Article

A Single-Phase Nine-Level Boost Inverter

Dai-Van Vo ${ }^{1}$, Minh-Khai Nguyen ${ }^{2(D}$, Duc-Tri Do ${ }^{1}$ and Youn-Ok Choi ${ }^{2, *}$ (D)
1 Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc district, Ho Chi Minh City 700000, Vietnam; vodaivan00@gmail.com (D.-V.V.); tridd@hcmute.edu.vn (D.-T.D.)
2 Department of Electrical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; nmkhai00@gmail.com
* Correspondence: yochoi@chosun.ac.kr; Tel.: +82-62-230-7175

Received: 31 December 2018; Accepted: 25 January 2019; Published: 27 January 2019

Abstract

A novel single-phase nine-level boost inverter is proposed in this paper. The proposed inverter has an output voltage which is higher than the input voltage by switching capacitors in series and in parallel. The maximum output voltage of the proposed inverter is determined by using the boost converter circuit, which has been integrated into the circuit. The proposed topology is able to invert the multilevel voltage with the high step-up output voltage, simple structure and fewer power switches. In this paper, the circuit configuration, the operating principle, and the output voltage expression have been derived. The proposed converter has been verified by simulation and experiment with the help of PSIM software and a laboratory prototype. The experimental results match the theoretical calculation and the simulation results.

Keywords: single-phase inverter; switched-capacitors; switched-diode-capacitors; multilevel inverters; H-bridge

1. Introduction

Recently, multilevel inverters (MIs) have played important roles for high-power applications because of their advantages as better output voltage waveforms quality, a reduced rating of power semiconductor devices, and low electromagnetic interference [1]. The traditional MI topologies are neutral-point-clamped (NPC), flying-capacitor (FC), and cascade H -Bridge (CHB) inverters [2-5]. Diodes and capacitors are used to generate multilevel at the output voltage in NPC and FC inverters, respectively. On the other hand, to attain voltage levels, the direct current (DC) source must be increased. Nevertheless, both the circuit configurations and their controls become very complicated along with the increasing number of the output voltage levels. Furthermore, these topologies also make capacitors' imbalanced. Some in-depth studies for NPC's topologies have been presented in References [6-8]. To operate at the higher voltage level, the CHB inverters are used thanks to easy modularization and facilitate to expansion extension [9,10]. However, the topologies request more and more power devices with separate DC voltage sources. When the output voltage has more levels, the number of the required input DC sources is increased. Construction of a multilevel converter was introduced in Reference [11] with the use of multiple modules that made it easy to expand. However, this also increases the number of capacitors and switches required.

A seven-level inverter using series-connected DC voltage sources was presented in Reference [12] with the use of multiple DC voltage sources supplies to reduce switching losses. However, the number of output voltage levels depends on the number of DC voltage sources. A circuit of ($4 n+3$)-level inverter using voltage sources in serial/parallel operation was introduced in Reference [13] to increase the number of output voltage levels with the complex pattern and increase the conductive losses. By using an additional boost converter to create a multi-step output with capacitors, a seven-level
grid-connected inverter for photovoltaic systems was presented in Reference [14], but an imbalance between capacitors is very likely to occur.

Nowadays, the switched-capacitor (SC)-based MIs are a popular solution for single-phase systems because they have a simple topology and reduce the component count. In Reference [15], a serial/parallel connection-based MI was presented. The topology of a SCMI for high-frequency aternative current (AC) microgrids was proposed in Reference [16]. SCMIs are recommended in Reference [17] with the ability to balance capacitor voltage and step-up voltage. The formerly SCMI topologies consist of SC elements with a high-voltage DC source. Then, they are divided into several floating DC sources [15-19] or a cascaded combination of multiple SC converters [20-23]. However, in most of these topologies, the voltage across the capacitors is only equal to the supply voltage. Therefore, the output voltages are limited. To overcome this limitation, the topology of the single-phase step-up five-level inverter was introduced in Reference [24], which uses the switch-diode-capacitor (SDC) circuit [25] and an additional booster circuit to increase the input voltage. In summary, Table 1 shows the advantages and disadvantages of the multilevel inverters with reduced switch count.

Table 1. Advantages and disadvantages of multilevel inverters with reduced switch count.

Topology	Literature	Advantages	Disadvantages
Series-connected DC voltage sources	Proposed in Reference [12]	- Reduce switching losses	- Number of output voltage levels depends on the number of DC sources - Buck voltage
Switched serial/parallel DC voltage sources	Proposed in Reference [13]	- Simple topology - Input sources can be integrated in both parallel and series	- Complex switching pattern - Increase conductive losses - Buck voltage
Additional boost converter	Proposed in References [14,24]	- Single source - Boost voltage	- Capacitor imbalance is very likely to occur - Two-stage conversion
Series/parallel connection	Proposed in References [15,18]	- Single source - Boost voltage	- Large number of switches
Based on switched capacitor	Proposed in References [16,17,19-21]	- Self-balancing in capacitor voltage - Voltage boost capability	- Reduce switch count but increase number of diodes - High capacitor current stress
Cascaded multilevel inverter	Proposed in References [22,23]	- Reduce voltage stress on H-bridge switches - Boost voltage	- Only show in high-frequency AC output voltage [20] - Using separate dc source

In this paper, a new nine-level boost inverter (NLBI) is suggested. The NLBI is an extension of the five-level inverter in Reference [24]. The NLBI combines structure switched-diode-capacitor, switched-capacitor, a conventional boost converter, and an H-bridge circuit to be able to enhance boost ability of output voltage levels with the reduced circuit components. In Section 2, the topology, operating principles and circuit analysis of the proposed inverter are presented. Section 3 presents the selection of the inductor and the capacitor. Simulation and experimental results are shown in Section 4. Finally, the conclusion is summarized in Section 5.

2. Proposed Single-Phase Nine-Level Boost Inverter

Figure 1 shows the proposed single-phase NLBI. As shown in Figure 1, the proposed NLBI consists of a single DC source ($V_{d c}$), a conventional boost converter, a switched-diode-capacitor (SDC) circuit [25], a switched-capacitor (SC) circuit [17], an H-bridge circuit, a low-pass filter $\left(L_{f}-C_{f}\right)$ and a load (R). In the SDC circuit, two capacitors C_{1} and C_{2} are discharged in serial when the switch S_{1} is switched ON. When the switch S_{1} is switched OFF, two capacitors C_{1} and C_{2} are charging by the diodes D_{1} and D_{2}. In the SC circuit, the capacitor C_{3} is charged through the body diode of switch S_{4}
when the switch S_{5} is switched ON and the switch S_{3} is switched OFF. When the switch S_{3} is switched ON and the switch S_{5} is switched OFF, the capacitor C_{3} is discharged.

Figure 1. Proposed single-phase nine-level boost inverter (NLBI) topology.

2.1. Operating Principle of the Proposed Inverter

Figure 2 describes the level shift multicarrier-based pulse-width modulation (PWM) scheme for the proposed single-phase NLBI. A control waveform $\left(e_{x}\right)$ is compared to four carrier waveforms $\left(e_{1}-e_{4}\right)$ which these waveforms have the identical phase and amplitude to handle the switches. A constant voltage, e_{n} is compared to the carrier voltage e_{1} to generate a control signal for S_{1}, which works with duty cycle $d_{S 1}$ for each cycle T_{s}. In Figure $1, V_{B}$ is the boost voltage value of the boost converter which equals to the collector-emitter voltage of the switch S_{2}. Figures 3 and 4 show the operating states of the proposed NLBI.

Figure 2. Modulation method for the proposed single-phase NLBI.

Figure 3. Operation states in the positive output voltage period of the proposed NLBI. (a) State 1, (b) State 2, (c) State 3 and (d) State 4.

Figure 4. Operation states in the positive output voltage period of the proposed NLBI (continuous). (a) State 5, (b) State 6, (c) State 7, (d) State 8 and (e) State 9.

The output voltage is positive from t_{0} to t_{7} with corresponding to Stages $1-7$. Between t_{7} and t_{14}, the output voltage is negative, corresponding to Stages $8-14$. In the positive period from t_{0} to t_{7}, the circuit operation includes seven stages and nine states (State 1 to State 9, Figures 3 and 4).

Stage $1\left(t_{0}-t_{1}\right.$, Figure 3a-d): When S_{1} is switched ON, the inductor L_{1} stores energy from the DC source. If T_{1} is switched OFF, the output voltage is equal to zero $\left(V_{a b}=0\right)$ as shown in Figure 3a for State 1. If T_{1} is switched ON, the output voltage is equal to the boost voltage ($V_{a b}=V_{B}$) as shown in Figure 3c for State 3.

When S_{1} is switched OFF, the diode D_{0} is forward-biased, and the inductor L_{1} is discharged to the capacitors C_{1} and C_{2}. If T_{1} is switched OFF, the output voltage is zero $\left(V_{a b}=0\right)$ as shown in Figure 3b for State 2. When T_{1} is switched ON , the output voltage equals the boost voltage ($V_{a b}=V_{B}$) as shown in Figure 3d for State 4 . The operating duty cycle of the boost inductor in this stage is the duty cycle of switch $S_{1}, d_{S 1}$.

Stage $2\left(t_{1}-t_{2}\right.$, Figures $3 \mathrm{c}, \mathrm{d}$ and 4 a$)$: The switches S_{5} and T_{1} are fully switched ON. When S_{2} is turned ON, whereas S_{1} is switched OFF, the capacitors C_{1} and C_{2} are working in series supplying power to the load. The capacitor C_{3} is charged by C_{1} and C_{2} through S_{5} simultaneously. As shown in Figure 4a for State 5, the load voltage is equal to twice boost voltage ($V_{a b}=2 V_{B}$).

When S_{2} is switched OFF, while S_{1} is switched ON, the inductor L_{1} stores energy from $V_{d c}$. The capacitors C_{1} and C_{2} are working in parallel to feed the load. Although S_{5} is switched ON in this state, the current from the capacitors C_{1} and C_{2} cannot pass through the capacitor C_{3} because the capacitor C_{3} voltage is greater than the capacitor C_{1} and C_{2} voltages. Consequently, there is no current
flow to S_{5} and the load is connected to the capacitors C_{1} and C_{2} in parallel. This state is the same as the State 3 as shown in Figure 3c, the output voltage equals the boost voltage ($V_{a b}=V_{B}$). The control signal of S_{5} during this stage can be changed in another way, which is similar to the control signal for S_{2}. To reduce the switching losses, the control signal of S_{5} is always controlled ON during this stage.

Similarly, when S_{1} is switched OFF, whereas S_{5} is turned ON, the output voltage is equal to the boost voltage ($V_{a b}=V_{B}$), which is the same as the State 4 as shown in Figure 3d.

As shown in Figure 2, the duty cycle of S_{2} in this stage is gradually increased, while the duty cycle of S_{1} is fixed at $d_{S 1}$. The time interval of Stage 2 is divided into two subintervals. In the first subinterval ($t_{1}-t_{1 m}$, see Figure 5a), the duty cycle of S_{1} is greater than that of S_{2}. The operating duty cycle of the boost inductor in the first subinterval is $d_{S 1}$. In the second subinterval $\left(t_{1 m}-t_{2}\right.$, see Figure 5 a$)$, the duty cycle of S_{2} is more than that of S_{1}. As a result, the operating duty cycle of the boost inductor in the second subinterval depends on the duty cycle of S_{2}. The average duty cycle of the boost inductor in this sub-stage can be approximated as

$$
\begin{equation*}
d_{S 2} \approx \frac{1+d_{S 1}}{2} \tag{1}
\end{equation*}
$$

The time $t_{1 m}$ is calculated as

$$
\begin{equation*}
t_{1 m}=\frac{\sin ^{-1}\left(\frac{1+d_{S 1}}{A_{m}}\right)}{2 \pi f_{\text {out }}} \tag{2}
\end{equation*}
$$

where $f_{\text {out }}$ and A_{m} are the frequency of the output voltage and the peak amplitude of control waveform e_{x}, respectively.

Figure 5. Operational analysis of switches S_{1} and S_{2} in the interval of (a) Stage 2 and (b) Stage 3.
Stage $3\left(t_{2}-t_{3}\right.$, Figure $\left.4 \mathrm{~b}-\mathrm{d}\right)$: The switch S_{3} is complementary to the switch S_{2}. When S_{3} is switched ON, the load voltage is equal to three times the boost voltage $\left(V_{a b}=3 V_{B}\right)$. If S_{1} is switched ON, the inductor L_{1} stores energy from $V_{d c}$, while the capacitors C_{1} and C_{2} working in parallel are connected in series to the capacitor C_{3} for supplying power to the load as shown in Figure 4c for State 7. When S_{1} is switched OFF, the capacitors C_{1} and C_{2} are charged by the $D C$ voltage source, while the capacitor C_{3} is still connected in series with the capacitors C_{1} and C_{2} as shown in Figure 4 d for State 8.

When the switch S_{2} is switched ON and the switch S_{3} is switched OFF, the inductor L_{1} stores energy while the capacitors C_{1} and C_{2} are in series for supplying power to the load. From Figure 4 b for State 6 , it can be seen that the output voltage of the inverter equals to twice boost voltage ($V_{a b}=2 V_{B}$).

As shown in Figure 2, the duty cycle of S_{2} in this stage is gradually decreased, while the duty cycle of S_{1} is fixed at $d_{S 1}$. The time interval of Stage 3 is divided into two subintervals. In the first subinterval ($t_{2}-t_{2 m}$, see Figure 5 b), the duty cycle of S_{2} is more than that of S_{1}. The inductor is almost charged during the first subinterval. Therefore, the operating duty cycle of the boost inductor is 1 .

In the second subinterval $\left(t_{2 m}-t_{3}\right.$, see Figure 5 b), the duty cycle of S_{1} is greater than that of S_{2}. The operating duty cycle of the boost inductor in the second subinterval is total duty cycle of the switches S_{1} and S_{2}, we have

$$
\begin{equation*}
d_{x}=d_{S 1}+d_{S 2} \tag{3}
\end{equation*}
$$

where $d_{S 2}$ is average duty cycle of the switch S_{2} in the second subinterval and calculated approximately as (1).

The time $t_{2 m}$ is defined as

$$
\begin{equation*}
t_{2 m}=\frac{\sin ^{-1}\left(\frac{2+d_{S_{1}}}{A_{m}}\right)}{2 \pi f_{\text {out }}} \tag{4}
\end{equation*}
$$

Stage $4\left(t_{3}-t_{4}\right.$, Figure $\left.4 \mathrm{c}-\mathrm{e}\right)$: When the switches S_{1}, S_{2} and S_{3} are switched ON, whereas the switch S_{5} is switched OFF, the capacitors C_{1}, C_{2} and C_{3} are working in series for supplying power to the load. The load voltage is equal to four times the boost voltage ($V_{a b}=4 V_{B}$) as shown in Figure $4 \mathbf{e}$ for State 9 . Other states in this stage to reach the output voltage at three times boost voltage are the same as those in Stage 3. In the control method as shown in Figure 2, the duty cycle of S_{1} is always greater than S_{2} in terms of time $\left(t_{3}-t_{4}\right)$ and $\left(t_{10}-t_{11}\right)$ so that the calculation becomes simpler. Therefore, the following condition is obtained as

$$
\begin{equation*}
d_{S 1}>A_{m}-3 \tag{5}
\end{equation*}
$$

The operating duty cycle of the boost inductor in Stage 4 is $d_{S 1}$.
Stage $5-\left(t_{4}-t_{5}\right.$, Figure 4 b-d: the same as Stage 3)
Stage $6-\left(t_{5}-t_{6}\right.$, Figures 3 c , d and 4 a : the same as Stage 2)
Stage $7-\left(t_{6}-t_{7}\right.$, Figure 3a-d: the same as Stage 1)
In the negative period from t_{7} to t_{14} including seven stages and nine states, the switch T_{2} is fully switched ON, while T_{1} is fully switched OFF. The signal T_{3} is obtained by comparing the carrier e_{1} and the control waveform e_{x}. The signal T_{4} is the opposite. All the remaining switches have the same states as in the positive period. The load voltage of the proposed inverter is summarized in Table 2.

Table 2. Different Switching, Capacitor, and Inductor States of the Proposed NLBI.

State	Stage	ON Diodes	ON Switches	Capacitor State			Inductor L_{1} State	Output Voltage
				C_{1}	C_{2}	C_{3}		
1	1,7		$S_{1}, S_{4}, T_{2}, T_{4}$	I	I	I	+	0
2	1,7	D_{0}, D_{1}, D_{2}	S_{4}, T_{2}, T_{4}	+	+	I	-	0
3	1, 2, 6, 7	D_{1}, D_{2}	$S_{1}, S_{4}, T_{1}, T_{4}$	-	-	I	+	V_{B}
4	1,2,6,7	D_{0}, D_{1}, D_{2}	S_{4}, T_{1}, T_{4}	+	+	I	-	V_{B}
5	2,6	D_{0}	$S_{2}, S_{4}, S_{5}, T_{1}, T_{4}$	-	-	+	+	$2 V_{B}$
6	3,5	D_{0}	$S_{2}, S_{4}, T_{1}, T_{4}$	-	-	I	+	$2 V_{B}$
7	3, 4, 5	D_{1}, D_{2}	$S_{1}, S_{3}, T_{1}, T_{4}$	-	-	-	+	$3 V_{B}$
8	3, 4, 5	D_{0}, D_{1}, D_{2}	S_{3}, T_{1}, T_{4}	+	+	-	-	$3 V_{B}$
9	4	D_{0}	$S_{1}, S_{2}, S_{3}, T_{1}, T_{4}$	-	-	-	+	$4 V_{B}$
10	8,14		$S_{1}, S_{4}, T_{2}, T_{4}$	I	I	,	+	0
11	8,14	D_{0}, D_{1}, D_{2}	S_{4}, T_{2}, T_{4}	+	+	I	-	0
12	8, 9, 13, 14	D_{1}, D_{2}, D_{3}	$S_{1}, S_{4}, T_{2}, T_{3}$	-	-	I	+	$-V_{\text {B }}$
13	8, 9, 13, 14	$D_{0}, D_{1}, D_{2}, D_{3}$	S_{4}, T_{2}, T_{3}	+	+	I	-	$-V_{\text {B }}$
14	9,14	D_{0}, D_{3}	$S_{2}, S_{4}, S_{5}, T_{2}, T_{3}$	-	-	+	+	$-2 V_{B}$
15	10, 12	D_{0}, D_{3}	$S_{2}, S_{4}, T_{2}, T_{3}$	-	-	I	+	$-2 V_{B}$
16	10,11, 12	D_{1}, D_{2}	$S_{1}, S_{3}, T_{2}, T_{3}$	-	-	-	+	$-3 V_{B}$
17	10, 11, 12	D_{0}, D_{1}, D_{2}	S_{3}, T_{2}, T_{3}	+	+	-	-	$-3 V_{B}$
18	11	D_{0}	$S_{1}, S_{2}, S_{3}, T_{2}, T_{3}$	-	-	-	+	$-4 V_{B}$

2.2. Circuit Analysis of the Proposed Inverter

The circuit analysis is begun with the following assumptions: the capacitors C_{1} and C_{2} are equal, the capacitance is large enough to the voltage across the capacitor is constant, and the pairs of diodes-capacitors ($D_{1}-C_{1}$ and $D_{2}-C_{2}$) are symmetrical and balanced. The operating states of the proposed NLBI simplify into two operating modes: charging inductor and discharging inductor.

The charging inductor modes are given in Figure 3a-e. These states are controlled by switch S_{1} and S_{2}, and the inductor L_{1} is charged at this time.

Assuming that the $T_{\text {avg }}$ is the average time interval of the charging inductor mode during the period T_{s}, and $d_{\text {avg }}=T_{\text {avg }} / T_{s}$ is the average duty cycle of the boost inductor in each period T_{s}. When S_{1} or S_{2} is switched ON, the inductor stores energy as shown in Figure 3a-e for States 1, 3, 5, 6, 7 and 9, respectively. The inductor L_{1} voltage is:

$$
\begin{equation*}
V_{L}=V_{d c} \tag{6}
\end{equation*}
$$

When both S_{1} and S_{2} switches are switched OFF, the inductor is discharged as shown in Figure 3b,d and Figure 4d for States 2, 4 and 8, respectively. The average time of this mode is (1 $\left.-d_{\text {avg }}\right) T_{s}$. The following equations are obtained as

$$
\left\{\begin{array}{l}
V_{L}=V_{d c}-V_{B} \tag{7}\\
V_{B}=V_{C 1}=V_{C 2}
\end{array}\right.
$$

Because the average voltage crossing the inductor during a period of T_{s} is zero, from (6) and (7), the boost voltage is calculated as

$$
\begin{equation*}
V_{B}=\frac{1}{1-d_{a v g}} V_{d c} \tag{8}
\end{equation*}
$$

The boost factor of the NLBI is determined as

$$
\begin{equation*}
B=\frac{V_{B}}{V_{d c}}=\frac{1}{1-d_{a v g}} \tag{9}
\end{equation*}
$$

From the analysis of the proposed NLBI in Section 2. The operating duty cycle of the boost inductor is summarized as

$$
d_{L 1}= \begin{cases}d_{S 1} & t_{0} \leq t<t_{1 m} \text { and } t_{3} \leq t<t_{4} \tag{10}\\ 0.5\left(1+d_{S 1}\right) & t_{1 m} \leq t<t_{2} \\ 1 & t_{2} \leq t<t_{2 m} \\ 0.5\left(1+d_{S 1}\right) & t_{2 m} \leq t<t_{3}\end{cases}
$$

where

$$
t_{2}=\frac{\sin ^{-1}\left(\frac{2}{A_{m}}\right)}{2 \pi f_{\text {out }}}, t_{3}=\frac{\sin ^{-1}\left(\frac{3}{A_{m}}\right)}{2 \pi f_{\text {out }}}
$$

The influence of the operating states of S_{1} and S_{2} on the duty cycle of the circuit is not the same in each operating state. However, the operation of S_{1} and S_{2} is repeated after a quarter cycle of the output cycle. In one-four time interval of the output voltage time period, the average duty cycle of the boost inductor is calculated as

$$
\begin{equation*}
d_{a v g}=d_{S 1}+2\left(1-d_{S 1}\right)\left(\frac{t_{3}+t_{2 m}-t_{2}-t_{1 m}}{T_{\text {out }}}\right) \tag{11}
\end{equation*}
$$

where $T_{\text {out }}=1 / f_{\text {out }}$ is the period of the output voltage. The voltage gain (G) is expressed as

$$
\begin{equation*}
G=A_{m} B \tag{12}
\end{equation*}
$$

3. Inductor and Capacitor Selections

Figure 6 shows the inductor current and capacitor voltage waveforms in the positive output voltage. In Figure 6, the voltage waveforms on capacitors C_{1} and C_{2} are the same and equal to V_{C}.

Figure 6. Inductor current ripple and capacitors voltage ripple.
Assuming that the output power ($P_{\text {OUT }}$) equals the input power, the average input current can be calculated as

$$
\begin{equation*}
I_{L 1}=\frac{P_{O U T}}{V_{d c}} \tag{13}
\end{equation*}
$$

The current ripple of the inductor is defined as

$$
\begin{equation*}
\Delta I_{L 1} \approx \int_{t_{3}}^{t_{4}} \frac{d i_{L 1}}{d t} d t=\frac{1}{L_{1}} \int_{t_{3}}^{t_{4}}\left[d_{S 1} V_{d c}+d_{S 1}\left(V_{d c}-V_{C}\right)\right] d t=d_{S 1} \frac{V_{d c}(2-B)}{L_{1}}\left(t_{4}-t_{3}\right) \tag{14}
\end{equation*}
$$

where

$$
t_{4}=\frac{\pi-\sin ^{-1}\left(\frac{3}{A_{m}}\right)}{2 \pi f_{\text {out }}}
$$

The inductance is determined by the current ripple factor K_{L} as

$$
\begin{equation*}
K_{L}=\frac{\Delta I_{L 1}}{I_{L 1}}=\frac{d_{S 1} V_{d c}^{2}(2-B)}{P_{\text {OUT }} L_{1}}\left(t_{4}-t_{3}\right) \tag{15}
\end{equation*}
$$

The inductance is selected as

$$
\begin{equation*}
L_{1} \geq \frac{d_{S 1} V_{d c}^{2}(2-B)}{P_{O U T} K_{L}}\left(t_{4}-t_{3}\right) \tag{16}
\end{equation*}
$$

The capacitance $C_{i}(i=1,2$ and 3$)$ can be calculated based on the voltage ripple on the capacitors C_{i}. In this case, the capacitor C_{i} is determined by the maximum voltage ripple at $k \%$ of the maximum voltages of the capacitors. The capacitors C_{1} and C_{2} are charged when the switches S_{1} and S_{2} are switched OFF. The capacitors C_{1} and C_{2} are discharged in the remaining cases of the switches S_{1} and S_{2}. The capacitor C_{3} is charged when the switch S_{5} is switched ON , whereas it is discharged when the switch S_{5} is switched OFF.

Assuming that the output load has the power factor $(\cos \varphi)$ of 1 , the longest discharging term of the capacitor C_{3} in the proposed NLBI is between t_{2} and t_{5} as shown in the Figure 6. The maximum discharge amounts Q_{3} of the capacitor C_{3} is:

$$
\begin{equation*}
Q_{3} \simeq I_{o}\left(t_{4}-t_{3}\right)+I_{o} \sin \left(2 \pi f_{\text {out }} t_{3}\right)\left(t_{3}-t_{2}\right) \tag{17}
\end{equation*}
$$

where I_{0} is the amplitude the output current. When the Q_{3} is less than $k \%$ of the maximum charge of C_{3}, the capacitance C_{3} needs to meet the condition as:

$$
\begin{equation*}
C_{3} \geq \frac{Q_{3}}{k V_{C 3}} \tag{18}
\end{equation*}
$$

The reduction of the capacitor C_{1} or C_{2} voltages is equal to the incensement of the capacitor C_{3} voltage at times t_{1} and t_{5} as shown in Figure 6. At this time, the charging of capacitor C_{3} affects the ripple of capacitors C_{1} or C_{2}. Because the capacitor C_{3} voltage is twice the capacitor C_{1} voltage, the ripple of capacitor C_{1} will be larger than that of the capacitor C_{3}. Therefore, the capacitance of selected capacitors C_{1} and C_{2} will be greater than or equal to the capacitance of capacitor C_{3}.

4. Simulation and Experimental Results

4.1. Simulation Results

PSIM 9.1.1 software was studied to verify the operational principle of NLBI. The input voltage is set at $V_{d c}=24 \mathrm{~V}$ and the simulation power is 680 W . The inductor $L_{1}=2 \mathrm{mH}$. The capacitors $C_{1}=C_{2}=$ $C_{3}=2200 \mu \mathrm{~F}$. The switching frequency is 15 kHz . Connect the resistor $R=36 \Omega$ and use the inductor capacitor (LC) filter $L_{f}=2.5 \mathrm{mH}, C_{f}=1 \mu \mathrm{~F}$.

Figure 7 shows the simulation results of the NLBI when $A_{m}=3.4, d_{S 1}=0.4$. Figure 7 a shows the nine-level output voltage $V_{a b}$, the load current i_{0} and the ripple voltage of the capacitors ($V_{C 1}$, $V_{\mathrm{C} 2}, V_{\mathrm{C} 3}$). Figure 7 b shows the voltage waveform of the switches $S_{1}, S_{2}, S_{3}, S_{5}$ and the voltage waveform of the H -bridge switches $T_{1}-T_{4}$. The capacitor voltages $V_{C 1}, V_{\mathrm{C} 2}$ and $V_{\mathrm{C} 3}$ are boosted to 65 V from the input voltage of 24 V . The maximum voltage of the switches S_{1} and S_{2} is 65 V , while the maximum voltage of the switches S_{3} and S_{5} is 130 V . The maximum voltage on the switches $T_{1}-T_{4}$ is 260 V . Figure $7 \mathrm{c}, \mathrm{d}$ show the harmonic spectrum of the output voltage $V_{a b}$ and the load current i_{o} in the frequency domain, respectively. As seen in Figure 7c, the main component appears around the frequency of 15 kHz and 30 kHz .

Figure 7. Simulation results of the proposed NLBI when $d_{S 1}=0.4$. The waveforms from top to bottom: (a) nine-level output voltage $V_{a b}$, load current i_{0}, capacitors $C_{3}-C_{1}$ voltage; (b) switches $S_{1}, S_{2}, S_{3}, S_{5}$ voltage and switches $T_{1}-T_{4}$ voltage of H -bridge circuit, (c) harmonic spectrum of nine-level output voltage and (d) harmonic spectrum of load current.

4.2. Experimental Results

A 350 W prototype based on TMS320F28335 DSP was built as shown in Figure 8. The input DC voltage is 24 V . The output voltage is $110 \mathrm{~V}_{\mathrm{rms}} / 50 \mathrm{~Hz}$. The specifications of the experiment are given in Table 3. The switches S_{1}, S_{2}, S_{3} and S_{4} are 47N60C3 MOSFETs, whereas the other switches are G40N120 IGBTs. Note that the switch S_{5} refers to MOSFET. Because the MOSFET without body diode is not available in the laboratory, a G40N60 IGBT without body diode is used in the experiment.

Figure 8. A laborotary prototype of single-phase NLBI.
Table 3. Operating Parameters for the Proposed Inverter.

Parameter	Value
Power rating	350 W
Input voltage $\left(V_{d c}\right)$	24 V
Output voltage $\left(V_{a b}\right)$	$110 \mathrm{~V}_{\text {rms }} / 50 \mathrm{~Hz}$
Carrier ware frequency $\left(f_{s}\right)$	15 kHz
Inductors	L_{1}
	2 mH
	C_{1}, C_{2}, C_{3}
Capacitors	C_{f}

Figure 9 shows the experimental results of the NLBI when $A_{m}=3.4, d_{S 1}=0.4$. Figure 9 a shows the waveforms of the output voltage $V_{a b}$ and the load current i_{0}. As shown in Figure 9a, the output voltage has nine levels. As shown in Figure 9b, the capacitors C_{1}, C_{2} and C_{3} voltage are boosed to $52.2 \mathrm{~V}, 52.2 \mathrm{~V}$ and 92.5 V from the input voltage of 24 V , respectively. Figure $9 \mathrm{c}, \mathrm{d}$ show the experiment results of switches $S_{1}, S_{2}, S_{3}, S_{5}$ voltage and switches $T_{1}-T_{4}$ voltage of the H -bridge circuit, respectively. Figure $9 \mathrm{e}, \mathrm{f}$ shows the harmonic spectrum of the output voltage, $V_{a b}$ and harmonic spectrum of output current.

Figure 9. Experimental results of NLBI when $A_{m}=3.4, d_{S 1}=0.4$ and $V_{d c}=24 \mathrm{~V}$. The waveforms from top to bottom: (a) Output voltage $V_{a b}$, output current i_{0} inverter; (b) capacitors C_{3}, C_{2}, C_{1} voltages; (c) voltage of switches $V_{S 1}, V_{S 2}, V_{S 3}, V_{S 5}$; (d) voltage of switches $V_{T 1}, V_{T 2}, V_{T 3}, V_{T 4}$; (e) harmonic spectrum of the nine-level output voltage; and (f) harmonic spectrum of output current.

Table 4 lists the theoretical, simulation and experimental values of $B, V_{C 1}, V_{C 2}$ and $V_{C 3}$ when $d_{S 1}$ $=0.4, V_{d c}=24 \mathrm{~V}$, and $A_{m}=3.4$. It can be seen from Table 4 that the simulation value is approximately equal to the theoretical value, which shows the correctness of the theoretical analysis. Moreover, the experimental value is less than that of corresponding theoretical value because the power losses are found in the experimental prototype. The voltage on capacitor C_{3} is not equal to the sum of capacitors C_{1} and C_{2} because the discharge time of capacitor C_{3} is longer associated with the losses on switches S_{2}, S_{4}, S_{5} when charging capacitor C_{3}.

Table 4. Comparison between Calculated, Simulated and Experimental Values.

Data from	$V_{a b}(\mathrm{~V})$	$\Delta V_{a b}(\%)$	\boldsymbol{B}	$\boldsymbol{V}_{\boldsymbol{C} 1}$ and $\boldsymbol{V}_{C 2}(\mathrm{~V})$	$\boldsymbol{V}_{\boldsymbol{C} 3}(\mathrm{~V})$
Theory	156.2	0	2.7	65	130
Simulation	152.2	2.56	2.7	64.6	122.3
Experiment	110	29.57	2.17	52.2	92.5

Here " $\Delta V_{a b}$ " is the percentage change between experiment and simulation versus theory.

5. Conclusions

In this paper, a nine-level boost inverter which decreases the number of switching elements by switching the capacitor in series and in parallel has been suggested. The main advantage of the

NLBI in comparison with the traditional topology is that the number of switches is reduced with using only a single DC voltage source. Therefore, the economic benefits from the proposed inverter come from the size and cost reduction of the inverter system. The output voltage expression and the parameter calculation are presented. Moreover, a control method based on the PWM technique is proposed for the proposed inverter. Finally, the simulation and experimental results of the NLBI are presented to validate its viability, well-performance, and effectiveness of suggested modulation strategy. The proposed inverter is suitable for low-power applications, where a low input voltage from renewable energy sources such as solar cell, fuel cell and battery needs to convert to a single-phase AC source.

Author Contributions: All authors contributed equally to this work and all authors have read and approved the final manuscript.
Funding: This research was funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry\& Energy (MOTIE) of the Republic of Korea grant number 20184010201650 and the APC was funded by KETEP and MOTIE.

Acknowledgments: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry\& Energy (MOTIE) of the Republic of Korea (NO. 20184010201650).

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

A_{m}	peak amplitude of control waveform e_{x}
B	boost factor
CHB	cascade H -bridge
$d_{\text {avg }}$	average duty cycle of the boost inductor in each period T_{s}
$d_{L 1}$	duty cycle of the boost inductor
$d_{S 1}$	duty cycle generated by switch S_{1}
$d_{S 2}$	duty cycle generated by switch S_{2}
d_{x}	duty cycle generated by switch S_{1} and S_{2}
e_{n}	constant voltage
e_{x}	control waveform
$f_{\text {out }}$	output frequency
FC	flying-capacitor
G	voltage gain
i_{0}	load current
I_{0}	amplitude of output current
$I_{L 1}$	average input current
$\Delta I_{L 1}$	current ripple of the inductor
K_{L}	current ripple factor of the inductor
MI	multilevel inverter
NLBI	nine-level boost inverter
NPC	neutral-point-clamped
PWM	pulse-width modulation
SC	switched-capacitor
SCMI	switched-capacitor multilevel inverter
SDC	switch-diode-capacitor
$T_{\text {avg }}$	average time interval of the charging inductor mode during the period T_{s}
T_{s}	period time
$V_{a b}$	output voltage
V_{B}	boost voltage
$V_{d c}$	dc source
V_{L}	inductor L_{1} voltage

References

1. Abu-Rub, H.; Holtz, J.; Rodriguez, J.; Baoming, G. Medium-Voltage Multilevel Converters-State of the Art, Challenges, and Requirements in Industrial Applications. IEEE Trans. Ind. Electron. 2010, 57, 2581-2596. [CrossRef]
2. Soeiro, T.B.; Kolar, J.W. The new high-efficiency hybrid neutral-point-clamped converter. IEEE Trans. Ind. Electron. 2013, 60, 1919-1935. [CrossRef]
3. Dargahi, S.; Babaei, E.; Eskandari, S.; Dargahi, V.; Sabahi, M. Flying-capacitor stacked multicell multilevel voltage source inverters: Analysis and modelling. IET Power Electron. 2014, 7, 2929-2987. [CrossRef]
4. Zha, X.; Xiong, L.; Gong, J.; Liu, F. Cascaded multilevel converter for medium-voltage motor drive capable of regenerating with part of cells. IET Power Electron. 2014, 7, 1313-1320. [CrossRef]
5. Tran, T.T.; Nguyen, M.K. Cascaded five-level quasi-switched-boost inverter for single-phase grid-connected system. IET Power Electron. 2017, 10, 1896-1903. [CrossRef]
6. Rodriguez, P.; Bellar, M.D.; Munoz-Aguilar, R.S.; Busquets-Monge, S.; Blaabjerg, F. Multilevel-clamped multilevel converters (MLC²). IEEE Trans. Power Electron. 2012, 27, 1055-1060. [CrossRef]
7. Husev, O.; Roncero-Clemente, C.; Romero-Cadaval, E.; Vinnikov, D.; Stepenko, S. Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 2015, 8, 1-10. [CrossRef]
8. Teymour, H.R.; Sutanto, D.; Muttaqi, K.M.; Ciufo, P. A novel modulation technique and a new balancing control strategy for a single-phase five-level ANPC converter. IEEE Trans. Ind. Appl. 2015, 51, 1215-1227. [CrossRef]
9. Ajami, A.; Oskuee, M.; Mokhberdoran, A.; Bossche, A.V.D. Developed cascaded multilevel inverter topology to minimize the number of circuit devices and voltage stresses of switches. IET Power Electron. 2014, 7, 459-466. [CrossRef]
10. Tsang, K.; Chan, W. Single DC source three-phase multilevel inverter using reduced number of switches. IET Power Electron. 2014, 7, 775-783. [CrossRef]
11. Wang, K.; Li, Y.; Zedong, Z.; Xu, L. Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter. IEEE Trans. Ind. Electron. 2013, 60, 1943-1954. [CrossRef]
12. Najafi, E.; Yatim, A.H.M. Design and implementation of a new multilevel inverter topology. IEEE Trans. Ind. Electron. 2012, 59, 4148-4154. [CrossRef]
13. Hinago, Y.; Koizumi, H. A single-phase multilevel inverter using switched series/parallel dc voltage sources. IEEE Trans. Ind. Electron. 2010, 57, 2643-2650. [CrossRef]
14. Rahim, N.A.; Chaniago, K.; Selvaraj, J. Single-phase seven-level grid-connected inverter for photovoltaic system. IEEE Trans. Ind. Electron. 2011, 58, 2435-2443. [CrossRef]
15. Hinago, Y.; Koizumi, H. A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Trans. Ind. Electron. 2012, 59, 878-887. [CrossRef]
16. Raman, R.S.; Ye, Y.; Cheng, E.W.K. Switched-capacitor multilevel inverters for high frequency ac microgrids. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26-30 March 2017; pp. 2559-2564. [CrossRef]
17. Barzegarkhoo, R.; Kojabadi, H.M.; Zamiry, E.; Vosooghi, N.; Chang, L. Generalized structure for a single phase switched-capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches. IEEE Trans. Power Electron. 2016, 31, 5604-5617. [CrossRef]
18. Tsunoda, A.; Hinago, Y.; Koizumi, H. Level- and phase-shifted PWM for seven-level switched-capacitor inverter using series/parallel conversion. IEEE Trans. Ind. Electron. 2014, 61, 4011-4021. [CrossRef]
19. Ye, Y.; Cheng, K.W.E.; Liu, J.; Ding, K. A step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Trans. Ind. Electron. 2014, 61, 6672-6680. [CrossRef]
20. Babaei, E.; Gowgani, S.S. Hybrid multilevel inverter using switched-capacitor units. IEEE Trans. Ind. Electron. 2014, 61, 4614-4621. [CrossRef]
21. Ngo, B.B.; Nguyen, M.K.; Kim, J.H.; Zare, F. Single-phase multilevel inverter based on switched-capacitor structure. IET Power Electron. 2018, 11, 1858-1865. [CrossRef]
22. Liu, J.; Cheng, K.W.E.; Ye, Y. A cascaded multilevel inverter based on switched-capacitor for high-frequency ac power distribution system. IEEE Trans. Power Electron. 2014, 29, 4219-4230. [CrossRef]
23. Sun, X.; Wang, B.; Zhou, Y.; Wang, W.; Du, H.; Lu, Z. A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans. Ind. Electron. 2016, 63, 7184-7194. [CrossRef]
24. Gao, F. An enhanced single phase step-up five-level inverter. IEEE Trans. Power Electron. 2016, 31, 8024-8030 [CrossRef]
25. Hou, S.; Chen, J.; Sun, T.; Bi, X. Multi-input step-up converters based on the switched-diode-capacitor voltage accumulator. IEEE Trans. Power Electron. 2016, 31, 381-393. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
