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Abstract: The energy transition of future urban energy systems is still the subject of an ongoing debate.
District energy supply can play an important role in reducing the total socio-economic costs of energy
systems and primary energy supply. Although lots of research was done on integrated modelling
including district heating, there is a lack of research on integrated energy modelling including district
cooling. This paper addressed the latter gap using linear continuous optimization model of the whole
energy system, using Singapore for a case study. Results showed that optimal district cooling share
was 30% of the total cooling energy demand for both developed scenarios, one that took into account
spatial constraints for photovoltaics installation and the other one that did not. In the scenario
that took into account existing spatial constraints for installations, optimal capacities of methane
and thermal energy storage types were much larger than capacities of grid battery storage, battery
storage in vehicles and hydrogen storage. Grid battery storage correlated with photovoltaics capacity
installed in the energy system. Furthermore, it was shown that successful representation of long-term
storage solutions in urban energy models reduced the total socio-economic costs of the energy system
for 4.1%.

Keywords: district cooling; energy storage; linear programming; tropical climate; integrated energy
modelling; energy system optimization; temporal resolution; energy planning; variable renewable
energy sources

1. Introduction

The transition to a low-carbon society got an important impetus following the 21st Conference of
Parties, held in Paris in 2015, which resulted in the so-called Paris Agreement. The main long-term goal
of the agreement is to keep the increase in the average global temperature preferably to 1.5 ◦C above the
pre-industrial levels [1]. A recent Special Report on Global Warming made by the Intergovernmental
Panel on Climate Change reached a conclusion that in order to reach the targets of the Paris Agreement,
carbon dioxide (CO2) emissions will need to fall by 45% until 2030 (compared to 2010 levels), and reach
carbon neutrality by the year 2050 [2].

Cities are currently responsible for emitting 70% of the total energy-related CO2 emissions,
while they produce 80% of the world’s gross domestic product (GDP) [3]. Moreover, more than half
of the global population lives in cities currently, and it is expected that this share will rise to 66% by
2050 [4]. Due to larger economic activity, more compact spatial layout with higher population densities,
cities play an important role in tackling climate problems. Moreover, cities around the world are
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included in dedicated programs combat climate change such as the Covenant of Mayors for Climate &
Energy [5], the Cities Alliance—Cities Without Slums [6], the CIVITAS: Cleaner and better transport in
cities [7], the Energy Cities—where action & vision meet [5] and the Climate Alliance [8].

Another important problem, which is more pronounced in urban areas than in rural areas is air
pollution [9]. According to the International Energy Agency, 6.5 million premature deaths worldwide
can be attributed to the air pollution, placing the air pollution to the 4th place of the largest threats
to the health of the humans [10]. For the case of Singapore, it was shown that focusing solely on
mitigating climate change emissions, can result in increased air pollution, mainly due to increased
biomass use [11].

In a traditional framework of energy systems, the demand for energy is fixed and it needs to be
met in all times by different energy sources. The latter framework can become increasingly expensive
as more variable renewable energy sources, such as photovoltaics (PV) and wind are introduced,
as they cannot be dispatched when needed. In order to reduce both air pollution and climate change
related emissions, a shift in the traditional framework started to occur, by creating demand when
there is available supply [12]. However, in times when there is very low production from variable
renewable energy sources, and demand cannot be reduced enough for the available supply or it is more
expensive to reduce it, a resulting difference in demand and supply has to be resolved by different
storage solutions.

The first problem detected in the literature was that different energy storage types are rarely
represented in the same study, thus making it complicated to detect the interdependency of different
storage solutions. Energy storage is often discussed in terms of the power system in general. One review
paper focused on the storage solutions for electric vehicles [13]. The authors reached a conclusion that
there is still insufficient research carried out about the material support, proper disposal, recycling, safety
measures and cost [13]. Another study focused on storage in terms of the integration of wind power [14].
The authors distinguished between the positive impact of storage on power applications, such as voltage
and frequency control, as well as on energy applications (storing energy itself) [14]. The authors reached
the conclusion that the energy storage can be an effective solution to satisfy the stability and reliability
requirements of the power system.

In another set of studies, a focus was placed on the ice storage only. One study examined the
system consisting of ice storage, an adsorption chiller and a parabolic trough solar collector [15].
The authors showed that the highest coefficient of performance (COP) in the proposed setup was
only 0.15 [15]. In order to increase the performance of the system, some authors suggested the use of
double effect absorption chillers in a combination with solar heating plant [16]. The simulated COP of
absorption chiller was 1.92, while the measured values showed that the real COP was only 1.21 [16].
Furthermore, much higher inlet temperatures are needed for double-effect absorption chiller compared
to the single-effect absorption chiller, which can be problematic for heat sources available at lower
temperatures [17]. All those papers pointed to the use of ice storage as daily storage (cooling load shift
from day to night), and none of them examined the possibility of using the cold storage in a more
seasonal manner.

However, energy storage is a wider concept than just the electrical storage or cold storage.
One research paper showed the difference between pumped hydro (electrical), thermal, gas, and liquid
storage solutions [18]. The authors concluded that liquid fuel, gas and thermal storage solutions
are much cheaper than the electrical storage, as well as that those storage types can store energy for
longer periods of time with lower losses [18]. Another paper focused on optimal capacities of different
storage types when reaching strict CO2e emission targets [11]. When looking into minimizing the
total socio-economic costs of the energy system, the authors showed that thermal energy storage and
hydrogen storage have large potential in future urban energy systems with a high share of electricity
generated from PV, while the potential of natural gas and grid battery storage will be much lower [11].

The second problem detected from the literature was a lack of the representation of the long-term
storage solutions, usually due to poor (coarse) temporal resolution. A problem that arose in connection
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with the dawn of the intermittent energy sources, such as wind farms and PV, is the decentralized
locations of those energy sources in an energy system. In order to successfully represent and optimize
the future capacity investments, energy planning models must successfully represent energy systems
both spatially and temporally. In recent reports on long-term energy models, the one from the
National Renewable Energy Laboratory (NREL) [19] and the other from the International Renewable
Energy Agency (IRENA) [20], it was stated that in order for models to capture both temporal and
spatial dimensions, as well as to be computationally tractable, the models use different decomposition
techniques or so-called time slicing in order to reduce the complexity of the optimization models.
Furthermore, the NREL’s report has clearly stated that the lost ability to represent large-scale storage
solutions should be further addressed.

One paper demonstrated the possibility of using statistics-based methods for selecting the optimal
subset of the representative days to capture the variability of solar generation and power load in the
distribution system [21]. They significantly reduced the number of days that need to be represented,
from 365 to 40. However, although they have captured the solar generation and power demand
distributions variability, their approach only allows for modelling of intra-day storages.

In Ref [22], the author concluded that for the economic assessment of the energy system it is
especially important to capture the value of flexible resources, such as transmission and storage.
However, the author has pointed out that the typical models aggregate intra-annual time segments and
capacity blocks [22]. The author’s model captured the covariance of resources, operational constraints
and regional heterogeneity but energy storage was not able to store seasonal surpluses of renewable
energy, according to the author [22].

There are three different papers that tackled the issue of resolution and computational tractability
of the energy planning models. The authors in [23] used the National Renewable Energy Laboratory’s
Resource Planning Model to demonstrate the difference between results on higher and lower temporal
distribution. They simulated different dispatch periods for the “peak-day”, ranging from one day to
four consecutive days. They concluded that the shorter simulation periods resulted in over-scheduling
of hydro energy and less installation of combined cycle natural gas plants [23]. However, their temporal
resolution was still very small (coarse), they focused only on the power sector and no large-scale
storages were represented in the model. The same model (Resource Planning Model) was used in
another report [24]. The authors carried out a very detailed spatial representation of the distribution
and transmission; however, they were still using only consecutive 4-day periods as a temporal
resolution. Moreover, the authors explicitly stated that they did not model new storage investments
in the model. They reported that increasing sampled dispatch periods had a dramatic effect on
computation time, while the investment decisions did not change when changing model configuration
from 96-h sample to 24-h sample [24]. The focus of their research was still solely on the power sector,
without proper representation of the long-term storages.

To the best knowledge of the authors of this paper, the most detailed research on temporal and
spatial trade-offs so far has been carried out in [25]. The authors used the POWER planning model
for scenarios with a high share of variable renewable energy generation. The authors concluded
that the most trade-offs yield up to the 15% of cost differences. Concerning the spatial resolution,
the authors showed that the uniform buildout case resulted in a 10% reduction in cost compared to the
site-by-site buildout case. Focusing on the temporal resolution, the authors showed that the total cost
is significantly lower with a coarser temporal resolution. However, two limitations, out of the several
ones that the authors detected in their paper, are important for this paper. First, the authors reported
that their work has focused only on the power sector and it has not captured the current research trend
to include all the energy sectors in order to achieve cross-sectoral synergies and second, due to the
temporal disjointedness of most days in subsets, the chronological tracking of storages was limited to
the 24 h [25].

This paper tackled the both detected problems, the first regarding the optimal storage portfolio
depending on the share of district energy supply, and the second, regarding the difference in optimal
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technology portfolio and corresponding socio-economic costs in energy systems with and without
large-scale storage solutions represented. As many different storage solutions exist, it is important
to take a holistic look into the energy system, including all of its sectors, in order to be able to track
the interplay between different storage solutions. In the existing literature, there is still not enough
research carried out on the optimal storage portfolio dependent on different shares of district energy
supply. In order to tackle the latter problem, this paper focused on resulting optimal storage portfolio
based on the stepwise increase in the share of district energy supply, in this case on district cooling
supply for the case of the city of Singapore.

2. Materials and Methods

There are many different energy planning and/or capacity expansion models. The fundamental
and the most important difference is between optimization and simulation models. A comprehensive
overview of the existing models can be found in [26]. In a recent paper, a critical review has been stated
towards the models that report only one optimal solution of the future energy system [27]. The authors
claim that the simulation models are better suited for a decision making about the future investments
as they typically report several scenarios, i.e. several alternatives, as opposed to the optimization
models that typically represent only one (optimal) solution [27]. Although the author of this paper
shares the concern about the reporting of the single (optimal) solution to different stakeholders that do
not completely understand the complexity of the energy modelling, the number of assumptions and
uncertainties about the data, the problem being researched here is especially suitable to be solved by
optimization model due to the two reasons. First, the focus of the research is a representation of the
different storage solutions, which can be only handled using the optimization techniques. Even the
simulation models, such as EnergyPLAN, handle the storage operation via different optimization
methods [28]. Second, the geographical scope of this paper is a city scale, as opposed to the more
common national or regional models. A city usually has different peculiarities and specifics that need
to be taken into account when modelling its energy system. If the focus had been set to the larger
geographical areas such as nations, those specifics of a single city would have been averaged out.

Hence, in this paper, a linear continuous optimization model was used to model the representative
city of a hot climate. As a linear optimization model, the developed model has many similarities to the
more common Balmorel model [29]. The main difference is that the model developed for this specific
issue can be more tailored, allowing for better representation of different storage types, as well as
different integration technologies such as electrolysers and fuel cells. The results of the model include
the optimal operation of the energy system on the hourly resolution, as well as the optimal capacities of
different technologies in the energy system. The developed model is specifically tailored for integrated
energy modelling, which includes power, cooling/heating, gas, mobility and water desalination sector,
including the interactions among those sectors. The goal of the integrated energy modelling is to
capture additional efficiencies through integration of different energy sectors, contrary to the models
focusing on a single sector only. Thus, although the focus of this paper was on the cooling sector,
all the energy sectors were optimized simultaneously in order to capture interactions between different
energy sectors.

The full set of equations can be found in Appendix B of this paper, while the most important
equations are presented and discussed in this section. Most of the equations were initially developed
in [30], and further updated in [11].

The objective function of the model was to minimize the total yearly socio-economic costs of the
energy system (Equation (1)). Contrary to the business-economic calculations, the socio-economic
costs usually exclude different taxes as those are considered to be internal redistributions within the
society. However, the cost of negative externalities such as air pollution and climate change costs can
be internalized when calculating the total socio-economic costs. In this paper, the costs of both CO2e
(CO2, CH4, N2O) emissions and air pollutants (NO2, SO2, PM) were taken into account. The CH4 and
N2O emissions were transferred to the equivalent CO2 emissions using the global warming potential
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factors. The objective function included levelized investment costs of different technologies, fixed
operating and maintenance costs (O&M) and fuel costs. The costs of infrastructure, such as electrical
transmission and gas transmission grids were also modelled:

minZ = ∑n
i=1

(
f ix_O&Mi + levinvi

)
xi + ∑m

j=1

(
var_O&Mj +

f uelj
ηj

+ CO2ej·CO2eintenj+

air_pollj·air_pollinten,j
)
xj + ∑

p
k=1(gas_impk + petr_impk)xk [30]

(1)

Levelized investment costs were calculated using Equation (2). All the infrastructure, including
power plants, cogeneration plants, distribution grids and different storage types were annualized and
corresponding yearly costs were added to the total yearly socio-economic costs reported in this study:

lev_invi = invi·
dis_ratei

1 − (1 + dis_ratei)
−li f etimei

(2)

In total, five different storage solutions were implemented in the model, battery grid storage
(Equation (3)), battery storage in vehicles, pit thermal energy storage, hydrogen and natural
gas storages:

battery_levelr = battery_levelr−1 + xj,battery,storage_ch,r − ηbattxj,battery,storagedis ,r
−xj,battery,storage_grid_dis,r

(3)

Storages were modelled using the sets of variables for storage charge, storage discharge and level
of energy in the storage. Moreover, storage losses were taken into account. Battery storage of vehicles
included another set of variables, the one representing the discharge of electricity to the grid, allowing
modelling of the vehicle-to-grid behaviour. All other storage types were modelled in the same manner
as the grid battery storage represented by Equation (3).

District cooling balance included district cooling demand that needed to be satisfied, cold generated
in absorption chillers, cold from geothermal energy (Equation (4)):

absDC + geothermalDC ≥ DCdemand (4)

while the balance of absorption chillers is given by Equation (5):

xj,wasteheat,l + ηthxj,heat,storage_dis,r ≥ (absDC/COPabs) (5)

Here it is important to note that the term xj,wasteheat,l represents heat that originates from different
sources: gas CHP, waste incineration plant, solar thermal or waste heat from data centres. The waste
heat from data centres was assumed to be coupled with heat pumps, which would sufficiently raise
the temperature to be fed to single-effect absorption chillers.

A total cooling demand could be satisfied either by district cooling or individual cooling, as
presented in Equation (6):

DCdemand + ind_cooldemand ≥ cooldemand,total (6)

The total individual cooling demand needed to be met by individual chillers is obtained using
Equation (7). Individual chillers were assumed to be building level air conditioners:

chillerindividual ≥ ind_cooldemand (7)

The remaining part of the model developed in this paper, which was used for representing the
other sectors of the energy system, can be found in Appendix B.

The model was built using the Matlab interface and Gurobi optimization solver. Optimizations
were carried out on a personal computer, with an i7 processor (1.9 GHz), 16 GB of physical RAM, and
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25 GB of virtual RAM, dedicated from 500GB SSD hard disc. A single optimization run took 30 min in
the most time-consuming run.

3. Case Study

Singapore was chosen for the case study as it is a 100% urbanized country, at a high level of
economic development and suitable for district cooling research as it is located very close to the equator.
Being a country—city, a large agglomeration with lots of available data, Singapore represents very
well the urban zones of many developed countries, especially those with a similar climate.

Singapore is one of the most densely populated cities in the world, with 7900 people per km2. It is
a very developed region, having the 3rd largest GDP at power purchase parity (PPP), with 93,905 USD
per capita according to the World Bank [31]. Large population and high economic activity result in
a large energy use per capita. According to the International Energy Agency, Singapore’s primary energy
demand per capita was 53.8 MWh in 2015 [32]. Singapore is the most developed part of south-east
Asia and thus, its energy consumption is already high [33]. Currently, south-east Asia is rapidly
developing, both in terms of population and economic activity. Consequently, it can be expected that the
neighbouring cities will see a significant increase in primary energy demand to meet the needs of its
increasing population. For the case of Malaysia, the IEA forecasts increase in energy demand by a factor
of 2 until the year 2040 [33].

Hence, the results implemented for this case study are transferable to other cities located in
the warm regions, as it can be expected that most of the cities that are now significantly increasing
economic activity will see much higher energy demand for cooling purposes in the future.

Different assumptions were made as a part of this research. CO2e emissions factors, capacities of
energy facilities, energy demand and the description of the transportation sector can be found in great
detail in [34] and [35]. The energy supply of Singapore is dominated by gas power only plants, as can
be seen in Table 1.

Table 1. The energy supply of Singapore in the reference scenario.

Plant Type Capacity [MW] Fuel Efficiency Reference

Power plants 2225 Natural gas/LNG 47.5% [36,37]
Waste-to-energy plants 256.8 Waste 16.7% [36–38]

PV 33.1 - 12.4% (capacity factor) [36,38]

The following technologies were predefined in the optimization model: solar heating, absorption
chillers, waste heat from data centres coupled with heat pumps to reach sufficient temperatures [39],
PTES storage and geothermal energy in district cooling sector; grid battery storage, waste and gas
combined heat and power plants, wind turbine, PVs and vehicle-to-grid in the power sector; natural
gas transmission grid (import), hydrogen storage, gas storage, solid-oxide electrolysers and fuel cells,
syngas to natural gas and syngas to gasoline syntheses and gasoline import in gas and mobility sectors.
Finally, other technologies included in the model were individual chillers (individual cooling) and
reverse osmosis for desalination of seawater. It is important to notice that all of those technologies were
predefined in all the scenarios of this research paper. However, based on the conditions in a specific
scenario, different optimal set-ups were possible in different scenarios.

As the focus of this paper was on the optimal portfolio of different storage types depending
on different shares of district cooling and individual cooling, it is important to discuss different
assumptions regarding the implemented storage types. In this paper, individual cooling included
cooling solutions from an apartment level up to the one whole building. To be counted as district
cooling, at least two buildings had to be connected to the district cooling grid.

Pit thermal energy storage (PTES) was assumed for district cooling purposes. It is used to store
large quantities of warm water before it is fed to single effect absorption chillers. There are two
main reasons why pit thermal energy storage was chosen for district cooling sector instead of ice
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(cold) storage. First, the current literature review shows that no cold storage is currently being used
as seasonal storage, while there are plenty of real-world installations of pit thermal energy storage
solutions [40]. Second, for ice storage charging, very low temperatures are needed, which cannot be
obtained by water-lithium bromide absorption chillers. Instead, the ammonia-water solution should be
used. However, the ammonia-water solution was reported to have a lower coefficient of performance
than the water-lithium bromide solution [40].

A single-effect water-lithium bromide absorption chiller technology was adopted for this
study, in order to make it possible to utilize as much waste heat from different sources as possible.
The coefficient of performance (COP) of 0.7 was used. District cooling system was organized as
a centralized system, as both PTES and absorption chillers were centrally located. On the other hand,
building level air conditioners, designated in this research paper as individual cooling, had a COP of 4.0.

The cost of the district cooling distribution grid with water as a medium flowing through the
pipes was adopted from [34], and the price of 37 €/MWh of yearly delivered cold energy was used.
The losses of district cooling grid are significantly lower than the district heating grid. One reason is
a lower temperature difference between the water flowing through the pipes and the surrounding
ground, and the other is a generally larger diameter of distribution pipes in the case of the cooling grid,
resulting in a lower area-to-volume ratio and corresponding heat losses. For the tropical region,
average losses of 4.8% were reported [34], which is also the number used in this study.

Hydrogen was assumed to be stored in a cavern type of storage at 50 bars. Methane storage
was also assumed to be an underground cavern. Grid batteries and vehicle batteries technology were
lithium nickel cobalt aluminum oxide (Li-ion) NCA. Assumed investment costs and efficiencies can be
seen in Table 2.

Table 2. Investment costs and efficiency of different storage solutions.

Investment Cost (€/MWh) Efficiency * Reference

PTES 540 75% [41]

Methane storage 99 97% [41]

Hydrogen storage 11,000 96% [41]

Grid battery 127,300 91% [42]

Vehicle batteries 127,300 91% [42]

** vehicle to grid mode 79% ** [43,44]

* including charging losses, ** including direct current to alternating current transformation

In this paper, a detailed assessment of the potential CO2 source for natural gas synthesis was out
of the scope of the paper. However, the National Climate Change Secretariat of Singapore estimated
that large amounts of CO2 could be extracted from industry and gas power plants in their Carbon
Capture and Utilisation roadmap [45]. It is important to keep in mind that CO2 capture would increase
the reported costs of the energy system, which was excluded from this study.

Availability of space for installing large amounts of low-density energy generators, such as PV,
is often an issue in highly populated cities in south-east Asia. Singapore has a particularly high density
of population, with many competing uses of available space. Regulations for using available space are
very tight, and hence, the available area for PV installations has to be constrained. According to the
solar photovoltaic roadmap developed for Singapore, the maximum available space for PV installations
corresponds to 12,250 MW of peak capacity [46]. The referenced PV capacity already included expected
development of the efficiency of PV panels that will consequently require less area for the same
capacity than it is the case today. The latter includes also 20% of available seawater where floating PV
could be installed. In order to take into account the PV capacity constraint, two different scenarios
were developed; the first included the constrained PV capacity (dubbed PV constrained scenario)
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and the second did not include the constraint on PV capacity (dubbed unconstrained PV scenario).
The latter would mean that Singapore should import one part of the energy generated from PV from
nearby regions.

Out of other technologies, solar thermal was constrained to 2000 MW also due to space constraints,
while geothermal was constrained to 50 MWe, in line with the current estimates for geothermal
potential [47]. Finally, waste heat from data centres was constrained to 735 MWth, a conservative
estimate taken from [35].

4. Results

Several different optimization runs were carried out in order to reach two major conclusions.
The first was to detect the difference between the optimal configuration of the energy system with and
without the large-scale energy storages, in order to evaluate the potential error when reducing the
time resolution in the capacity extension models. This part of the research included spatial constraints
influencing maximum PV and solar thermal capacity, as described in the Case study section.

The second gap detected in the literature review was the difference in optimal capacities of
different technologies based on different shares of district cooling and individual cooling. In order to
reach conclusions on this issue, optimizations were run stepwise (in steps of 10%), starting from 0%
of district cooling (100% of individual cooling) to 100% of district cooling (0% of individual cooling).
Two scenarios, in this case, PV constrained and unconstrained PV, were run in order to assess the
difference between transition the energy system to an isolated one and non-isolated one.

One can note from Table 3. that total socio-economic costs were 4.1% lower when different storage
solutions were included in the urban energy modelling. This difference shows that it is important to
be able to represent different storage solutions in energy planning of future urban energy systems.
The latter difference would have been even larger if spatial constraints influencing the maximum
installed PV and solar thermal capacities had been relaxed. The main difference in costs occurred from
capital savings in gas infrastructure, as gas storage replaced one part of gas CHP plant capacity and
one part of the gas import capacity.

Table 3. Results of the comparison of energy models with and without large-scale storage representation
(Storages represented optimization run and Storages not represented run had all the predefined technologies
the same, except that storage capacities were constrained to zero in the case of Storages not
represented scenario).

Storages Represented Storages Not Represented Difference

Total socio-economic costs [mil €]: 8012 7685 −4.1%
Capital costs [mil €]: 3773 3464 −8.2%

Operating costs [mil €]: 3609 3592 −0.5%
CO2e costs [mil €]: 607 607 −0.1%
CO2 costs [mil €]: 605 605 −0.1%

Air pollution costs [mil €]: 23 22 −3.9%
NOx emissions [kg] 11,751,113 11,711,620 −0.3%
SOx emissions [kg] 0 0 -
PM emissions [kg] 19,694 19,627 −0.3%

CO2e emissions [Mt]: 29 29 −0.1%
Primary energy demand (incl. Industry) [GWh] 163,871 163,914 0.0%

Methane consumption [GWh] 73,258 73,021 −0.3%
Oil consumption [GWh] 41 7 −81.8%

Renewable [GWh] 17,662 17,801 0.8%
Waste consumption [GWh] 5989 6166 2.9%

Industry consumption–natural gas [GWh] 66,920 66,920 0.0%

The differences in the optimal configuration of the energy system can be seen in Table 4. One can
notice from Table 2 that although different storage solutions resulted in a reduced socio-economic cost
in the case of storages represented scenario, CO2 emissions were almost the same. The reason is that
the lower share of district cold generation via absorption chillers was replaced by individual electric
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chillers, which had a high COP value of 4. However, the large share of individual cooling resulted in
higher total socio-economic costs.

Table 4. The difference in the optimal energy system configuration with and without representation
of large scale storages. Only non-zero capacities are presented (including all the storages). Optimal
capacities were the one that resulted in the lowest socio-economic costs, for valid conditions in each of
the specific scenarios.

Capacities [MW] Storages Not Represented Storages Represented

solar heating 2000 2000
Electric chillers 43 0

Absorption chillers 4780 6074
PTES storage (GWh) 0 417

battery storage (GWh) 0 4
waste CHP 170 170

gas CHP 5929 4785
PVs 12,250 12,250

gas net import 13,950 10,960
Hydrogen storage (GWh) 0 0

gas storage (GWh) 0 112
SOEC 0 0
SOFC 0 0

gasoline import 813 459
electric vehicles battery capacity (GWh) 15 16 *

Reverse osmosis 31,620 34,937
Geothermal DC capacity 50 50

DC capacity 4607 6074
Non DC capacity 9727 9517

* No vehicle-to-grid mode in non-storage optimization run.

By comparing Tables 3 and 4, one can notice that the increased flexibility via the different storage
representation in the energy system model resulted in significantly lower total socio-economic costs,
which mainly originated from the lower capital costs.

Results of the stepwise increase in the share of district cooling can be looked at in Figures 1–3.
The difference in socio-economic costs for different shares of district cooling and individual cooling,
for both PV constrained and unconstrained PV scenarios, can be seen in Figure 1. The lowest socio-economic
costs occurred at 30% penetration of district cooling in both cases. For the PV constrained scenario,
the socio-economic cost at 30% share of district cooling was 7.9 billion EUR, while for unconstrained
PV scenario the total socio-economic cost was 7.5 billion EUR. Thus, the corresponding difference of
allowing larger capacities of PV resulted in a cost reduction of 5.1%, all other assumptions being the
same. Increasing the share of district cooling from 50% to 100% resulted in significantly higher total
socio-economic costs of the energy system.

Total primary energy demand in PV constrained and unconstrained PV scenarios can be seen in
Figure 2. Primary energy demand started to increase significantly after surpassing the share of district
cooling of 50%. At lower shares of district cooling, unconstrained PV scenario had generally lower
primary energy demand. On the other hand, at higher shares of district cooling, primary energy
demand in PV constrained scenario was lower than in the unconstrained PV scenario. Starting from the
district cooling share of 40%, optimal capacities and corresponding costs were the same in both PV
constrained and unconstrained PV scenarios. The reason is that the optimal capacity of PV in all those
runs was lower than the PV capacity constraint in PV constrained scenario.

The total socio-economic costs were reducing until the share of district cooling of 30% was reached
in both scenarios. The main reasons were better utilization of waste heat from gas CHPs and waste
incineration plants, which was utilized for a cold generation in absorption chillers, as well as utilization
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of PTES, a cheaper storage option than the battery storage. Starting from the district cooling share
of 40%, socio-economic costs of the energy system started increasing again. The main cause for the
latter behaviour was a lack of low-cost waste or excess heat. Without enough heat available, gas CHP
needed to consume more fuel in order to generate a sufficient amount of heat needed for absorption
chillers. Having more waste heat available could result in a higher optimal share of district cooling
than in this case study.
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PV constrained scenario had generally a lower share of capital costs and a larger share of operating
costs than in the unconstrained PV scenario. The main reason is that the unconstrained PV scenario had
significantly larger capacities of PV and grid batteries, resulting in higher upfront investment and
lower running costs.

Both air pollution and CO2e costs were generally higher in PV constrained scenario than in
the unconstrained PV scenario. The lowest CO2e emissions and air pollutant emissions were in the
unconstrained PV scenario, without any district cooling. The reason for the latter is that a significant
capacity of PV did not cause any carbon emissions or air pollution, while gas CHP plant that was
dominating energy source for larger shares of district cooling contributed to both carbon emissions, as
well as air pollution.

Optimal shares of different storage capacities can be seen in Figure 3. The largest capacities were
those of methane and PTES storage types. Generally, demand for grid battery storage is low in different
cases, as smart charging and vehicle-to-grid technology are already providing lots of flexibility in
the energy system. The only exception is the case of unconstrained PV scenario, up to the share of
district cooling of 30%. In those cases, the grid battery storage capacity was relatively large, as was
the capacity of PV. The latter points to the conclusion that grid battery storage can be an economically
viable solution if they can be utilized for many day-night charging and discharging cycles, as it was
the case when large capacity of PV existed in the energy system. Discharge of electricity for the grid
in the vehicle-to-grid mode was maximally utilized in the unconstrained PV scenario, at 30% share of
district cooling, with the discharge of electricity from vehicle batteries equalling 0.72% of the total
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electricity generation over the year. The lowest socio-economic costs in both scenarios occurred at 30%
share of district cooling.

At 30% of district cooling share in PV constrained scenario, optimal storage capacities of PTES,
grid battery, methane, hydrogen and electric vehicle batteries were 2.7 GWh, 3.9 GWh, 195.1 GWh,
0 GWh and 15.6 GWh. In the case of unconstrained PV scenario, optimal storage capacities of PTES,
grid battery, methane, hydrogen and electric vehicle batteries were 5.34 GWh, 28.3 GWh, 0 GWh,
0 GWh and 20.3 GWh. The behaviour of optimal PV capacities and battery storage capacities showed
a correlation between those two technologies. Capacities of all the technologies for all the optimization
runs can be found in Appendix A.

5. Discussion

Focusing on the first detected issue that was addressed in this paper, looking into Table 3. One can
notice significant savings in total socio-economic costs of the energy system that were achieved only by
better representing different storage solutions. In that sense, this paper is directly addressing a research
gap detected in recent NREL’s [19] and IRENA’s [20] reports on energy modelling. The main difference
for the case of Singapore is more efficient utilization of gas infrastructure. The difference in total
socio-economic costs in systems with and without different storage solutions represented would have
been even larger if PV capacity had been left unconstrained. A sensitivity analysis was carried out
with unconstrained PV capacity in order to check the latter claim. It was found out that the difference
in total socio-economic costs of the energy system was 7.9% when different storage solutions were
represented. The main difference originated from the optimal capacity of PV, which was 52% larger in
the case when storage solutions were successfully represented.

Moreover, one can observe in Table 3 a significant difference in oil consumption in the two cases,
however, it should be noted that oil consumption in both cases is very low compared to the current oil
consumption of Singapore. The reason for almost no oil consumption is that industrial oil consumption
was switched to natural gas consumption and most of the transport sector was electrified, a result of
the optimization model used in this research paper.

Focusing on the second issue addressed in this paper, looking into primary energy demand in
Figure 2, one can note that at high shares of district cooling, primary energy demand tend to rise
significantly. There are two main reasons for significantly higher primary energy demand in cases
with a higher share of district cooling. First, at lower shares of district cooling, there is a large capacity
of individual air conditioners (building level air conditioners), with a coefficient of performance of 4.
Hence, ambient thermal energy that was used in the cooling cycle was not accounted for as primary
energy demand. The second reason is that large shares of district cooling consequently had a large
demand for natural gas. After all the low-cost heat sources were utilized, further heat generation from
gas CHPs was not the optimal procedure in energy efficiency terms. Introduction of SOEC and SOFC
in some of the runs with a higher share of district cooling resulted in additional conversion steps,
increasing the losses in the energy system.

The optimal share of district cooling in both PV constrained and unconstrained PV scenarios was
30%. As the current share of district cooling in Singapore is very low, reaching the share of 30% could
be challenging. One option would be to connect very densely populated central parts of the city,
which includes mostly commercial buildings, to the district cooling and gradually spread the system
towards residential areas. The other option would be first to implement district cooling in areas that
are currently being developed, and connect the other buildings to the district cooling grid when major
retrofit of buildings is scheduled, the approach proposed in [34].

It is important to discuss here the sensitivity of the results. During the case study representation,
it became clear that Singapore is significantly lacking in resources for very large shares of renewable
energy in the total energy consumption. Singapore is a city with a large energy demand per capita,
and it is a very densely populated city. Moreover, it does not have a good wind potential for either
onshore nor for offshore turbines. Due to the lack of available space, PV plants built on the ground are
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not an option in the current urban development plans of Singapore. All of these reasons contribute to
the optimal share of district cooling of 30%. The amount of low priced waste heat is a very sensitive
parameter, significantly influencing the results. Cities with similar climate, but higher amounts of
waste heat availability, would probably result in a significantly larger optimal share of district cooling.

Larger shares of district cooling caused a higher need for waste heat that could be utilized via
absorption chillers. To match that additional demand, optimal capacities of gas CHPs were larger
than in the case of higher shares of individual cooling. The latter was also matched with much
higher capacities of methane storage compared to other storage types. When maximum PV capacity
was unconstrained, battery storage capacities were larger than in the case of PV constrained scenario.
The reason for the latter is that battery grid storage and vehicle batteries in the form of smart charging
were used by the system as day-night storage solutions, while methane, hydrogen and PTES storages
solutions were used by the system for much longer periods.

Generally larger capacities of gas and thermal energy storage compared to the grid battery storage
confirmed the finding from [18]. Somewhat contrary to the [18], in this paper, optimal grid battery
capacities were found to be also rather large, especially in the case of unconstrained PV scenario.
The latter can be contributed to the specific weather patterns of Singapore, having no clear distinctions
between different seasons and only day-night distinctive insolation pattern (without seasonality effect).
In the future work, the optimal capacities of grid battery storage should be assessed in a different setup
in order to detect its correlation to different variable renewable energy sources; however, with larger
optimal capacities of wind energy compared to PV.

Some regions like the Caribbean have a high potential of both wind and solar energy and thus,
large penetration of cost-efficient renewable energy technology can be achieved without large district
energy supply systems [48]. On the other hand, this case showed that for the case of Singapore,
that has large potential only for solar energy and not for wind energy, a 30% share of district cooling
was optimal.

Although there are not many research papers dealing with an optimal share of district versus
individual cooling taking holistic energy modelling approach, there is a lot of research on the optimal
share of district heating. Energy roadmap Europe has found that optimal shares of district heating
versus individual heating solutions would be 66% for Italy and Spain, 50% for the Netherlands and
Germany, and between 27% and 43% for most other EU countries [49]. The reason for the difference
between the larger optimal shares of district heating compared to district cooling can be explained
by climate specifics. Warmer regions that have very high cooling density demands usually correlate
with high global insolation, having a large potential for solar energy development. Consequently,
a combination of solar energy and efficient heat pumps can be more cost-effective than having very
large shares of district cooling based on waste heat utilization in absorption chillers. To check the
optimal share of district cooling versus individual cooling, future research projects could encompass
different cities across the world, using a similar model to the one developed for this study.

6. Conclusions

Two detected research gaps were part of this study. In order to assess the optimal share of district
cooling versus individual cooling taking holistic energy modelling into account, several optimization
runs were carried out with a stepwise increase in district cooling share. It was shown that optimal
district cooling share for the case of Singapore was 30% in both scenarios that were carried out;
one with constrained PV capacity that reflected spatial constraints, and the second with unconstrained
PV capacity that would include the use of nearby space, outside of the city borders.

In order to improve the research on the second detected research gap, two cases were assessed,
one with five different storage types represented, and the second one without long-term storage types
represented. The results revealed that an error by not representing storage technologies in energy
planning models was 4.1% for the case of Singapore. The latter difference raised to 7.9% when PV
capacity constraint was relaxed.
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Nomenclature

absDCc Cold production for district cooling (DC) from single phase absorption units,
MWh

air_pollj Costs of air pollution emissions, €/kg
air_pollinten,j Air pollution intensity of a certain technology or energy within the system

boundaries, kg/MWh
battery_levelr Level of energy stored in batteries in hour r, MWh
chillerDC Production of cold in DC from centralized electric chillers, MWh
COPDCchiller

Coefficient of performance of chillers in DC
chillerindividual Production of cold from individual electric chillers, MWh
cooldemand,total Total cooling demand, MWh
COPindividual Coefficient of performance of individual chillers
COPabs Coefficient of performance of absorbers
CO2e_intenj CO2 intensity of a certain technology or energy within the system boundaries,

ton/MWh
CO2ej Costs of CO2 emissions, €/ton
DCdemand DC demand, MWh
dis_ratei Discount rate of the technology i, %
el_dem Electricity demand, MWh
eletransport Electricity demand for electrified part of the transport sector, MWh
f ix_O&Mi Fixed operating and maintenance costs of energy plants, €/MW
f uelj Fuel cost of specific energy type, €/MWhfuel

gas_dem Gas demand, MWh
gas_impk Price of import of gas in a specific hour, €/MWh
gassynthesis Synthetic natural gas production from syngas using gas synthesis, MWh
geothermalDC Cold production for DC from geothermal waste heat, MWh
heat_levelr Heating energy content stored in the energy storage, MWh
i Energy technology index
ind_cooldemand Individual cooling demand, MWh
invi Total investment in technology i, €
j Energy technologies that consume fuels and have emissions
lev_invi Levelized cost of investment over the energy plant lifetime, €/MW
li f etimei Lifetime of the technology i, years
petr_dem Gasoline demand, MWh
petr_impk Price of import of gasoline in a specific hour, €/MWh
r Time index, hour
RO Fresh water production from sea water desalination using reverse osmosis, m3

SOEC Hourly production of syngas from solid-oxide electrolysers, MWh
SOFC Hourly production of electricity from solid-oxide fuel cells, MWh
t hour, h
var_O&Mj Variable operating and maintenance costs of energy plants, €/MWh
waterdemand Demand for fresh water production from sea desalination via RO, m3

xi Capacity variables of energy plants and gas grid, MW
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xj Generation capacities of energy plants (8,760 variables for each energy plant,
representing the generation in each hour during the one year), MWh

xj,EL Hourly generation of technologies which generate electricity, MWh
xj,EL,gas Hourly generation of technologies which generate electricity and are driven by

gas, MWh
xj,EL,other Hourly generation of technologies which generate electricity and are driven by

other fuel types, or are not fuel-driven (Photovoltaics (PVs) and wind turbines),
MWh

xj,battery,storagech
Hourly charge of vehicles battery storage, MWh

xj,battery,storage_dis Hourly discharge of electricity of vehicles battery storage, MWh
xj,battery,storage_grid_dis,r Hourly discharge of electricity of vehicles battery storage to the power grid

(vehicle-to-grid (V2G)), MWh
xj,gridbattery ,storagech Hourly charge of electricity grid battery storage, MWh
xj,grid_battery,storage_dis Hourly discharge of electricity grid battery storage, MWh
xj,heat,storage_ch,t Hourly charge of heat to the heat storage operated in the DH system t, MWh
xj,heat,storage_dis,t Hourly discharge of heat from the heat storage operated in the DH system t,

MWh
xj,wasteheat,l Heat generation needed for absorption chillers; from gas, waste CHPs, solar

thermal or waste heat from data centres, MWh
xk Import or export across the system boundaries of different types of energy (8760

variables per one type of energy, representing the flow in each hour during the
one year), MWh

ηj Efficiency of technology, MWhenergy/MWhfuel

ηth Efficiency of thermal energy storage, MWhheat/MWhheat

ηbatt Efficiency of grid battery storage, MWhele/MWhele
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Appendix A

Table A1. Optimal capacities of technologies in PV constrained scenario (MW).

Individual cooling: 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

District cooling 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solar heating 0 0 0 1042 2000 2000 2000 2000 2000 2000 2000

Absorbers 0 1300 2778 4098 6749 9788 10,949 12,187 13,478 14,759 16,041

Waste heat data centers 0 0 0 0 735 735 735 735 735 735 735

PTES storage m3 0 24,168 63,006 47,725 258,573 609,594 747,944 994,079 1,107,915 1,217,468 1,328,843

Battery storage 3017 3321 3621 3917 0 0 0 0 0 0 0

Waste CHP 161 161 161 170 170 170 170 170 170 170 170

Gas CHP 6345 5938 5538 5130 5280 6469 7864 9239 10,656 12,074 13,489

Wind turbine 0 0 0 0 0 0 0 0 0 0 0

PVs 12,250 12,250 12,250 12,250 10,167 500 500 500 500 500 500

El grid import 0 0 0 0 0 0 0 0 0 0 0

El grid export 0 0 0 0 0 0 0 0 0 0 0

Gas net import 13,505 12,746 11,963 11,170 11,420 14,994 17,784 20,538 23,372 26,207 29,040

Gas net export 0 0 0 0 0 0 0 0 0 0 0

Hydrogen storage [MWh] 0 0 0 0 0 5347 3350 3637 1741 289 0

Gas storage [MWh] 233,053 202,799 198,216 195,132 182,997 16,518 13,702 13,045 12,542 11,921 10,789

SOEC 0 0 0 0 0 1021 3738 6386 9072 11,783 14,504

SOFC 0 0 0 0 0 613 2271 3873 5464 7073 8703

Syngas to fuel 0 0 0 0 0 0 0 0 0 0 0

Syngas to natural gas 0 0 0 0 0 0 0 0 0 0 0

Gasoline imports 8405 8283 8378 8392 6791 1016 1026 1026 1029 1030 1032

El vehicles battery capacity 15,214 15,307 15,467 15,563 15,099 14,716 14,700 14,700 14,694 14,692 14,690

Reverse osmosis 38,181 38,073 37,873 37,718 34,981 31,499 31,499 31,499 31,497 31,495 31,495

Geothermal DC capacity 0 0 0 50 50 50 50 50 50 50 50

DC capacity 0 1433 2867 4300 5734 7167 8601 10,034 11,452 12,864 14,276

Non-DC capacity 14,334 12,901 11,468 10,034 8601 7167 5734 4300 2883 1471 0
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Table A2. Optimal capacities of technologies in unconstrained PV scenario (MW).

Individual cooling: 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

District cooling 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solar heating 0 0 1241 2000 2000 2000 2000 2000 2000 2000 2000

Electric chillers 0 0 0 0 0 0 0 0 0 0 0

Absorbers 0 1796 3125 5673 6749 9788 10,949 12,187 13,478 14,759 16,041

Waste heat data centers 0 0 0 630 735 735 735 735 735 735 735

PTES storage m3 0 109,431 109,174 91,822 258,573 609,594 747,944 994,079 1,107,915 1,217,468 1,328,843

Battery storage 70,717 63,949 46,685 28,300 0 0 0 0 0 0 0

Waste CHP 161 161 170 170 170 170 170 170 170 170 170

Gas CHP 4993 4685 4372 4070 5280 6469 7864 9239 10,656 12,074 13,489

Wind turbine 0 0 0 0 0 0 0 0 0 0 0

PVs 36,739 34,176 29,295 23,589 10,167 500 500 500 500 500 500

El grid import 0 0 0 0 0 0 0 0 0 0 0

El grid export 0 0 0 0 0 0 0 0 0 0 0

Gas net import 12,080 11,463 10,837 10,233 11,420 14,994 17,784 20,538 23,372 26,207 29,040

Gas net export 0 0 0 0 0 0 0 0 0 0 0

Hydrogen storage [mwh] 0 0 0 0 0 5347 3350 3637 1741 289 0

Gas storage [MWh] 0 0 0 0 182,997 16,518 13,702 13,045 12,542 11,921 10,789

SOEC 0 0 0 0 0 1021 3738 6386 9072 11,783 14,504

SOFC 0 0 0 0 0 613 2271 3873 5464 7073 8703

Syngas to fuel 0 0 0 0 0 0 0 0 0 0 0

Syngas to natural gas 0 0 0 0 0 0 0 0 0 0 0

Gasoline import 2791 2791 9383 9383 6791 1016 1026 1026 1029 1030 1032

El vehicles battery capacity 20,411 20,399 21,245 20,256 15,099 14,716 14,700 14,700 14,694 14,692 14,690

Reverse osmosis 31,606 31,927 32,370 34,382 34,981 31,499 31,499 31,499 31,497 31,495 31,495

Geothermal DC capacity 0 50 50 50 50 50 50 50 50 50 50

DC capacity 0 1433 2867 4300 5734 7167 8601 10,034 11,452 12,864 14,276

Non-DC capacity 14,334 12,901 11,468 10,034 8601 7167 5734 4300 2883 1471 0
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Appendix B

Calculation of levelized investment costs:

lev_invi = invi·
dis_ratei

1 − (1 + dis_ratei)
−li f etimei

(8)

Electricity balance:

xj,EL,gas + xj,EL,other +xj,battery,storage_grid_dis + xj,grid_battery,storage_dis + SOFC
−xj,battery,storagech

− xj,gridbattery ,storagech
− chillerDC

COPDCchiller
− chillerindividual

COPindividual
− 0.1

·geothermalDC − RO − SOEC
ηSOEC

+ f lex − f lexch ≥ el_dem
(9)

Gas balance:

xj,an_dig + gas_imp +gassynthesis + xj,gas,storagedis
− xj,gas,storage_ch −

xj,EL,gas
ηj

≥ gas_dem
(10)

Individual cooling balance:
chillerindividual ≥ ind_cooldemand (11)

The endogenous choice between shares of the district and individual cooling:

DCdemand + ind_cooldemand ≥ cooldemand, total − coolen,e f (12)

Balance of absorption chillers:

xj,wasteheat,l + ηthxj,heat,storage_dis,r ≥ (absDC/COPabs) (13)

Transport demand balance:

petrdem + eletransport·C1 + methanol ≥ transp_demand (14)

Hydrogen balance:

SOEC − SOFC
ηSOFC

−
gassynthesis

ηSNG
− methanol

ηm
+ xj,syngas,storagedis

− xj,syngas,storagech
≥ 0 (15)

Gasoline balance:
petrimp ≥ petrdem (16)

Drinkable water production balance:
RO ≥ waterdemand (17)

Capacity constraints:
xj ≤ xi·t (18)

Constraints on transmission capacity (power, gas, district cooling):

xk ≤ xi·t (19)

Carbon dioxide emissions constrain:

CO2inten j·xj + CO2intenk·xk ≤ CO2cap (20)

Biomass production constrain:
xj,EL,biomass

ηj,EL
≤ algae_prod (21)
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Heat storage balance equation:

heat_levelr = heat_levelr−1 + xj,heat,storage_ch,r − ηthxj,heat,storage_dis,r (22)

Starting-end point constraint:
heat_level1 = heat_level8760 = 0 (23)
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