency of the SVM [219].
Similar inputs were used to establish a relationship with the SOC using the weighted least squares
SVM. A study used [222] extended Huber residual estimation algorithm in the objective function to
achieve better robustness than the conventional SVM. Hu et al. [223] used a double step search to select
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the parameters of support vector regression using a radial basis kernel function. Their proposed SVM
showed better results compared to the NN. Another study [224] addressed the issue of sensor noise to
reduce the errors. Their proposed strategy showed better results than the conventional SVM. Table 21
shows the study on the SVM-based SOC estimation method.

Table 21. MAE/ME of the SVM-based SOC estimation method.

Reference MAE (%)

Chen et al. 2011 [222] ≤± 1.09%
Wu et al. 2011 [219] ME ≤ ± 5.0%
Anton et al. 2013 [221] ME ≤ ± 6.0%
Sheng et al. 2015 [224] ≤± 0.30%

4.4.8. Multivariate Adaptive Regression Splines (MARS)

Friedman [225] introduced a new type of flexible regression analysis for high dimensional
data called multivariate adaptive regression splines (MARS). The MARS model is an extension
of product-spline-basis functions, where the parameters and basis function can be calculated
automatically using the data. The main idea of MARS method is inspired basically by the recursive
partitioning approach. The main advantage of the MARS method over the recursive partitioning
approach is that it can generate continuous models using continuous derivatives. Antón et al. [226]
used the MARS technique to SOC estimation. The parameters of the battery were used to extract the
battery parameters, basis function, and coefficients. The model was evaluated with a determination
coefficient of 0.98, and an accuracy of 1% was accomplished during the SOC level between 25% to 90%.
The main advantage of their proposed technique is that it can be implemented easily on a low-cost
microcontroller. In their subsequent work [227], a hybrid PSO optimized MARS technique to SOC
estimation was proposed. They used a PSO algorithm to identify the optimal parameters of the MARS
model, which further reduces the training time of the MARS model.

5. Discussion

The Li-ion battery is a highly complex electrochemical system and its performance degraded by
different factors, such as hysteresis, aging and operating conditions. Therefore, it is very challenging
task to estimate the SOC of a Li-ion battery accurately. Several discussed SOC estimation methods
from easier to complicated are under investigation. The OCV method has a relatively high accuracy to
estimate the SOC of Li-ion battery. The main shortcoming of the OCV method is its long relaxing time
to reach equilibrium state to measure terminal voltage as OCV. So, the OCV method cannot be directly
used to estimate the SOC of Li-ion battery in an EV application. The IR method use battery resistance
to measure SOC, the main lapse is the low resistance value for wide SOC range. The CC method
showed reliable results when the initial SOC of the Li-ion battery is known. The accuracy of the CC
method mainly depends upon the initial SOC value and resolution of the sensor. The CC method
fused with other methods like OCV and model-based is a good option to estimate the SOC in EVs.
The accuracy of MB estimation methods mainly depends upon model exactness. So, battery models
should guarantee not only to capture the complex chemical reaction of Li-ion battery, but they also
consider the effects of capacity degradation, climate changes, and mechanical stress. Now a days, the
KF family based SOC estimator is the most popular in online estimation applications. The advantages
and limitation of KF and its variants-based methods has been listed in Table 22. The accuracy of the
machine learning method is very high but it needs high training time and data storage size. The
computational cost of these methods is also high. Table 22 summarizes the merits and limitations of
each SOC estimation method discussed above.
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Table 22. Summary of the classified SOC estimation methods for Li-ion batteries.

Method Advantages Limitations Applicability in EVs

OCV It is simple and easily implementable, and it
has high accuracy.

This technique cannot be implemented for online estimations because it
requires a long resting time to reach equilibrium, and precise measurements of
the OCV are difficult due to the flat region in the middle of the OCV-SOC curve.
Therefore, this method is only suitable to train and calibrate other methods.

No

EMF This method is simple and inexpensive. This technique requires significant time to model OCV relaxation after
current disruption. No

IR It is simple and easily implementable.
It has low accuracy because large variations of the SOC have low impact on
the change in resistance. Therefore, it is difficult to measure a small
resistance.

No

IS This method can measure the SOC online with
reasonable accuracy.

This technique only has good results for identical charging and discharging
currents. Therefore, it is unsuitable for EVs because of the large variations in
charge/discharge current. It also has an effect on battery aging and
temperature.

No

CC It is simple and easily implementable with low
computation cost.

Several factors, such as an unknown initial SOC, aging, temperature,
self-discharging, coulomb efficiency and device precision, affect its accuracy. Yes

H∞F
This method has reasonable accuracy, less
computational cost, and good convergence
rate.

The accuracy of the model can be affected by the aging, hysteresis and
operating conditions (temperature) of the Li-ion battery. Yes

KF
This method can estimate the states affected
by external perturbations in real time and with
high accuracy.

This method cannot be applied directly to estimate the states of a non-linear
system. It depends strongly on the correctness of the model and measuring
device precision, and the complexity of this technique is very high.

Yes

EKF It can predict the states of a system accurately
under noisy and inaccurate initial conditions.

The accuracy of this method depends mainly on the linearization. The
linearization error could be significant for a highly nonlinear system. It also
has low robustness.

Yes

UKF

This method can easily estimate states of any
higher order (3rd order) nonlinear system.
Unlike the EKF, it does not require to compute
the Jacobian matrix and Gaussian noise.

Like the EKF, it has low robustness due to vagueness in modelling and
perturbation. Yes

SPKF It has high accuracy and does not require to
compute the Jacobian matrix. It is complicated and requires lengthy calculations to estimate the SOC. Yes

PF This method has high accuracy, less
computation cost, and good convergence rate. It requires a very powerful mathematical tool to solve it. Yes



Energies 2019, 12, 446 21 of 33

Table 22. Cont.

Method Advantages Limitations Applicability in EVs

RLS This method has high accuracy and can
eradicate the noise of the measured voltage.

The system and noise should satisfy the Gaussian distribution for better
accuracy. It has high complexity and computational cost. Its accuracy
mainly depends on the correctness of the battery model and selection of the
forgetting factor.

Yes

NLO
This method has good convergence speed,
reasonable computation cost, and high
accuracy.

It is hard to determine a suitable gain for high accuracy. Yes

SMO This method enhances the tracking control to
ensure stability and robustness.

It is hard to determine a suitable switching gain to control the sliding
regtime for high accuracy. Yes

PIO
It can estimate the SOC accurately in the
presence of an unknown initial SOC, imprecise
battery capacity, and noisy current sensor.

The controller design has a significant effect on the estimation accuracy. Yes

LO This method is accurate and robust in the
presence of modeling and sensor inaccuracy. The selection of appropriate gain for the observer is a difficult task. Yes

GA This method has high accuracy and is robust
in the presence of noisy environment.

It has high computational complexity, delays in response time, and requires
fine-tuning of the parameters for high accuracy. The conversion of binary into
a number is very important. This conversion increases the response time.

Yes

BFA This method has reasonable accuracy for
dynamic current profile.

It requires high computation time. More experiments are needed to validate
this technique. No

PSO This method can measure the SOC online with
reasonable accuracy.

It requires considerable effort to tune the parameters properly. The main
issue of this technique to avoid local optima. This issue can be addressed by
updating the objective function, which results in high computational cost.

Yes

FL This method has good accuracy in different
currents, aging, and temperature conditions.

It has high computation cost and requires high storage size and expensive
data processing units. Yes

NN
This method can provide SOC estimation
under any condition. This is one of the most
suitable methods for SOC estimations in EVs.

It also requires large data storage size to save the trained data. Yes

ANFIS This method has high accuracy. The storage size should be very high to store trained data. Yes

SVM This method performs well in nonlinear and
high dimensional models. This method is time consuming. Yes

MARS It has reasonable accuracy. It has good accuracy at the mid points of the SOC curve. More experiments
are needed to validate this technique. No
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6. Future Perspectives of SOC Estimation

Some future perspectives and recommendations to achieve better performance of BMS of a Li-ion
battery are the following:

• There should be some improvement in the round-trip efficiency, depth of discharge and energy
density of Li-ion battery. The main concern of its capital cost should be addressed.

• The RC structured ECM model should be improve by adding some more mathematical
components, which can more precisely characterize Li-ion battery properties.

• Fusion of different battery models can be a good option to achieve good results.
• Most of the research has been conducted in laboratory premises. So, there is a need of more

research in the natural environment where the effects of different conditions such as hot, cold,
snowy, rainy, and humid conditions can be checked.

• There are hundreds of cells in the battery pack of EVs. Very few researches have been reported on
the estimation of battery packs. Further research is needed to estimate SOC of battery packs.

• The accuracy of the voltage and current sensor has been increased with the development of the
technology that can increase the model accuracy. The rapid growth in the field of nanoelectronics
has enabled the commercialization of a high-speed controller with a minimal physical size, which
can easily tackle the complex mathematical modeling issues in the BMS of EVs. Therefore, the
SOC estimation accuracy issue will be diminished soon due to the rapid advances in hardware
resources. Owing to the rapid advances in machine learning algorithms, these methodologies are
likely to be the future of SOC estimation technology in EVs.

7. Conclusions

This study compared the advantages and workings of a Li-ion battery with other ESS in detail.
The Li-ion battery has been strongly recommended for EVs because of its high-power density, long
lifespan, high energy density, nominal voltage, and relatively low cost. The important features and
working cycle of an effective BMS to achieve safe and reliable battery operation in EVs were presented.

This review classified the Li-ion battery-based SOC estimation method into their respective
categories according to their nature. A critical explanation, including their merits, limitations, and
estimation errors from the literature, was studied in detail. This study concluded that the conventional
(direct measurements and bookkeeping) methods are simple and easily implementable, but they suffer
from the effect of aging, temperature, sensors drift, and external perturbations. The model-based
estimation methods produce good results with high precision. The complexity of the adaptive
filters-based method is very high, and it has poor robustness. The machine learning-based SOC
estimation methods show the best results among all the methods assessed. The accuracy of these
methods is very high under different aging and temperature conditions. These methods require
high storage time and a rapid controller for computation. According to the authors, the machine
learning algorithms will be the future of SOC estimation technology because of their high accuracy
under different challenging conditions and rapid development in nanoelectronics technology. This
review paper provides information to manufacturers and researchers developing new SOC methods
or updating existing methods.
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Appendix A

Figure A1. Comprehensive framework for an effective BMS.

References

1. Jorgensen, K. Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy
sources in transport. Utili. Policy 2008, 16, 72–79. [CrossRef]

2. Contestabile, M.; Offer, G.; Slade, R.; Jaeger, F.; Thoennes, M. Battery electric vehicles, hydrogen fuel cells
and biofuels. Which will be the winner? Energy Environ. Sci. 2011, 4, 3754–3772. [CrossRef]

3. Umair Ali, M.; Hussain Nengroo, S.; Adil Khan, M.; Zeb, K.; Ahmad Kamran, M.; Kim, H.-J. A real-time
simulink interfaced fast-charging methodology of lithium-ion batteries under temperature feedback with
fuzzy logic control. Energies 2018, 11, 1122. [CrossRef]

4. Shareef, H.; Islam, M.M.; Mohamed, A. A review of the stage-of-the-art charging technologies, placement
methodologies, and impacts of electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 403–420. [CrossRef]

5. Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art
technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385.
[CrossRef]

6. Westbrook, M.H. The Electric Car: Development and Future of Battery, Hybrid and Fuel-Cell Cars; Iet: Stevenage,
UK, 2001.

7. Khan, M.A.; Zeb, K.; Sathishkumar, P.; Ali, M.U.; Uddin, W.; Hussain, S.; Ishfaq, M.; Khan, I.; Cho, H.-G.;
Kim, H.-J. A novel supercapacitor/lithium-ion hybrid energy system with a fuzzy logic-controlled fast
charging and intelligent energy management system. Electronics 2018, 7, 63. [CrossRef]

8. Andersen, P.H.; Mathews, J.A.; Rask, M. Integrating private transport into renewable energy policy: The strategy
of creating intelligent recharging grids for electric vehicles. Energy Policy 2009, 37, 2481–2486. [CrossRef]

9. Nengroo, S.; Kamran, M.; Ali, M.; Kim, D.-H.; Kim, M.-S.; Hussain, A.; Kim, H. Dual battery storage system:
An optimized strategy for the utilization of renewable photovoltaic energy in the united kingdom. Electronics
2018, 7, 177. [CrossRef]

10. Hu, X.; Zou, C.; Zhang, C.; Li, Y. Technological developments in batteries: A survey of principal roles, types,
and management needs. IEEE Power Energy Mag. 2017, 15, 20–31. [CrossRef]

11. Manzetti, S.; Mariasiu, F. Electric vehicle battery technologies: From present state to future systems.
Renew. Sustain. Energy Rev. 2015, 51, 1004–1012. [CrossRef]

12. Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.;
Emadi, A. Making the case for electrified transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [CrossRef]

13. Balchunas, E. US Etfs 2017 Outlook; Bloomberg Intelligence: New York, NY, USA, 2017.
14. Xing, Y.; Ma, E.W.; Tsui, K.L.; Pecht, M. Battery management systems in electric and hybrid vehicles. Energies

2011, 4, 1840–1857. [CrossRef]
15. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in

electric vehicles. J. Power Sources 2013, 226, 272–288. [CrossRef]

http://dx.doi.org/10.1016/j.jup.2007.11.005
http://dx.doi.org/10.1039/c1ee01804c
http://dx.doi.org/10.3390/en11051122
http://dx.doi.org/10.1016/j.rser.2016.06.033
http://dx.doi.org/10.1016/j.rser.2015.04.130
http://dx.doi.org/10.3390/electronics7050063
http://dx.doi.org/10.1016/j.enpol.2009.03.032
http://dx.doi.org/10.3390/electronics7090177
http://dx.doi.org/10.1109/MPE.2017.2708812
http://dx.doi.org/10.1016/j.rser.2015.07.010
http://dx.doi.org/10.1109/TTE.2015.2437338
http://dx.doi.org/10.3390/en4111840
http://dx.doi.org/10.1016/j.jpowsour.2012.10.060


Energies 2019, 12, 446 24 of 33

16. Hannan, M.A.; Lipu, M.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge
estimation and management system in electric vehicle applications: Challenges and recommendations.
Renew. Sustain. Energy Rev. 2017, 78, 834–854. [CrossRef]

17. Zhang, J.; Lee, J. A review on prognostics and health monitoring of li-ion battery. J. Power Sources 2011, 196,
6007–6014. [CrossRef]

18. Zahid, T.; Li, W. A comparative study based on the least square parameter identification method for state of
charge estimation of a lifepo4 battery pack using three model-based algorithms for electric vehicles. Energies
2016, 9, 720. [CrossRef]

19. Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A critical review of thermal management models and solutions of
lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 2016, 64,
106–128. [CrossRef]

20. Ralon, P.; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K. Electricity Storage and Renewables: Costs and Markets to
2030; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017.

21. Safa, M.; Chamaani, A.; Chawla, N.; El-Zahab, B. Polymeric ionic liquid gel electrolyte for room temperature
lithium battery applications. Electrochimica Acta 2016, 213, 587–593. [CrossRef]

22. Chamaani, A.; Safa, M.; Chawla, N.; El-Zahab, B. Composite gel polymer electrolyte for improved cyclability
in lithium–oxygen batteries. ACS Appl. Mater. Interfaces 2017, 9, 33819–33826. [CrossRef]

23. Safa, M.; Hao, Y.; Chamaani, A.; Adelowo, E.; Chawla, N.; Wang, C.; El-Zahab, B. Capacity fading mechanism
in lithium-sulfur battery using poly (ionic liquid) gel electrolyte. Electrochimica Acta 2017, 258, 1284–1292.
[CrossRef]

24. Chamaani, A.; Safa, M.; Chawla, N.; Herndon, M.; El-Zahab, B. Stabilizing effect of ion complex formation in
lithium–oxygen battery electrolytes. J. Electroanal. Chem. 2018, 815, 143–150. [CrossRef]

25. Snihir, I.; Rey, W.; Verbitskiy, E.; Belfadhel-Ayeb, A.; Notten, P.H. Battery open-circuit voltage estimation by a
method of statistical analysis. J. Power Sources 2006, 159, 1484–1487. [CrossRef]

26. Tang, X.; Wang, Y.; Chen, Z. A method for state-of-charge estimation of lifepo4 batteries based on a
dual-circuit state observer. J. Power Sources 2015, 296, 23–29. [CrossRef]

27. Roscher, M.A.; Sauer, D.U. Dynamic electric behavior and open-circuit-voltage modeling of lifepo4-based
lithium ion secondary batteries. J. Power Sources 2011, 196, 331–336. [CrossRef]

28. Truchot, C.; Dubarry, M.; Liaw, B.Y. State-of-charge estimation and uncertainty for lithium-ion battery strings.
Appl. Energy 2014, 119, 218–227. [CrossRef]

29. Pop, V.; Bergveld, H.J.; het Veld, J.O.; Regtien, P.P.; Danilov, D.; Notten, P. Modeling battery behavior for
accurate state-of-charge indication. J. Electrochem. Soc. 2006, 153, A2013–A2022. [CrossRef]

30. Yang, Y.P.; Liu, J.J.; Tsai, C.H. Improved estimation of residual capacity of batteries for electric vehicles.
J. Chin. Inst. Eng. 2008, 31, 313–322. [CrossRef]

31. Coleman, M.; Lee, C.K.; Zhu, C.; Hurley, W.G. State-of-charge determination from emf voltage estimation: Using
impedance, terminal voltage, and current for lead-acid and lithium-ion batteries. IEEE Trans. Ind. Electron. 2007,
54, 2550–2557. [CrossRef]

32. Waag, W.; Sauer, D.U. Adaptive estimation of the electromotive force of the lithium-ion battery after current
interruption for an accurate state-of-charge and capacity determination. Appl. Energy 2013, 111, 416–427.
[CrossRef]

33. Wang, H.; Liu, Y.; Fu, H.; Li, G. Estimation of state of charge of batteries for electric vehicles. Int. J. Control Autom.
2013, 6, 185–194.

34. Bao, Y.; Dong, W.; Wang, D. Online internal resistance measurement application in lithium ion battery
capacity and state of charge estimation. Energies 2018, 11, 1073. [CrossRef]

35. Barcellona, S.; Grillo, S.; Piegari, L. A simple battery model for ev range prediction: Theory and experimental
validation. In Proceedings of the Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles &
International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2–4 November 2016.

36. Westerhoff, U.; Kroker, T.; Kurbach, K.; Kurrat, M. Electrochemical impedance spectroscopy based estimation
of the state of charge of lithium-ion batteries. J. Energy Storage 2016, 8, 244–256. [CrossRef]

37. Xu, J.; Mi, C.C.; Cao, B.; Cao, J. A new method to estimate the state of charge of lithium-ion batteries based
on the battery impedance model. J. Power Sources 2013, 233, 277–284. [CrossRef]

38. Wu, S.-L.; Chen, H.-C.; Tsai, M.-Y. Ac impedance-based online state-of-charge estimation for li-ion batteries.
Sens. Mater. 2018, 30, 539–550. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2017.05.001
http://dx.doi.org/10.1016/j.jpowsour.2011.03.101
http://dx.doi.org/10.3390/en9090720
http://dx.doi.org/10.1016/j.rser.2016.05.033
http://dx.doi.org/10.1016/j.electacta.2016.07.118
http://dx.doi.org/10.1021/acsami.7b08448
http://dx.doi.org/10.1016/j.electacta.2017.11.185
http://dx.doi.org/10.1016/j.jelechem.2018.03.012
http://dx.doi.org/10.1016/j.jpowsour.2005.11.090
http://dx.doi.org/10.1016/j.jpowsour.2015.07.028
http://dx.doi.org/10.1016/j.jpowsour.2010.06.098
http://dx.doi.org/10.1016/j.apenergy.2013.12.046
http://dx.doi.org/10.1149/1.2335951
http://dx.doi.org/10.1080/02533839.2008.9671384
http://dx.doi.org/10.1109/TIE.2007.899926
http://dx.doi.org/10.1016/j.apenergy.2013.05.001
http://dx.doi.org/10.3390/en11051073
http://dx.doi.org/10.1016/j.est.2016.09.001
http://dx.doi.org/10.1016/j.jpowsour.2013.01.094
http://dx.doi.org/10.18494/SAM.2018.1824


Energies 2019, 12, 446 25 of 33

39. Guha, A.; Patra, A.; Vaisakh, K. Remaining useful life estimation of lithium-ion batteries based on the internal
resistance growth model. In Proceedings of the Control Conference (ICC), Assam, India, 4–6 January 2017.

40. Rivera-Barrera, J.; Munoz-Galeano, N.; Sarmiento-Maldonado, H. Soc estimation for lithium-ion batteries:
Review and future challenges. Electronics 2017, 6, 102. [CrossRef]

41. Zhang, Y.; Song, W.; Lin, S.; Feng, Z. A novel model of the initial state of charge estimation for lifepo4
batteries. J. Power Sources 2014, 248, 1028–1033. [CrossRef]

42. Wu, T.-H.; Moo, C.-S. State-of-charge estimation with state-of-health calibration for lithium-ion batteries.
Energies 2017, 10, 987.

43. Xie, J.; Ma, J.; Bai, K. Enhanced coulomb counting method for state-of-charge estimation of lithium-ion
batteries based on peukert’s law and coulombic efficiency. J. Power Electron. 2018, 18, 910–922.

44. Xu, J.; Gao, M.; He, Z.; Han, Q.; Wang, X. State of charge estimation online based on ekf-ah method for lithium-ion
power battery. In Proceedings of the Image and Signal Processing, Tianjin, China, 17–19 October 2009.

45. Cheng, K.W.E.; Divakar, B.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (bms) and soc
development for electrical vehicles. IEEE Trans. on Veh. Technol. 2011, 60, 76–88. [CrossRef]

46. Gu, W.; Wang, C. Thermal-electrochemical modeling of battery systems. J. Electrochem. Soc. 2000, 147,
2910–2922. [CrossRef]

47. Di Domenico, D.; Fiengo, G.; Stefanopoulou, A. Lithium-ion battery state of charge estimation with a kalman
filter based on a electrochemical model. In Proceedings of the IEEE International Conference on Control
Applications, San Antonio, TX, USA, 3–5 September 2008.

48. Rahman, M.A.; Anwar, S.; Izadian, A. Electrochemical model parameter identification of a lithium-ion
battery using particle swarm optimization method. J. Power Sources 2016, 307, 86–97. [CrossRef]

49. Li, J.; Wang, L.; Lyu, C.; Pecht, M. State of charge estimation based on a simplified electrochemical model for
a single licoo2 battery and battery pack. Energy 2017, 133, 572–583. [CrossRef]

50. Meng, J.; Luo, G.; Ricco, M.; Swierczynski, M.; Stroe, D.-I.; Teodorescu, R. Overview of lithium-ion battery
modeling methods for state-of-charge estimation in electrical vehicles. Appl. Sciences 2018, 8, 659. [CrossRef]

51. Zhang, X.; Zhang, W.; Lei, G. A review of li-ion battery equivalent circuit models. Trans. Electr. Electron. Mater.
2016, 17, 311–316. [CrossRef]

52. He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and
open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [CrossRef]

53. Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for li-ion batteries. J. Power Sources
2012, 198, 359–367. [CrossRef]

54. Simon, D. Optimal State Estimation: Kalman, h Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken,
NJ, USA, 2006.

55. Zhang, F.; Liu, G.; Fang, L.; Wang, H. Estimation of battery state of charge with h∞ observer: Applied to a
robot for inspecting power transmission lines. IEEE Trans. Ind.. Electron. 2012, 59, 1086. [CrossRef]

56. Zhang, Y.; Zhang, C.; Zhang, X. State-of-charge estimation of the lithium-ion battery system with
time-varying parameter for hybrid electric vehicles. IET Control Theory Appl. 2014, 8, 160–167. [CrossRef]

57. Zhu, Q.; Xiong, N.; Yang, M.-L.; Huang, R.-S.; Hu, G.-D. State of charge estimation for lithium-ion battery
based on nonlinear observer: An h∞ method. Energies 2017, 10, 679. [CrossRef]

58. Zhang, Y.; Xiong, R.; He, H.; Shen, W. A lithium-ion battery pack state of charge and state of energy
estimation algorithms using a hardware-in-the-loop validation. IEEE Trans. Power Electron. 2017, 32,
4421–4431. [CrossRef]

59. Xiong, R.; Yu, Q.; Wang, L.Y.; Lin, C. A novel method to obtain the open circuit voltage for the state of
charge of lithium ion batteries in electric vehicles by using h infinity filter. Appl. Energy 2017, 207, 346–353.
[CrossRef]

60. Xia, B.; Zhang, Z.; Lao, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M. Strong tracking of a h-infinity filter in
lithium-ion battery state of charge estimation. Energies 2018, 11, 1481. [CrossRef]

61. Liu, Z.; Dang, X.; Sun, H. Online state of charge estimation for lithium-ion battery by combining incremental
autoregressive and moving average modeling with adaptive h-infinity filter. Math. Probl. Eng. 2018, 2018.
[CrossRef]

62. Alfi, A.; Charkhgard, M.; Zarif, M.H. Hybrid state of charge estimation for lithium-ion batteries: Design and
implementation. IET Power Electron. 2014, 7, 2758–2764. [CrossRef]

http://dx.doi.org/10.3390/electronics6040102
http://dx.doi.org/10.1016/j.jpowsour.2013.09.135
http://dx.doi.org/10.1109/TVT.2010.2089647
http://dx.doi.org/10.1149/1.1393625
http://dx.doi.org/10.1016/j.jpowsour.2015.12.083
http://dx.doi.org/10.1016/j.energy.2017.05.158
http://dx.doi.org/10.3390/app8050659
http://dx.doi.org/10.4313/TEEM.2016.17.6.311
http://dx.doi.org/10.1016/j.energy.2012.01.009
http://dx.doi.org/10.1016/j.jpowsour.2011.10.013
http://dx.doi.org/10.1109/TIE.2011.2159691
http://dx.doi.org/10.1049/iet-cta.2013.0082
http://dx.doi.org/10.3390/en10050679
http://dx.doi.org/10.1109/TPEL.2016.2603229
http://dx.doi.org/10.1016/j.apenergy.2017.05.136
http://dx.doi.org/10.3390/en11061481
http://dx.doi.org/10.1155/2018/7480602
http://dx.doi.org/10.1049/iet-pel.2013.0746


Energies 2019, 12, 446 26 of 33

63. Lin, C.; Mu, H.; Xiong, R.; Shen, W. A novel multi-model probability battery state of charge estimation
approach for electric vehicles using h-infinity algorithm. Appl. energy 2016, 166, 76–83. [CrossRef]

64. Yu, Q.; Xiong, R.; Lin, C.; Shen, W.; Deng, J. Lithium-ion battery parameters and state-of-charge joint
estimation based on h-infinity and unscented kalman filters. IEEE Trans. Veh. Technol. 2017, 66, 8693–8701.
[CrossRef]

65. Charkhgard, M.; Zarif, M.H. Design of adaptiveh∞ filter for implementing on state-of-charge estimation
based on battery state-of-charge-varying modelling. IET Power Electron. 2015, 8, 1825–1833. [CrossRef]

66. Lin, C.; Yu, Q.; Xiong, R.; Wang, L.Y. A study on the impact of open circuit voltage tests on state of charge
estimation for lithium-ion batteries. Appl. Energy 2017, 205, 892–902. [CrossRef]

67. Chen, C.; Sun, F.; Xiong, R.; He, H. A novel dual h infinity filters based battery parameter and state estimation
approach for electric vehicles application. Energy Procedia 2016, 103, 375–380. [CrossRef]

68. Gibbs, B.P. Advanced Kalmanfiltering, Least-Squaresand Modeling; Wiley: Hoboken, NJ, USA, 2011.
69. Haykin, S. Adaptive Filter Theory, 3rd ed.; Printice Hall: Upper Saddle River, NJ, USA, 1996.
70. Haykin, S. Kalman Filtering and Neural Networks; John Wiley & Sons: Hoboken, NJ, USA, 2004.
71. Plett, G.L. Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs:

Part 1: Introduction and state estimation. J. Power Sources 2006, 161, 1356–1368. [CrossRef]
72. Yatsui, M.W.; Bai, H. Kalman filter based state-of-charge estimation for lithium-ion batteries in hybrid electric

vehicles using pulse charging. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference
(VPPC 2011), Chicago, IL, USA, 6–9 September 2011.

73. Urbain, M.; Rael, S.; Davat, B.; Desprez, P. State estimation of a lithium-ion battery through kalman filter.
In Proceedings of the 2011 IEEE Power Electronics Specialists Conference (PESC 2007), Orlando, FL, USA,
17–21 June 2007.

74. Ting, T.; Man, K.L.; Lim, E.G.; Leach, M. Tuning of kalman filter parameters via genetic algorithm for
state-of-charge estimation in battery management system. Sci. World J. 2014, 2014. [CrossRef]

75. Zhao, W.; Kong, X.; Wang, C. Combined estimation of the state of charge of a lithium battery based on a
back-propagation–adaptive kalman filter algorithm. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 2018, 232,
357–366. [CrossRef]

76. Cui, X.; Jing, Z.; Luo, M.; Guo, Y.; Qiao, H. A new method for state of charge estimation of lithium-ion
batteries using square root cubature kalman filter. Energies 2018, 11, 209. [CrossRef]

77. Chen, L.; Xu, L.; Wang, R. State of charge estimation for lithium-ion battery by using dual square root
cubature kalman filter. Mathe. Probl. Eng. 2017, 2017. [CrossRef]

78. Huang, C.; Wang, Z.; Zhao, Z.; Wang, L.; Lai, C.S.; Wang, D. Robustness evaluation of extended and
unscented kalman filter for battery state of charge estimation. IEEE Access 2018. [CrossRef]

79. Lee, S.; Kim, J.; Lee, J.; Cho, B.H. The state and parameter estimation of an li-ion battery using a new ocv-soc
concept. In Proceedings of the 2011 IEEE Power Electronics Specialists Conference (PESC 2007), Orlando, FL,
USA, 17–21 June 2007.

80. He, H.; Xiong, R.; Guo, H. Online estimation of model parameters and state-of-charge of lifepo4 batteries in
electric vehicles. Appl. Energy 2012, 89, 413–420. [CrossRef]

81. Xiong, R.; He, H.; Sun, F.; Zhao, K. Evaluation on state of charge estimation of batteries with adaptive
extended kalman filter by experiment approach. IEEE Tran. Veh. Technol. 2013, 62, 108–117. [CrossRef]

82. Jiang, C.; Taylor, A.; Duan, C.; Bai, K. Extended kalman filter based battery state of charge (soc) estimation for
electric vehicles. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Detroit,
MI, USA, 16–19 June 2013.

83. He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J. State-of-charge estimation of the lithium-ion battery using an
adaptive extended kalman filter based on an improved thevenin model. IEEE Trans. Veh. Technol. 2011, 60,
1461–1469.

84. Zhu, Z.; Sun, J.; Liu, D. Online state of charge ekf estimation for lifepo 4 battery management systems.
In Proceedings of the Intelligent Signal Processing and Communications Systems (ISPACS), Tamsui,
New Taipei City, Taiwan, 4–7 November 2012.

85. Chen, Z.; Fu, Y.; Mi, C.C. State of charge estimation of lithium-ion batteries in electric drive vehicles using
extended kalman filtering. IEEE Trans. Veh. Technol. 2013, 62, 1020–1030. [CrossRef]

86. Xie, J.; Ma, J.; Bai, K. State-of-charge estimators considering temperature effect, hysteresis potential, and
thermal evolution for lifepo4 batteries. Int. J. Energy Res. 2018. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2016.01.010
http://dx.doi.org/10.1109/TVT.2017.2709326
http://dx.doi.org/10.1049/iet-pel.2014.0523
http://dx.doi.org/10.1016/j.apenergy.2017.08.124
http://dx.doi.org/10.1016/j.egypro.2016.11.302
http://dx.doi.org/10.1016/j.jpowsour.2006.06.003
http://dx.doi.org/10.1155/2014/176052
http://dx.doi.org/10.1177/0954407017701533
http://dx.doi.org/10.3390/en11010209
http://dx.doi.org/10.1155/2017/5489356
http://dx.doi.org/10.1109/ACCESS.2018.2833858
http://dx.doi.org/10.1016/j.apenergy.2011.08.005
http://dx.doi.org/10.1109/TVT.2012.2222684
http://dx.doi.org/10.1109/TVT.2012.2235474
http://dx.doi.org/10.1002/er.4060


Energies 2019, 12, 446 27 of 33

87. Mastali, M.; Vazquez-Arenas, J.; Fraser, R.; Fowler, M.; Afshar, S.; Stevens, M. Battery state of the charge
estimation using kalman filtering. J. Power Sources 2013, 239, 294–307. [CrossRef]

88. Hu, X.; Sun, F.; Zou, Y. Comparison between two model-based algorithms for li-ion battery soc estimation in
electric vehicles. Simul. Model. Pract. Theory 2013, 34, 1–11. [CrossRef]

89. Sepasi, S.; Ghorbani, R.; Liaw, B.Y. Improved extended kalman filter for state of charge estimation of battery
pack. J. Power Sources 2014, 255, 368–376. [CrossRef]

90. Wang, S.; Fernandez, C.; Shang, L.; Li, Z.; Li, J. Online state of charge estimation for the aerial lithium-ion
battery packs based on the improved extended kalman filter method. J. Energy Storage 2017, 9, 69–83.
[CrossRef]

91. Xiong, R.; Sun, F.; Chen, Z.; He, H. A data-driven multi-scale extended kalman filtering based parameter and
state estimation approach of lithium-ion olymer battery in electric vehicles. Appl. Energy 2014, 113, 463–476.
[CrossRef]

92. Yang, S.; Deng, C.; Zhang, Y.; He, Y. State of charge estimation for lithium-ion battery with a
temperature-compensated model. Energies 2017, 10, 1560. [CrossRef]

93. Pan, H.; Lü, Z.; Lin, W.; Li, J.; Chen, L. State of charge estimation of lithium-ion batteries using a grey
extended kalman filter and a novel open-circuit voltage model. Energy 2017, 138, 764–775. [CrossRef]

94. Xu, L.; Wang, J.; Chen, Q. Kalman filtering state of charge estimation for battery management system based
on a stochastic fuzzy neural network battery model. Energy Convers. Manag. 2012, 53, 33–39. [CrossRef]

95. He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for electric vehicle batteries using
unscented kalman filtering. Microelectron. Reliab. 2013, 53, 840–847. [CrossRef]

96. Tian, Y.; Xia, B.; Sun, W.; Xu, Z.; Zheng, W. A modified model based state of charge estimation of power
lithium-ion batteries using unscented kalman filter. J. Power Sources 2014, 270, 619–626. [CrossRef]

97. Wang, T.; Chen, S.; Ren, H.; Zhao, Y. Model-based unscented kalman filter observer design for lithium-ion
battery state of charge estimation. Int. J. Energy Res. 2018, 42, 1603–1614. [CrossRef]

98. Yang, F.; Xing, Y.; Wang, D.; Tsui, K.-L. A comparative study of three model-based algorithms for estimating
state-of-charge of lithium-ion batteries under a new combined dynamic loading profile. Appl. Energy 2016,
164, 387–399. [CrossRef]

99. Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state
of charge online estimation for lithium-ion batteries. Appl. energy 2016, 183, 513–525. [CrossRef]

100. Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented kalman filtering for state of charge estimation of a
lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [CrossRef]

101. Du, J.; Liu, Z.; Wang, Y. State of charge estimation for li-ion battery based on model from extreme learning
machine. Control Eng. Pract. 2014, 26, 11–19. [CrossRef]

102. Partovibakhsh, M.; Liu, G. An adaptive unscented kalman filtering approach for online estimation of model
parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans. Control
Syst. Technol. 2015, 23, 357–363. [CrossRef]

103. Cai, M.; Chen, W.; Tan, X. Battery state-of-charge estimation based on a dual unscented kalman filter and
fractional variable-order model. Energies 2017, 10, 1577. [CrossRef]

104. Liu, S.; Cui, N.; Zhang, C. An adaptive square root unscented kalman filter approach for state of charge
estimation of lithium-ion batteries. Energies 2017, 10, 1345.

105. Peng, S.; Chen, C.; Shi, H.; Yao, Z. State of charge estimation of battery energy storage systems based
on adaptive unscented kalman filter with a noise statistics estimator. IEEE Access 2017, 5, 13202–13212.
[CrossRef]

106. Chen, Y.; Huang, D.; Zhu, Q.; Liu, W.; Liu, C.; Xiong, N. A new state of charge estimation algorithm for
lithium-ion batteries based on the fractional unscented kalman filter. Energies 2017, 10, 1313. [CrossRef]

107. Li, Y.; Wang, C.; Gong, J. A wavelet transform-adaptive unscented kalman filter approach for state of charge
estimation of lifepo4 battery. Int. J. Energy Res. 2018, 42, 587–600. [CrossRef]

108. Li, G.; Peng, K.; Li, B. State-of-charge estimation for lithium-ion battery using a combined method.
J. Power Electron. 2018, 18, 129–136.

109. Van Der Merwe, R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models; Oregon
Health & Science University Beaverton: Beaverton, OR, USA, 2004.

110. Plett, G.L. Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs -
part 2: Simultaneous state and parameter estimation. J. Power Sources 2006, 161, 1369–1384. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2013.03.131
http://dx.doi.org/10.1016/j.simpat.2013.01.001
http://dx.doi.org/10.1016/j.jpowsour.2013.12.093
http://dx.doi.org/10.1016/j.est.2016.09.008
http://dx.doi.org/10.1016/j.apenergy.2013.07.061
http://dx.doi.org/10.3390/en10101560
http://dx.doi.org/10.1016/j.energy.2017.07.099
http://dx.doi.org/10.1016/j.enconman.2011.06.003
http://dx.doi.org/10.1016/j.microrel.2012.11.010
http://dx.doi.org/10.1016/j.jpowsour.2014.07.143
http://dx.doi.org/10.1002/er.3954
http://dx.doi.org/10.1016/j.apenergy.2015.11.072
http://dx.doi.org/10.1016/j.apenergy.2016.09.010
http://dx.doi.org/10.1016/j.energy.2011.03.059
http://dx.doi.org/10.1016/j.conengprac.2013.12.014
http://dx.doi.org/10.1109/TCST.2014.2317781
http://dx.doi.org/10.3390/en10101577
http://dx.doi.org/10.1109/ACCESS.2017.2725301
http://dx.doi.org/10.3390/en10091313
http://dx.doi.org/10.1002/er.3842
http://dx.doi.org/10.1016/j.jpowsour.2006.06.004


Energies 2019, 12, 446 28 of 33

111. He, Z.; Liu, Y.; Gao, M.; Wang, C. A joint model and soc estimation method for lithium battery based on the
sigma point kf. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Dearborn,
MI, USA, 18–20 June 2012.

112. Li, J.; Barillas, J.K.; Guenther, C.; Danzer, M.A. A comparative study of state of charge estimation algorithms
for lifepo4 batteries used in electric vehicles. J. Power Sources 2013, 230, 244–250. [CrossRef]

113. Li, D.; Ouyang, J.; Li, H.; Wan, J. State of charge estimation for limn2o4 power battery based on strong
tracking sigma point kalman filter. J. Sources 2015, 279, 439–449. [CrossRef]

114. Gao, M.; Liu, Y.; He, Z. Battery state of charge online estimation based on particle filter. In Proceedings of the
4th International Congress on Image and Signal Processing (CISP), Shanghai, China, 15–17 October 2011.

115. Schwunk, S.; Armbruster, N.; Straub, S.; Kehl, J.; Vetter, M. Particle filter for state of charge and state of
health estimation for lithium–iron phosphate batteries. J. Power Sources 2013, 239, 705–710. [CrossRef]

116. Tulsyan, A.; Tsai, Y.; Gopaluni, R.B.; Braatz, R.D. State-of-charge estimation in lithium-ion batteries: A particle
filter approach. J. Power Sources 2016, 331, 208–223. [CrossRef]

117. He, Y.; Liu, X.; Zhang, C.; Chen, Z. A new model for state-of-charge (soc) estimation for high-power li-ion
batteries. Appl. Energy 2013, 101, 808–814. [CrossRef]

118. Burgos-Mellado, C.; Orchard, M.E.; Kazerani, M.; Cárdenas, R.; Sáez, D. Particle-filtering-based estimation
of maximum available power state in lithium-ion batteries. Appl. Energy 2016, 161, 349–363. [CrossRef]

119. Zhou, D.; Zhang, K.; Ravey, A.; Gao, F.; Miraoui, A. Online estimation of lithium polymer batteries
state-of-charge using particle filter-based data fusion with multimodels approach. IEEE Trans. Ind. Appl.
2016, 52, 2582–2595. [CrossRef]

120. Du, Q.; Han, Q.; Zhang, Y.; Liu, Z.; Tian, S.; Zhang, Z. Adopting combined strategies to make state of charge
(soc) estimation for practical use. J. Renew. Sustain. Energy 2018, 10, 034102. [CrossRef]

121. Xia, B.; Sun, Z.; Zhang, R.; Lao, Z. A cubature particle filter algorithm to estimate the state of the charge of
lithium-ion batteries based on a second-order equivalent circuit model. Energies 2017, 10, 457. [CrossRef]

122. Li, B.; Peng, K.; Li, G. State-of-charge estimation for lithium-ion battery using the gauss-hermite particle
filter technique. J. Renew. Sustain. Energy 2018, 10, 014105. [CrossRef]

123. Ye, M.; Guo, H.; Xiong, R.; Yu, Q. A double-scale and adaptive particle filter-based online parameter and
state of charge estimation method for lithium-ion batteries. Energy 2018, 144, 789–799. [CrossRef]

124. Hu, X.; Sun, F.; Zou, Y.; Peng, H. Online estimation of an electric vehicle lithium-ion battery using recursive
least squares with forgetting. In Proceedings of the American Control Conference (ACC), San Francisco, CA,
USA, 29 June–1 July 2011.

125. Eddahech, A.; Briat, O.; Vinassa, J.-M. Adaptive voltage estimation for ev li-ion cell based on artificial neural
networks state-of-charge meter. In Proceedings of the 2012 IEEE International Symposium on Industrial
Electronics (ISIE), Hangzhou, China, 28–31 May 2012.

126. Lim, K.; Bastawrous, H.A.; Duong, V.-H.; See, K.W.; Zhang, P.; Dou, S.X. Fading kalman filter-based real-time
state of charge estimation in lifepo4 battery-powered electric vehicles. Appl. Energy 2016, 169, 40–48. [CrossRef]

127. Lotfi, N.; Landers, R.G.; Li, J.; Park, J. Reduced-order electrochemical model-based soc observer with output
model uncertainty estimation. IEEE Trans. Control Syst. Technol. 2017, 25, 1217–1230. [CrossRef]

128. Safwat, I.M.; Li, W.; Wu, X. A novel methodology for estimating state-of-charge of li-ion batteries using
advanced parameters estimation. Energies 2017, 10, 1751. [CrossRef]

129. Duong, V.-H.; Bastawrous, H.A.; See, K.W. Accurate approach to the temperature effect on state of charge
estimation in the lifepo4 battery under dynamic load operation. Appl. Energy 2017, 204, 560–571. [CrossRef]

130. Xia, B.; Lao, Z.; Zhang, R.; Tian, Y.; Chen, G.; Sun, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M. Online parameter
identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least
squares and nonlinear kalman filter. Energies 2018, 11, 3. [CrossRef]

131. Shen, P.; Ouyang, M.; Lu, L.; Li, J.; Feng, X. The co-estimation of state of charge, state of health, and state of
function for lithium-ion batteries in electric vehicles. IEEE Trans. Veh. Technol. 2018, 67, 92–103. [CrossRef]

132. Ali, M.; Kamran, M.; Kumar, P.; Nengroo, S.; Khan, M.; Hussain, A.; Kim, H.-J. An online data-driven model
identification and adaptive state of charge estimation approach for lithium-ion-batteries using the lagrange
multiplier method. Energies 2018, 11, 2940. [CrossRef]

133. Zhang, C.; Allafi, W.; Dinh, Q.; Ascencio, P.; Marco, J. Online estimation of battery equivalent circuit
model parameters and state of charge using decoupled least squares technique. Energy 2018, 142, 678–688.
[CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2012.12.057
http://dx.doi.org/10.1016/j.jpowsour.2015.01.002
http://dx.doi.org/10.1016/j.jpowsour.2012.10.058
http://dx.doi.org/10.1016/j.jpowsour.2016.08.113
http://dx.doi.org/10.1016/j.apenergy.2012.08.031
http://dx.doi.org/10.1016/j.apenergy.2015.09.092
http://dx.doi.org/10.1109/TIA.2016.2524438
http://dx.doi.org/10.1063/1.5024031
http://dx.doi.org/10.3390/en10040457
http://dx.doi.org/10.1063/1.5020028
http://dx.doi.org/10.1016/j.energy.2017.12.061
http://dx.doi.org/10.1016/j.apenergy.2016.01.096
http://dx.doi.org/10.1109/TCST.2016.2598764
http://dx.doi.org/10.3390/en10111751
http://dx.doi.org/10.1016/j.apenergy.2017.07.056
http://dx.doi.org/10.3390/en11010003
http://dx.doi.org/10.1109/TVT.2017.2751613
http://dx.doi.org/10.3390/en11112940
http://dx.doi.org/10.1016/j.energy.2017.10.043


Energies 2019, 12, 446 29 of 33

134. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the art of lithium-ion battery
soc estimation for electrical vehicles. Energies 2018, 11, 1820. [CrossRef]

135. Xia, B.; Chen, C.; Tian, Y.; Sun, W.; Xu, Z.; Zheng, W. A novel method for state of charge estimation of
lithium-ion batteries using a nonlinear observer. J. Power Sources 2014, 270, 359–366. [CrossRef]

136. Tian, Y.; Li, D.; Tian, J.; Xia, B. State of charge estimation of lithium-ion batteries using an optimal adaptive
gain nonlinear observer. Electrochimica Acta 2017, 225, 225–234. [CrossRef]

137. Ma, Y.; Li, B.; Li, G.; Zhang, J.; Chen, H. A nonlinear observer approach of soc estimation based on hysteresis
model for lithium-ion battery. IEEE/CAA J. Autom. Sinica 2017, 4, 195–204. [CrossRef]

138. Li, W.; Liang, L.; Liu, W.; Wu, X. State of charge estimation of lithium-ion batteries using a discrete-time
nonlinear observer. IEEE Trans. Ind. Electron. 2017, 64, 8557–8565. [CrossRef]

139. Chen, J.; Ouyang, Q.; Xu, C.; Su, H. Neural network-based state of charge observer design for lithium-ion
batteries. IEEE Trans. Control Syst. Technol. 2018, 26, 313–320. [CrossRef]

140. Kim, I.-S. The novel state of charge estimation method for lithium battery using sliding mode observer.
J. Power Sources 2006, 163, 584–590. [CrossRef]

141. Kim, I.-S. Nonlinear state of charge estimator for hybrid electric vehicle battery. IEEE Trans. Power Electron.
2008, 23, 2027–2034.

142. Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Sliding mode observer for state of charge estimation based on battery
equivalent circuit in electric vehicles. Aust. J. Electr. and Electron. Eng. 2012, 9, 225–234. [CrossRef]

143. Ning, B.; Xu, J.; Cao, B.; Wang, B.; Xu, G. A sliding mode observer soc estimation method based on parameter
adaptive battery model. Energy Procedia 2016, 88, 619–626. [CrossRef]

144. Ma, Y.; Li, B.; Xie, Y.; Chen, H. Estimating the state of charge of lithium-ion battery based on sliding mode
observer. IFAC-PapersOnLine 2016, 49, 54–61. [CrossRef]

145. Xia, B.; Zheng, W.; Zhang, R.; Lao, Z.; Sun, Z. A novel observer for lithium-ion battery state of charge
estimation in electric vehicles based on a second-order equivalent circuit model. Energies 2017, 10, 1150.
[CrossRef]

146. Du, J.; Liu, Z.; Wang, Y.; Wen, C. An adaptive sliding mode observer for lithium-ion battery state of charge
and state of health estimation in electric vehicles. Control Eng. Pract. 2016, 54, 81–90. [CrossRef]

147. Kim, D.; Koo, K.; Jeong, J.J.; Goh, T.; Kim, S.W. Second-order discrete-time sliding mode observer for state
of charge determination based on a dynamic resistance li-ion battery model. Energies 2013, 6, 5538–5551.
[CrossRef]

148. Chen, Y.; Ma, Y.; Chen, H. State of charge and state of health estimation for lithium-ion battery through dual
sliding mode observer based on amesim-simulink co-simulation. J. Renew. Sustain. Energy 2018, 10, 034103.
[CrossRef]

149. Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Adaptive gain sliding mode observer for state of charge estimation
based on combined battery equivalent circuit model. Comput. Chem. Eng. 2014, 64, 114–123. [CrossRef]

150. Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. A novel approach for state of charge estimation based on adaptive
switching gain sliding mode observer in electric vehicles. J. Power Sources 2014, 246, 667–678. [CrossRef]

151. Huangfu, Y.; Xu, J.; Zhao, D.; Liu, Y.; Gao, F. A novel battery state of charge estimation method based on a
super-twisting sliding mode observer. Energies 2018, 11, 1211. [CrossRef]

152. Zhong, Q.; Zhong, F.; Cheng, J.; Li, H.; Zhong, S. State of charge estimation of lithium-ion batteries using
fractional order sliding mode observer. ISA Trans. 2017, 66, 448–459. [CrossRef]

153. Kim, D.; Goh, T.; Park, M.; Kim, S.W. Fuzzy sliding mode observer with grey prediction for the estimation of
the state-of-charge of a lithium-ion battery. Energies 2015, 8, 12409–12428. [CrossRef]

154. Xu, J.; Mi, C.C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The state of charge estimation of lithium-ion batteries based
on a proportional-integral observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1621.

155. Xu, J.; Cao, B.; Chen, Z.; Zou, Z. An online state of charge estimation method with reduced prior battery
testing information. Int. J. Electr. Power Energy Syst. 2014, 63, 178–184. [CrossRef]

156. Xu, J.; Cao, B.; Cao, J.; Zou, Z.; Mi, C.C.; Chen, Z. A comparison study of the model based soc estimation
methods for lithium-ion batteries. In Proceedings of the Vehicle Power and Propulsion Conference (VPPC),
Beijing, China, 15–18 October 2013.

157. Zou, Z.; Xu, J.; Mi, C.; Cao, B.; Chen, Z. Evaluation of model based state of charge estimation methods for
lithium-ion batteries. Energies 2014, 7, 5065–5082. [CrossRef]

http://dx.doi.org/10.3390/en11071820
http://dx.doi.org/10.1016/j.jpowsour.2014.07.103
http://dx.doi.org/10.1016/j.electacta.2016.12.119
http://dx.doi.org/10.1109/JAS.2017.7510502
http://dx.doi.org/10.1109/TIE.2017.2703685
http://dx.doi.org/10.1109/TCST.2017.2664726
http://dx.doi.org/10.1016/j.jpowsour.2006.09.006
http://dx.doi.org/10.1080/1448837X.2012.11464327
http://dx.doi.org/10.1016/j.egypro.2016.06.088
http://dx.doi.org/10.1016/j.ifacol.2016.08.009
http://dx.doi.org/10.3390/en10081150
http://dx.doi.org/10.1016/j.conengprac.2016.05.014
http://dx.doi.org/10.3390/en6105538
http://dx.doi.org/10.1063/1.5012602
http://dx.doi.org/10.1016/j.compchemeng.2014.02.015
http://dx.doi.org/10.1016/j.jpowsour.2013.08.039
http://dx.doi.org/10.3390/en11051211
http://dx.doi.org/10.1016/j.isatra.2016.09.017
http://dx.doi.org/10.3390/en81112327
http://dx.doi.org/10.1016/j.ijepes.2014.06.017
http://dx.doi.org/10.3390/en7085065


Energies 2019, 12, 446 30 of 33

158. Zheng, L.; Zhang, L.; Zhu, J.; Wang, G.; Jiang, J. Co-estimation of state-of-charge, capacity and resistance
for lithium-ion batteries based on a high-fidelity electrochemical model. Appl. Energy 2016, 180, 424–434.
[CrossRef]

159. Wei, J.; Dong, G.; Chen, Z. On-board adaptive model for state of charge estimation of lithium-ion batteries
based on kalman filter with proportional integral-based error adjustment. J. Power Sources 2017, 365, 308–319.
[CrossRef]

160. Meng, J.; Ricco, M.; Acharya, A.B.; Luo, G.; Swierczynski, M.; Stroe, D.-I.; Teodorescu, R. Low-complexity
online estimation for lifepo 4 battery state of charge in electric vehicles. J. Power Sources 2018, 395, 280–288.
[CrossRef]

161. Du, T.; Vas, P.; Stronach, F. Design and application of extended observers for joint state and parameter
estimation in high-performance ac drives. IEE Proc. Electr. Power Appl. 1995, 142, 71–78. [CrossRef]

162. Hu, X.; Sun, F.; Zou, Y. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using
an adaptive luenberger observer. Energies 2010, 3, 1586–1603. [CrossRef]

163. Tanim, T.R.; Rahn, C.D.; Wang, C.-Y. State of charge estimation of a lithium ion cell based on a temperature
dependent and electrolyte enhanced single particle model. Energy 2015, 80, 731–739. [CrossRef]

164. Tang, X.; Liu, B.; Lv, Z.; Gao, F. Observer based battery soc estimation: Using multi-gain-switching approach.
Appl. Energy 2017, 204, 1275–1283. [CrossRef]

165. Zheng, Y.; Lu, L.; Han, X.; Li, J.; Ouyang, M. Lifepo4 battery pack capacity estimation for electric vehicles
based on charging cell voltage curve transformation. J. Power Sources 2013, 226, 33–41. [CrossRef]

166. Chen, Z.; Mi, C.C.; Fu, Y.; Xu, J.; Gong, X. Online battery state of health estimation based on genetic algorithm
for electric and hybrid vehicle applications. J. Power Sources 2013, 240, 184–192. [CrossRef]

167. Lin, C.; Zhang, X.; Xiong, R.; Zhou, F. A novel approach to state of charge estimation using extended kalman
filtering for lithium-ion batteries in electric vehicles. In Proceedings of the IEEE Transportation Electrification
Conference & Expo 2014 (ITEC Asia-Pacific), Beijing, China, August 31–3 September 2014.

168. Khan, M.R.; Mulder, G.; Van Mierlo, J. An online framework for state of charge determination of battery
systems using combined system identification approach. J. Power Sources 2014, 246, 629–641. [CrossRef]

169. Chen, L.; Wang, Z.; Lü, Z.; Li, J.; Ji, B.; Wei, H.; Pan, H. A novel state-of-charge estimation method of
lithium-ion batteries combining the grey model and genetic algorithms. IEEE Trans. Power Electron. 2018, 33,
8797–8807. [CrossRef]

170. Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W. An enhanced dynamic model of battery using genetic
algorithm suitable for photovoltaic applications. Appl. Energy 2016, 169, 888–898. [CrossRef]

171. Mu, H.; Xiong, R.; Zheng, H.; Chang, Y.; Chen, Z. A novel fractional order model based state-of-charge
estimation method for lithium-ion battery. Appl. Energy 2017, 207, 384–393. [CrossRef]

172. Yang, R.; Xiong, R.; He, H.; Mu, H.; Wang, C. A novel method on estimating the degradation and state of
charge of lithium-ion batteries used for electrical vehicles. Appl. Energy 2017, 207, 336–345. [CrossRef]

173. Jhankal, N.K.; Adhyaru, D. Bacterial foraging optimization algorithm: A derivative free technique. In
Proceedings of the 2011 Nirma University International Conference on Engineering (NUiCONE), Gujarat,
India, 8–10 December 2011.

174. Kar, A.K. Bio inspired computing–a review of algorithms and scope of applications. Expert Syst. Appl. 2016,
59, 20–32. [CrossRef]

175. Ma, Y.; Ru, J.; Yin, M.; Chen, H.; Zheng, W. Electrochemical modeling and parameter identification based on
bacterial foraging optimization algorithm for lithium-ion batteries. J. Appl. Electrochem. 2016, 46, 1119–1131.
[CrossRef]

176. Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence (Morgan Kaufmann Series in Evolutionary Computation);
Morgan Kaufmann Publishers: Burlington, MA, USA, 2001.

177. Ali, M.U.; Habib, B.; Iqbal, M. Fixed head short term hydro thermal scheduling using improved particle
swarm optimization. Nucleus (Islamabad) 2015, 52, 107–114.

178. Sheikhan, M.; Pardis, R.; Gharavian, D. State of charge neural computational models for high energy density
batteries in electric vehicles. Neural Comput. Appl. 2013, 22, 1171–1180. [CrossRef]

179. Ismail, N.H.F.; Toha, S.F. State of charge estimation of a lithium-ion battery for electric vehicle based on
particle swarm optimization. In Proceedings of the IEEE International Conference on Smart Instrumentation,
Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 6–27 November 2013.

http://dx.doi.org/10.1016/j.apenergy.2016.08.016
http://dx.doi.org/10.1016/j.jpowsour.2017.08.101
http://dx.doi.org/10.1016/j.jpowsour.2018.05.082
http://dx.doi.org/10.1049/ip-epa:19951701
http://dx.doi.org/10.3390/en3091586
http://dx.doi.org/10.1016/j.energy.2014.12.031
http://dx.doi.org/10.1016/j.apenergy.2017.03.079
http://dx.doi.org/10.1016/j.jpowsour.2012.10.057
http://dx.doi.org/10.1016/j.jpowsour.2013.03.158
http://dx.doi.org/10.1016/j.jpowsour.2013.07.092
http://dx.doi.org/10.1109/TPEL.2017.2782721
http://dx.doi.org/10.1016/j.apenergy.2016.02.062
http://dx.doi.org/10.1016/j.apenergy.2017.07.003
http://dx.doi.org/10.1016/j.apenergy.2017.05.183
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1007/s10800-016-0998-1
http://dx.doi.org/10.1007/s00521-012-0883-8


Energies 2019, 12, 446 31 of 33

180. Han, H.; Xu, H.; Yuan, Z.; Zhao, Y. State of charge estimation of li-ion battery in evs based on second-order
sliding mode observer. In Proceedings of the IEEE Transportation Electrification Conference & Expo 2014
(ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014.

181. Wang, W.; Chung, H.S.-H.; Zhang, J. Near-real-time parameter estimation of an electrical battery model with
multiple time constants and soc-dependent capacitance. IEEE Trans. Power Electron. 2014, 29, 5905–5920.
[CrossRef]

182. Afshari, H.H.; Attari, M.; Ahmed, R.; Farag, M.; Habibi, S. Modeling, parameterization, and state of charge
estimation of li-ion cells using a circuit model. In Proceedings of the Transportation Electrification Conference
and Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016.

183. Yu, Z.; Xiao, L.; Li, H.; Zhu, X.; Huai, R. Model parameter identification for lithium batteries using the
coevolutionary particle swarm optimization method. IEEE Trans. Ind. Electron. 2017, 64, 5690–5700. [CrossRef]

184. Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion
batteries based on fractional-order calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [CrossRef]

185. Aung, H.; Low, K.-S.; Soon, J.J. State-of-charge estimation using particle swarm optimization with inverse
barrier constraint in a nanosatellite. In Proceedings of the Industrial Electronics and Applications (ICIEA),
Auckland, New Zealand, 15–17 June 2015.

186. Ye, M.; Guo, H.; Cao, B. A model-based adaptive state of charge estimator for a lithium-ion battery using an
improved adaptive particle filter. Appl. Energy 2017, 190, 740–748. [CrossRef]

187. Lai, X.; Yi, W.; Zheng, Y.; Zhou, L. An all-region state-of-charge estimator based on global particle swarm
optimization and improved extended kalman filter for lithium-ion batteries. Electronics 2018, 7, 321.
[CrossRef]

188. Salkind, A.J.; Fennie, C.; Singh, P.; Atwater, T.; Reisner, D.E. Determination of state-of-charge and
state-of-health of batteries by fuzzy logic methodology. J. Power sources 1999, 80, 293–300. [CrossRef]

189. Singh, P.; Vinjamuri, R.; Wang, X.; Reisner, D. Design and implementation of a fuzzy logic-based
state-of-charge meter for li-ion batteries used in portable defibrillators. J. Power Sources 2006, 162, 829–836.
[CrossRef]

190. Malkhandi, S. Fuzzy logic-based learning system and estimation of state-of-charge of lead-acid battery.
Eng. Appl. Artif. Intell. 2006, 19, 479–485. [CrossRef]

191. Li, I.-H.; Wang, W.-Y.; Su, S.-F.; Lee, Y.-S. A merged fuzzy neural network and its applications in battery
state-of-charge estimation. IEEE Trans. Energy Convers. 2007, 22, 697–708. [CrossRef]

192. Yan, X.; Yang, Y.; Guo, Q.; Zhang, H.; Qu, W. Electric vehicle battery soc estimation based on fuzzy kalman
filter. In Proceedings of the 2013 2nd International Symposium on Instrumentation and Measurement, Sensor
Network and Automation (IMSNA), Toronto, ON, Canada, 23–24 December 2013.

193. Zhang, S.; Yang, L.; Zhao, X.; Qiang, J. A ga optimization for lithium–ion battery equalization based on soc
estimation by nn and flc. Int. J. Electr. Power. Energy Syst. 2015, 73, 318–328. [CrossRef]

194. Li, Y.; Wang, C.; Gong, J. A combination kalman filter approach for state of charge estimation of lithium-ion
battery considering model uncertainty. Energy 2016, 109, 933–946. [CrossRef]

195. Haykin, S.S. Neural Networks and Learning Machines; Pearson: Upper Saddle River, NJ, USA, 2009; Volume 3.
196. Affanni, A.; Bellini, A.; Concari, C.; Franceschini, G.; Lorenzani, E.; Tassoni, C. EV battery state of

charge: Neural network based estimation. In Proceedings of the Electric Machines and Drives Conference
(IEMDC’03), Madison, WI, USA, 1–4 June 2003.

197. Rui-hao, L.; Yu-kun, S.; Xiao-fu, J. Battery state of charge estimation for electric vehicle based on neural
network. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and
Networks (ICCSN), Xi’an, China, 7–29 May 2011.

198. Charkhgard, M.; Farrokhi, M. State-of-charge estimation for lithium-ion batteries using neural networks and
ekf. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [CrossRef]

199. He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for li-ion batteries using neural network
modeling and unscented kalman filter-based error cancellation. Int. J. Electr. Power Energy Syst. 2014, 62,
783–791. [CrossRef]

200. Dong, G.; Zhang, X.; Zhang, C.; Chen, Z. A method for state of energy estimation of lithium-ion batteries
based on neural network model. Energy 2015, 90, 879–888. [CrossRef]

201. Hussein, A.A. Derivation and comparison of open-loop and closed-loop neural network battery
state-of-charge estimators. Energy Procedia 2015, 75, 1856–1861. [CrossRef]

http://dx.doi.org/10.1109/TPEL.2014.2300143
http://dx.doi.org/10.1109/TIE.2017.2677319
http://dx.doi.org/10.1109/TVT.2018.2865664
http://dx.doi.org/10.1016/j.apenergy.2016.12.133
http://dx.doi.org/10.3390/electronics7110321
http://dx.doi.org/10.1016/S0378-7753(99)00079-8
http://dx.doi.org/10.1016/j.jpowsour.2005.04.039
http://dx.doi.org/10.1016/j.engappai.2005.12.005
http://dx.doi.org/10.1109/TEC.2007.895457
http://dx.doi.org/10.1016/j.ijepes.2015.05.018
http://dx.doi.org/10.1016/j.energy.2016.05.047
http://dx.doi.org/10.1109/TIE.2010.2043035
http://dx.doi.org/10.1016/j.ijepes.2014.04.059
http://dx.doi.org/10.1016/j.energy.2015.07.120
http://dx.doi.org/10.1016/j.egypro.2015.07.163


Energies 2019, 12, 446 32 of 33

202. Wang, Y.; Yang, D.; Zhang, X.; Chen, Z. Probability based remaining capacity estimation using data-driven
and neural network model. J. Power Sources 2016, 315, 199–208. [CrossRef]

203. Hussein, A.A. Capacity fade estimation in electric vehicle li-ion batteries using artificial neural networks.
IEEE Trans. on Ind. Appl. 2015, 51, 2321–2330. [CrossRef]

204. Tong, S.; Lacap, J.H.; Park, J.W. Battery state of charge estimation using a load-classifying neural network.
J. Energy Storage 2016, 7, 236–243. [CrossRef]

205. Dang, X.; Yan, L.; Xu, K.; Wu, X.; Jiang, H.; Sun, H. Open-circuit voltage-based state of charge estimation of
lithium-ion battery using dual neural network fusion battery model. Electrochimica Acta 2016, 188, 356–366.
[CrossRef]

206. Chaoui, H.; Ibe-Ekeocha, C.C.; Gualous, H. Aging prediction and state of charge estimation of a lifepo4
battery using input time-delayed neural networks. Electric Power Syst. Res. 2017, 146, 189–197. [CrossRef]

207. Shi, Q.; Zhang, C.; Cui, N.; Zhang, X. Battery state-of-charge estimation in electric vehicle using elman neural
network method. In Proceedings of the 29th Chinese Control Conference (CCC), Beijing, China, 29–31 July
2010.

208. Kang, L.; Zhao, X.; Ma, J. A new neural network model for the state-of-charge estimation in the battery
degradation process. Appl. Energy 2014, 121, 20–27. [CrossRef]

209. Guo, Y.; Zhao, Z.; Huang, L. Soc estimation of lithium battery based on improved bp neural network.
Energy Procedia 2017, 105, 4153–4158. [CrossRef]

210. Cui, D.; Xia, B.; Zhang, R.; Sun, Z.; Lao, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M. A novel intelligent method
for the state of charge estimation of lithium-ion batteries using a discrete wavelet transform-based wavelet
neural network. Energies 2018, 11, 995. [CrossRef]

211. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Saad, M.H.; Ayob, A. Neural network approach for estimating
state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access 2018, 6, 10069–10079.
[CrossRef]

212. Chen, Z.; Qiu, S.; Masrur, M.A.; Murphey, Y.L. Battery state of charge estimation based on a combined model
of extended kalman filter and neural networks. In Proceedings of the 2011 International Joint Conference on
Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011.

213. Shen, W.; Chan, C.C.; Lo, E.W.; Chau, K. Adaptive neuro-fuzzy modeling of battery residual capacity for
electric vehicles. IEEE Trans. Ind. Electron. 2002. [CrossRef]

214. Cai, C.; Du, D.; Liu, Z. Battery state-of-charge (soc) estimation using adaptive neuro-fuzzy inference system
(anfis). In Proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZ’03), St. Louis,
MO, USA, 25–28 May 2003.

215. Chau, K.; Wu, K.; Chan, C. A new battery capacity indicator for lithium-ion battery powered electric vehicles
using adaptive neuro-fuzzy inference system. Energy Convers. Manag. 2004, 45, 1681–1692. [CrossRef]

216. Fotouhi, A.; Propp, K.; Auger, D.J. Electric vehicle battery model identification and state of charge estimation
in real world driving cycles. In Proceedings of the 7th Computer Science and Electronic Engineering
Conference (CEEC), University of Essex, Essex, UK, 24–25 September 2015.

217. Dai, H.; Guo, P.; Wei, X.; Sun, Z.; Wang, J. Anfis (adaptive neuro-fuzzy inference system) based online soc
(state of charge) correction considering cell divergence for the EV (electric vehicle) traction batteries. Energy
2015, 80, 350–360. [CrossRef]

218. Awadallah, M.A.; Venkatesh, B. Accuracy improvement of soc estimation in lithium-ion batteries. J. Energy
Storage 2016, 6, 95–104. [CrossRef]

219. Wu, X.; Mi, L.; Tan, W.; Qin, J.L.; Zhao, M.N. State of charge (soc) estimation of ni-mh battery based on
least square support vector machines. In Advanced Materials Research; Trans Tech Publications: Stafa-Zurich,
Sweitzerland, 2011; pp. 1204–1209.

220. Antón, J.Á.; Nieto, P.G.; de Cos Juez, F.; Lasheras, F.S.; Vega, M.G.; Gutiérrez, M.R. Battery state-of-charge
estimator using the svm technique. Appl. Math. Model. 2013, 37, 6244–6253. [CrossRef]

221. Anton, J.A.; Nieto, P.G.; Viejo, C.B.; Vilan, J.V. Support vector machines used to estimate the battery state of
charge. IEEE Trans. Power Electron. 2013, 28, 5919–5926. [CrossRef]

222. Chen, Y.; Long, B.; Lei, X. The battery state of charge estimation based weighted least squares support vector
machine. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC),
Wuhan, China, 25–28 March 2011.

http://dx.doi.org/10.1016/j.jpowsour.2016.03.054
http://dx.doi.org/10.1109/TIA.2014.2365152
http://dx.doi.org/10.1016/j.est.2016.07.002
http://dx.doi.org/10.1016/j.electacta.2015.12.001
http://dx.doi.org/10.1016/j.epsr.2017.01.032
http://dx.doi.org/10.1016/j.apenergy.2014.01.066
http://dx.doi.org/10.1016/j.egypro.2017.03.881
http://dx.doi.org/10.3390/en11040995
http://dx.doi.org/10.1109/ACCESS.2018.2797976
http://dx.doi.org/10.1109/TIE.2002.1005395
http://dx.doi.org/10.1016/j.enconman.2003.09.031
http://dx.doi.org/10.1016/j.energy.2014.11.077
http://dx.doi.org/10.1016/j.est.2016.03.003
http://dx.doi.org/10.1016/j.apm.2013.01.024
http://dx.doi.org/10.1109/TPEL.2013.2243918


Energies 2019, 12, 446 33 of 33

223. Hu, J.; Hu, J.; Lin, H.; Li, X.; Jiang, C.; Qiu, X.; Li, W. State-of-charge estimation for battery management
system using optimized support vector machine for regression. J. Power Sources 2014, 269, 682–693. [CrossRef]

224. Sheng, H.; Xiao, J. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector
machine. J. Power Sources 2015, 281, 131–137. [CrossRef]

225. Friedman, J.H. Multivariate adaptive regression splines. Annals Stat. 1991, 1–67. [CrossRef]
226. Antón, J.C.Á.; Nieto, P.J.G.; de Cos Juez, F.J.; Lasheras, F.S.; Viejo, C.B.; Gutiérrez, N.R. Battery state-of-charge

estimator using the mars technique. IEEE Trans. Power Electron. 2013, 28, 3798–3805. [CrossRef]
227. Antón, J.C.Á.; Nieto, P.J.G.; Gonzalo, E.G.; Pérez, J.C.V.; Vega, M.G.; Viejo, C.B. A new predictive model

for the state-of-charge of a high-power lithium-ion cell based on a pso-optimized multivariate adaptive
regression spline approach. IEEE Trans. Veh. Technol. 2016, 65, 4197–4208. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jpowsour.2014.07.016
http://dx.doi.org/10.1016/j.jpowsour.2015.01.145
http://dx.doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1109/TPEL.2012.2230026
http://dx.doi.org/10.1109/TVT.2015.2504933
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Energy Storage Systems for EVs 
	Battery Management System (BMS) for EVs 
	Methods to Estimate SOC 
	Direct Measurements 
	Open Circuit Voltage (OCV) 
	Electromotive Force (EMF) 
	Internal Resistance (IR) 
	Impedance Spectroscopy (IS) 

	Book-Keeping Estimations 
	Model-Based Methods 
	Adaptive Filters (AF) 
	Observer-Based estimation (OBE) 

	Computer Intelligence-Based Estimation Methods 
	Genetic Algorithm (GA) 
	Bacterial Foraging Algorithm (BFA) 
	Particle Swarm Optimization (PSO) 
	Fuzzy Logic (FL) 
	Neural Network (NN) 
	Adaptive Neuro Fuzzy Inference System (ANFIS) 
	Support Vector Machine (SVM) 
	Multivariate Adaptive Regression Splines (MARS) 


	Discussion 
	Future Perspectives of SOC Estimation 
	Conclusions 
	-12pt
	References

