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Abstract: A novel method as proposed in the production of Calophyllum inophyllum biodiesel has
been investigated experimentally. This study reports the results of biodiesel processing with
electromagnetic induction technology. The applied method is aimed to compare the results of
Calophyllum inophyllum biodiesel processing among conventional, microwave and electromagnetic
induction. The degumming, transesterification, and esterification process of the 3 methods are
measured by stopwatch to obtain time comparison data. Characteristics of viscosity, density, and
fatty acid metil ester (FAME) are obtained from testing of a Gas Chromatography-mass Spectrometry
(GCMS) at the Integrated Research and Testing Laboratory, Gadjah Mada University, Yogyakarta.
The results present that the biodiesel produced by this method satisfies the biodiesel standards and
their characteristics are better than the biodiesel produced by conventional and microwave methods.
The electromagnetic induction method also offers a fast and easy route to produce biodiesel with the
advantage of increasing the reaction rate and improving the separation process compared to other
methods. This advanced technology has the potential to significantly increase biodiesel production
with considerable potential to reduce production time and costs.
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1. Introduction

In the past two decades, the energy crisis has encouraged the development of alternative energy
by seeking renewable energy resources. Alternative energy sources such as biodiesel have been
developed to replace diesel or fuel oil. Generally, biodiesel is a liquid fuel processed from different
sources such as palm oil [1–4], soybean oil [5–10], jatropha [11–18], cottonseed oil [19–25], soursop seed
oil [26], recycled cooking oils [27–30], animal fats [31–35], and other potential triacylglycerol-containing
feed-stocks [36]. Vegetable oils are mainly composed of triglycerides (98%) and a small proportion
of diglycerides [37]. Biodiesel is a mixture of fatty acid alkyl esters obtained by treating triglycerides
with methanol or ethanol [38,39].

One of the potential biodiesel plants is Calophyllum inophyllum or Nyamplung in Indonesia
language. The benefits of Calophyllum inophyllum as biofuel are: having a higher yield than other crops
(jatropha 40–60%, palm kernel 46–54%, and Calophyllum inophyllum (40–74%), and not having a chance
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to compete with food interests [40]. In addition, the productivity of Calophyllum inophyllum seeds of
20 tons/ha/year is higher than jatropha (5 tons/ha/year), and palm (6 ton/ha/year) [41]. Calophyllum
inophyllum has a very high oil of 75% with an unsaturated fatty acid content of about 71% [42]. It is
processed or pressed in the form of yellowish-greenish oil, similar to olive oil, which is aromatic and
tasteless. It usually produces fruit twice a year around 100 kg in weight and with an oil content of
about 18 kg [43]. Calophyllum inophyllum oil has a higher viscosity, but the capillary ability is lower
than kerosene. Calophyllum inophyllum oil yields are forged or pressed between 40–70% of the dry seed
mass [44], and the degumming process is 62.80–65.89% [45].

Generally, biodiesel is processed by thermal or heating system. Biodiesel processing with
conventional heating systems is the most widely employed method. The conventional biodiesel
processes are based on the use of high-power heating and magnetic stirring. Biodiesel processing
is initiated with the process of dry seed pressing into Crude Calophyllum Oil (CCO). Through the
degumming process, Refined Crude Calophyllum Oil (RCCO) is obtained, as followed by the esterification
process. The next transesterification process is performed to produce Crude Biodiesel and, finally,
biodiesel is obtained through washing and drying.

Due to the existence of several stages in the processing of biodiesel causing high cost of
biodiesel production, the implementation of the production process is operationally inefficient. Such
inefficiencies are marked from a degumming process which is heated at a temperature of 80 ◦C for
30 min, until the sediment appears, and an esterification process lasting for 1–2 h at temperature
60 ◦C and transesterification process lasting for 1 h at temperature 30–65 ◦C. In [46] describes,
conventional biodiesel production is generally conducted at high temperatures with external heat
sources. The heat transfer is considered less effective as it occurs as a conduction and convection
system. In addition, conventional heating such as hotplate takes a long time and consumes high
power. However, although, [47] has improved it by using a homogenizer system for transesterification
reactions, the research has been only able to reduce the reaction time by 30 min (half of 60 min).

To address the challenge of high production cost, several efforts have been pursued to optimize
the biodiesel production process. Microwave technology, has been selected as an alternative method
with several advantages due to its quality issue [48,49], energy efficiency [50], and environmental
impact [51,52]. The other technologies are less likely to be conducted as they produce more heats from
the material and are not transferred from the outside materials as expected. The heating may also be
selective, depending on the dielectric properties of the material. Moreover, microwave technology is
preferred as it can propagate through the liquid by the more efficient heating process on the production
of biodiesel, consuming a shorter time [50,53–55].

Regarding the processing biodiesel, a new method of electromagnetic induction heating is
proposed by the researchers. Induction heating technology has been widely applied to the manufacture
of induction cookers and is able to provide faster heat than the microwave. The induction heater (IH)
is an alternating electrical current from the power unit flowing through a coil made of copper. This
current will cause an electromagnetic field of varying magnitude. This field will generate an electric
current on the inside metal material. This electric current is known as eddy current which generates
heat to melt the metal.

2. Basic Principle

Induction heating is the process of heating objects that are electrically carried out (normally metal)
with electromagnetic induction, where eddy currents are produced in the metal and the resistance
leads to metal Joule heating.

The basic theory of electromagnetic-induction, however, is similar to a transformer. The
transformer works due to the phenomenon of electromagnetic induction, when there is a current
flowing in a closed circuit, it will produce various electromagnetic fields. As with transformers,
electromagnetic fields (in primary coils) which affect secondary coils and secondary coils produce
induced radiation and AC current flows (if the secondary coil is a closed circuit). An induction heater
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(IH) consists of three primary elements of electromagnetic-induction, skin effects, and heat-transfer [56].
Figure 1 displays the basic principle of induction heating, contain inductive-heating coils and current
and illustrates electromagnetic-induction and skin-effects. Figure 1a indicates the simple structure of a
transformer, where the secondary-current is in direct proportion to the main current in accordance
with the turn-ratio.

Energies 2019, 12, x FOR PEER REVIEW  3 of 21 

 

electromagnetic fields (in primary coils) which affect secondary coils and secondary coils produce 94 
induced radiation and AC current flows (if the secondary coil is a closed circuit). An induction heater 95 
(IH) consists of three primary elements of electromagnetic-induction, skin effects, and heat-transfer 96 
[56]. Figure 1 displays the basic principle of induction heating, contain inductive-heating coils and 97 
current and illustrates electromagnetic-induction and skin-effects. Figure 1(a) indicates the simple 98 
structure of a transformer, where the secondary-current is in direct proportion to the main current in 99 
accordance with the turn-ratio. 100 

When the secondary-coil is once turned on short-circuited, a major heat loss occurs to increase 101 
the secondary current (load-current), as shown in Figure 1 (b). The amount of current in the secondary 102 
coil (I2) is determined from the magnitude of the current on the primary coil (I1) and from the ratio of 103 
the windings between the primary and secondary coils (N1/N2). In this figure, when the secondary 104 
coil is replaced with 1 wire (N2=1) and is made into a closed circuit, a large coherent ratio value of the 105 
primary and secondary coils is obtained causing a large secondary current (I2).  106 

This process will also be followed by a substantial increase in heat due to an increase in the load. 107 
The concept of induction heaters where energy is supplied from the same source of a combined 108 
number of primary and secondary losses is presented in Figure 1 (c). In this figure, the primary 109 
inductive windings have many turns, while the secondary windings are only one and are short-110 
circuited. In IH design, it takes the maximum heat energy generated by the secondary windings, 111 
where the gap of the inductive heating coil is designed as small as possible and secondary is made 112 
with low-resistance and high-permeability. Nonferrous metals weaken energy efficiency due to their 113 
high resistance and low permeability. 114 

  
(a) (b) 

 
(c) 

Figure 1. Basic induction: (a) equivalent-circuit of transformer; (b) secondary transformer of short 115 
circuit; (c) concept of induction heating. 116 

2.1. Electromagnetic Induction 117 
The output of IH flows an alternating current (AC) to supply an electric coil (induction-coil). The 118 

induction coil becomes a source of heat inducing an electric current to a work-piece or to a metal 119 
section to be heated. In addition, the induction coil as a heat source has no contact with the work-120 
piece, and heat only occurs in the local area, especially in the zone inside the coil. This occurs because 121 
the presence of AC in the induction coil has an invisible electromagnetic force field (flux) around. 122 
When the work-piece is placed inside the induction-coil, the force lines concentrate in the air gap 123 
between the coil and the work-piece. The induction-coil functions as the major transformer with the 124 
work-piece to be heated into a secondary transformer. As a result, the force field in the induction coil 125 

Figure 1. Basic induction: (a) equivalent-circuit of transformer; (b) secondary transformer of short
circuit; (c) concept of induction heating.

When the secondary-coil is once turned on short-circuited, a major heat loss occurs to increase the
secondary current (load-current), as shown in Figure 1b. The amount of current in the secondary coil
(I2) is determined from the magnitude of the current on the primary coil (I1) and from the ratio of the
windings between the primary and secondary coils (N1/N2). In this figure, when the secondary coil
is replaced with 1 wire (N2 = 1) and is made into a closed circuit, a large coherent ratio value of the
primary and secondary coils is obtained causing a large secondary current (I2).

This process will also be followed by a substantial increase in heat due to an increase in the
load. The concept of induction heaters where energy is supplied from the same source of a combined
number of primary and secondary losses is presented in Figure 1c. In this figure, the primary inductive
windings have many turns, while the secondary windings are only one and are short-circuited. In IH
design, it takes the maximum heat energy generated by the secondary windings, where the gap of
the inductive heating coil is designed as small as possible and secondary is made with low-resistance
and high-permeability. Nonferrous metals weaken energy efficiency due to their high resistance and
low permeability.

2.1. Electromagnetic Induction

The output of IH flows an alternating current (AC) to supply an electric coil (induction-coil). The
induction coil becomes a source of heat inducing an electric current to a work-piece or to a metal
section to be heated. In addition, the induction coil as a heat source has no contact with the work-piece,
and heat only occurs in the local area, especially in the zone inside the coil. This occurs because the
presence of AC in the induction coil has an invisible electromagnetic force field (flux) around. When
the work-piece is placed inside the induction-coil, the force lines concentrate in the air gap between
the coil and the work-piece. The induction-coil functions as the major transformer with the work-piece
to be heated into a secondary transformer. As a result, the force field in the induction coil causes the
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similar and opposite electric current in the work-piece. Further, the work-piece heats up due to the
current flow resistance of the induced electric current. The level of heating of the work-piece is affected
by the induction of current frequency and current intensity, material specific heat, material magnetic
permeability, as well as by material resistance to current flow.

Based on Figure 1, when the AC current enters the coil, the magnetic-field is formed around the
coil, according to Ampere Law as calculated in the following Equation (1):∫

Hdi = Ni = f
∅ = µHA

(1)

This formula states that: when the object is inserted into a magnetic field, they will cause changes
in the velocity of magnetic motion.

The density of the magnetic field decreases as the object reaches close to the center of the surface.
Faraday’s Law states that the electric current produced on the surface of a conductive object has an
inverse relationship with the current in an inductive-circuit as depicted in Equation (2).

E
dλ

dt
=

d∅
dt

(2)

Equation (3) describes an electrical energy caused by induced currents and eddy currents which
changed into heat energy.

P =
E2

R
= i2R (3)

where,

R = Resistance is determined by resistivity (ρ) and permeability (µ) of conductive objects
i = Current is determined by the magnetic of field intensity.
E = Induction voltage
P = Power

2.2. Eddy Current

Induction heating arises when an electric current or eddy current is induced into the work-piece
under conditions of poor electrical conductors. To produce the induction heating to be efficient and
practical, the specific relationship between the frequency of an electromagnetic field that produces an
eddy-current, and the properties of a work-piece, must be satisfied. The basis of induction heating
is eddy currents which are produced outside the work-piece or commonly called as “skin effect”
heating. The level of induction heating depends on the high frequency of the electric current, electrical
resistance, and relative magnetic-permeability of the work-piece.

Eddy Current is the induction of alternating electric current in a conductive material by an
alternating magnetic-field (as generated by alternating electric-current). The induced current inside
the modified material causes a change in the value of the induced current through the material. The
eddy current principle is based on Faraday’s law which states that when a conductor is cut out the
force lines of the magnetic field or electromotive force (EMF), it will be induced into the conductor.
The amount of EMF depends on: (1) size, strength, and magnetic field density; (2) the speed at which
the magnetic force lines are cut; and (3) quality of conductors. Since eddy current is an electric current
in the conductor, it will also produce magnetic field. Lenz’s law states that the magnetic field of the
induced current has a direction opposite to the cause of the induced current. The magnetic field of
eddy current is in opposite direction to the magnetic field of the coil as demonstrated in Figure 2.
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2.3. Operating Fundamental of an IH

A block diagram of IH is shown in Figure 3. A high-frequency AC voltage is generated from the
power module. Convert the AC current coming from the power source to DC using a rectifier. Then,
connect this DC current to a high-frequency switching circuit to administer high-frequency current to
the heating coil. This high frequency AC power is sent to the coil to cause flux, the size of the generated
flux depends on the area of the induction coil used. This is because the induction heater utilizes losses
that occur in the inducing coil. According to Ampere’s Law, a high-frequency magnetic field is created
around the heated coil. Eddy currents play a dominant role in the induction heating process, the heat
generated in the material depends on the size of the eddy current induced by inducing windings.
When the coil is flowed by AC, it creates a magnetic field around the conductive wire. The magnitude
of the field changes according to the current flowing in the coil.
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3. Topology of IH

3.1. Power System of IH

Currently, IH becomes a popular heating technology which has been developed in industrial,
domestic and medical applications, having advantages such as efficiency factor, fast-heating, safety,
cleanliness and accurate control [57]. Since the discovery of semiconductor technology, the second
major revolution of IH technology is developed. The use of high-power semiconductor devices
and high-frequency power supply application has performed great progress. Among them are
silicon-controlled rectifiers (SCR), and gate turn-off thyristor which have been widely utilized to
implement a reliable power converter. The expansion of high-frequency power electronics for IH
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requires the metal-oxide-semiconductor field-effects (MOSFETs) and bipolar-junction-transistors (BJT),
which allow higher efficiency power converter designs. Further progress in semiconductor technology
is achieved by the discovery of an insulated-gate bipolar transistor (IGBT) that can improve the
performance of IH design. IGBT has a low resistance and requires a very small power supply with a
frequency of up to 100 kHz; however, a frequency of around 400 kHz is difficult to achieve. On the
contrary, static induction thyristor (SIT) has defects such as high conduction loss compared to IGBT,
complicated fabrication processes, high costs, and limited application. Therefore, switching to very
high frequencies can be achieved by utilizing MOSFETs.

With regard to power systems, a new soft-switched converter circuit has been developed that
integrates the advantages of both conventional pulse width modulation (PWM) and resonance
converters. This soft-switched converter has a switching waveform that is identical to a conventional
PWM converter, except that the rise and fall edges from the waveform, as ‘smoothed’ without a
temporary surge. In contrast to resonant converters, new soft-switched converters usually apply a
controlled resonance. In this case, efficient energy conversion at high-frequency switching is absolutely
necessary by manipulating the voltage or current when switching to zero. The concept is to combine
the resonant tank in the converter to create an oscillation voltage (generally sinusoidal) and/or the
current waveform. As a result, the zero-voltage-switching (ZVS) or zero-current-switching (ZVS)
conditions can be utilized for the power switch. The ZVS principle refers to the elimination of the
turn-on switching loss having the zero voltage of the switching circuit before the circuit is turned “on”.
On the contrary, ZVS avoids turn-off switching-loss by allowing no current to pass through the circuit
right before turning it “off”. The voltage or current given to the switching circuit can be made zero
by using resonance as generated by the inductance-capacitance (L-C) resonance circuit; by which this
topology known as “resonant-converter”. Resonance is allowed to occur before and during the turn-on
and turn-off process to produce ZVS and ZCS conditions, like the conventional PWM converters.

3.2. Half-Bridge Resonance Inverter

In terms of the number of switching devices, the inverter topology is normally used in IH
with a single switch [58], full bridge circuit [59], half bridge series resonant [60], and half bridge
inverter [61]. In this paper, a power system with a half bridge resonance series of inverter circuit has
been applied. In [60], explaining the advantages of half-bridge resonance series inverters is stable
switching, low-cost, and a streamlined-design. Figure 4 shows the power operating system with a
half-bridge-resonant inverter, consisting of AC power supply, main electrical circuit, control unit,
input-current detection-circuit, a resonance-current detection circuit, and a gate operation circuit. All
procedures are required to design and test the system as shown in the block diagram. The system for
IH, however, does not need such large capacitors to produce DC flatter, as the major goal of this system
is to generate heat energy. In contrast, a rough DC form helps increase the system’s power factor.

AC power (220 V/50 Hz) passes through the rectifier diode to be transmitted to the capacitor
(C). The capacitor in the available power system is unfortunately too small in its capacity to act in
leveling work, which leads to the action of an increased current at 120 Hz, which is not the right level
for DC operation. The system for IH, however, does not need large capacitors to produce DC flatter,
because the major purpose of this system is to generate heat energy. In contrast, a rough DC form
helps increase the system’s power factor. Based on this circuit, the leveling capacitor functions as a
filter that prevents high-frequency currents from flowing into the inverter and from entering the input
part. Later, the input current becomes the average current of the inverter and acts as the rippling flow
to the leveling capacitor.
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4. Experimental Set-up

4.1. Testing of Calophyllum-Inophyllum Oil

Calophyllum-inophyllum oil used in this study was obtained from Kebumen, East Java Province
(Indonesia). This type of crude oil is an-inedible oil, which belongs to the Guttiferae family, usually
called as “Nyamplung” oil in Indonesia. Nyamplung trees usually grow along coastal area and in
adjacent lowlands forests, having no incubation in yielding, and seeds can be obtained throughout
the year. Figure 5 shows the crude oil of Calophyllum inophyllum. The characteristics of Calophyllum
inophyllum crude-oil have been tested using Gas Chromatography-Mass Spectrometry (GCMS) at the
Integrated Research and Testing Laboratory, Gadjah Mada University, Yogyakarta.
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Figure 5. Calophyllum inophyllum crude oil.

Based on this test the contents of palmitic, oleic, linoleic, and stearic and acid were obtained
from the oil studied. This crude oil contains the content of saturated fatty acids including stearic acid
(13.12%) and palmitic (13.92%). In contrast, high unsaturated fatty acids, representing 72.96% mainly
consists of oleic acid (69.11%) and linoleic acid (3.85%).
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4.2. Biodiesel Processing

A schematic process for producing biodiesel is illustrated in Figure 6. Firstly, biodiesel processing
starts from the degumming process by utilizing the 3 heating methods at 80 ◦C to separate crude oil
from its gum. The hotplates (conventional), microwaves, and electromagnetic induction heating are
used in processing scheme as a comparison. A degumming process carried out using phosphoric acid
(H3PO4) as much as 5% (v/v) of 400 mL Calophyllum-inophyllum oil, then it was heated to 80 ◦C. The
duration of the degumming process depends on the heating method until the color changes to light
brown. Table 1 shows a comparison of the time and degumming results of the three heating methods.Energies 2019, 12, x FOR PEER REVIEW  9 of 21 
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Table 1. A comparison of the time and degumming results of the three heating methods.

Methods
Temperature Time Power FFA (%) FFA (%)

(◦C) (Min) (W) Before After

Hotplate 80 15 600 20.27 17.66
Microwave 80 12 120 19.82 17.21

Electromagnetic
Induction 80 3.21 145 19.7 17.03

Secondly, Calophyllum-inophyllum oil esterification reactions were carried out in the presence of
H2SO4 (2 wt.%) at temperatures 60 ◦C with using molar ratio of methanol-to- oil (20:1, by mole basis).
According to [30], the molar ratio and dosage of catalyst become one of the most important factors
in biodiesel production, whereas the humidity is one of the least important factors. Briefly, the first
catalyst is dissolved in methanol and added 5 g of Calophyllum-inophyllum oil is put in a 100 mL beaker.
The mixture of methanol and catalyst H2SO4 was put into Erlenmeyer and stirred with a magnetic
stirrer for 5 min. The beaker glass is filled with a mixture of methanol, Calophyllum-inophyllum oil,
H2SO4, and it is heated using 3 heating methods by keeping the temperature up to 60 ◦C. After
esterification, testing is carried out to determine the content of FFA. If the FFA is still high or in above
2%, the esterification process is repeated for 2 times until the FFA becomes precisely low (below 2%).
After that, methanol must be removed and separated from oil product using a 100 mL separatory
funnel for the purification stage. The product is washed with hot distilled water (>80 ◦C) to remove
the remaining acid in the product, continuing until the washing water shows pH~7.

Further, the transesterification process is performed as a chemical reaction involving triglycerides
and alcohol in the presence of a catalyst to form esters and glycerol. The transesterification process
of Nyamplung oil is obtained at a methanol-to-oil molar ratio, 6:1 and KOH of 2% catalyst with a
temperature of 65 ◦C. The time period of the transesterification process depends on the heating method
used as seen in the oil color changes and the formed glycerol. Finally, the glycerol which is formed
must be separated from biodiesel to be washed and dried.

4.3. Induction Heating Irradiation

In this study, an electromagnetic induction heater has been utilized in processing Calophyllum
inophyllum biodiesel. The equipment specifications have been detailed in Table 2. The schematic
diagram of the experimental set up is ills ustrated in Figure 7. The electromagnetic induction heat
radiation induced by the metal mounted inside the coil is absorbed by the sample oil, which may lead
to the appearance of warming in the sample. Heating with induced magnetic field radiation is faster
and is evenly distributed along the metal mounted inside the coil, as it does not transfer heat from the
outside. The duration of induction given to metals affects the rise in temperature/heat of the metal
which affects the passage of the transesterification reaction. The greater the temperature given, the
transesterification reaction runs faster and results in biodiesel conversion.

Table 2. Equipment specification.

No. Name Specification

1. Dc Voltage 30 Volts
2. Power Input 200 watts
3. Current Output 1.2 Amps
4. Temperature 0–1000 ◦C (adjustable)

Vibrations in molecules induced by induction heat radiation will produce an equal heat on the
molecule, where the resulting induction heat penetrates and excites the molecules evenly, not solely in
the surface. Induced heating radiation can speed up the reaction by vibrating the reactant molecule
quickly. The longer the radiation time is given to the transesterification reaction, the heat generated by
the reactant molecule’s vibration will be greater until reaching its optimum state. The transesterification
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time at 65 ◦C has been controlled automatically by a microcontroller. Output data such as temperature,
current, power, and voltage are displayed and stored on a laptop.
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Eddy currents have the most dominant role in the induction of the heating process. The heat
generated on the material depends on the number of eddy currents as induced by the inductor winding.
When the winding is fed by alternating current, a magnetic field will occur around the conductor wire.
The magnetic field varies according to the current flowing in the coil. According to [62], if there is
conductive material around the changing magnetic field, the conductive material will flow a current
called eddy current. The Eddy current principle is based on Faraday’s law which states that when
a conductor is cut out the force lines of the magnetic field or electromotive force (EMF), it will be
inducted into the conductor. The amount of EMF depends on (1) the size, strength, and magnetic field
density; (2) on the speed at which the magnetic force lines are cut; (3) and on the quality of conductors.

5. Result

5.1. Characteristics of IH Irradiation

One method of heating to allow the reaction to run faster is performed to achieve a
transesterification reaction by using the electromagnetic induction of heat radiation. The
electromagnetic IH radiation as induced by the metal mounted inside the coil is absorbed by the
sample, which may lead to the appearance of warming in the sample. Heating with induced
magnetic field radiation is faster and evenly distributed along the metal mounted inside the coil,
rather than by transferring heat from the outside materials. The duration of induction given to metals
affects the rise in temperature/heat of the metal which affects the passage of the transesterification
reaction. The greater the temperature given, the transesterification reaction runs faster resulting in
more biodiesel conversion.

Vibrations in molecules induced by IH radiation will produce an equal heat on the molecule,
where the resulting induction heat penetrates and excites the molecules evenly, not solely in the surface.
Induced heating radiation can speed up the reaction by vibrating the reactant molecule quickly. The
longer the radiation time is given to the transesterification reaction; the heat generated by the reactant
molecule’s vibration will be greater, resulting the transesterification reaction will reach its optimum
state at any time the trial. Eddy currents have the most dominant role in the induction heating process.
The heat generated in the material depends on the amount of eddy current as induced by the inductor
winding. When the windings are energized by alternating current, a magnetic field will occur around
the conductor wire. Magnetic fields vary according to the current flowing in the coil.

Technically, induction heaters have characteristics that are able to release heat in a relatively short
time due to high energy density. By the induction, it is possible to reach high temperatures. Heating
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can be performed at a specific location where the system can be made to work automatically. Induction
heating, in general, has high energy efficiency, depending on the characteristics of the heated material
as any heating losses can be minimized. According to [63], several factors determine the number of
eddy currents in the metal, including: (1) the magnetic field inducing the metal; (2) and the metal
materials used to generate heat (the smaller the resistance of the metal type, the metal is better as the
object of heat); (3) the metal surface area (the more surface area of the metal, the more eddy currents
will be on the metal surface); and (4) the greater the frequency, the more the magnetic field is generated.
In addition, there are several advantages of using induction heater, including heat is generated directly
inside the barrel wall; heat can be applied uniformly across the barrel; cold element operation is
performed, having unlimited time; faster startup time; and more energy-efficient.

5.2. Advantages of Electromagnetic Induction Methods

The biodiesel production process must be refined to maximize material value and minimize costs.
According to [64], if we can make low cost and high-acid-value oil available as resources, the cost of
biodiesel production will be reduced significantly. However, these low-cost oils cannot be used to
produce biodiesel directly because they usually contain a large amount of FFAs. They have to undergo
a preparatory procedure to lower the acid value to a specific value. In addition, in industrialization
processes, it not only saves time and effort but is also low-cost [65,66]. Therefore, low energy potential
and lack of efficient technologies are the problems with these feedstocks for the commercial production
of biodiesel [67].

Figure 8 shows a comparison of the testing result in biodiesel manufacturing processes among
the conventional, microwave and electromagnetic induction. It is concluded that electromagnetic
induction technology provides a great opportunity in the future production process. Compared to
other methods, the proposed new method has a precisely short time at every stage of the production
process such as in degumming (3.2 min), esterification (18.13 min), and transesterification (0.43 min).
Overall, the time required for processing biodiesel is hotplate (130 min), microwave (112 min), and
electromagnetic induction (21.93 min). Here, it appears that there is a significant time difference from
the use of the induction method compared to the other two heating methods. With the achievement of
faster time at each stage of biodiesel processing has advantages, such as reducing production costs,
saving energy, and improving the quality of biodiesel. Another advantage is the cost of fabricating
electromagnetic induction is cheaper compared to microwave and hotplate (in this study the cost of
fabricating electromagnetic does not exceed $100 US).
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5.3. Analysis Free Fatty Acid (FFA)

5.3.1. Esterification Process

Esterification is the process of reacting FFA into esters with short-chain alcohols (methanol or
ethanol) to produce fatty acid methyl ester (FAME) and water. The esterification process with an acid
catalyst is required if vegetable oil contains FFA at above 2%. If oil with a high FFA level (>2%) is
directly transesterified with a KOH catalyst, the FFA will react with the catalyst to form soap. The
formation of large amounts of soap can inhibit the separation of glycerol from methyl esters and
results in the formation of emulsions during the washing process. Esterification is employed as a
preliminary process to convert FFA to methyl ester to reduce the levels of FFA in vegetable oils and is
later transesterified with a base catalyst (to convert triglycerides to methyl esters).

Esterification is the conversion stage from FFA to esters. Esther reacts the fatty oils with alcohol.
To encourage the reaction to proceed, the methanol reactant must be added in such excessive amounts
(usually greater than 10 times of the stoichiometric ratio) and the water product following the reaction
must be removed from the reaction phase, which is the oil phase. The 20:1 (methanol to oil) molar
ratio between oil and methanol is utilized in this study. Heat treatment is carried out at an average
temperature of 60 ◦C with a period of time depending on the characteristics of the applied heating
method. To maximize the biodiesel yield from oils with high FFA levels, esterification must be
performed to reduce the level of FFAs prior to transesterification [68,69]. Therefore, the esterification
process is carried out twice [70], as the first esterification process obtains FFA content which is still
high at above 2%. Table 3 presents the comparison of FFA values from the esterification results for the
3 (three) heating methods used.

Table 3. Comparison of Free Fatty Acid (FFA) values from esterification results among the three heating
methods with a molar ratio of 20:1, and 2% w/w (of oil) H2SO4.

Method Temperature (◦C)
Esterfication I Esterification II

Time (Min) FFA (I) (%) Time (Min) FFA (II) (%)

Hotplate 60 75 6.8 30 1.7
Microwave 60 75 3.59 15 1.43
Induction

Electromagnetic 60 12 5.8 6.13 1.6

5.3.2. Transesterification Process

This stage becomes the main stage in this study, where triglycerides are the main components of
oil converted into biodiesel and glycerol. The product of pretreatment was heated to 65 ◦C in the three
methods for transesterification with 6:1 M ratio of methanol and 2% w/w (of oil) KOH in the same
setup. According to [71] the optimal temperature in the transesterification process with a KOH catalyst
is 65 ◦C. Comparative data from the results of the transesterification of the three heating methods are
illustrated in Table 4. Figures 9 and 10 show the transesterification process by using electromagnetic
induction, respectively. The biodiesel production using electromagnetic induction has a higher FAME
value than in conventional and microwave.

Table 4. A comparison of the transesterification process of Nyamplung oil with a molar ratio of 6:1,
and 2% (w/w) KOH.

Method Temperature (◦C) Time (Min) FFA (%) FAME (%)

Hotplate 65 10 0.56 35,1
Microwave 65 10 0.42 53.66
Induction

Electromagnetic 65 0.43 0.4 65.96
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5.4. Analysis of Energy Use

Based on the measurement results, the amount of power utilized by all heating methods is
the multiplication of voltage and output current. Energy consumption is calculated between the
time (hour, h) multiplier and the power (Watt, W). Based on Table 5, it is apparent that energy with
electromagnetic induction method is more efficient compared to that in conventional and microwave
method, that is, 47.29 Wh. The amount of energy obtained is based on the multiplication of the
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overall time in the degumming, esterification and transesterification steps by the amount of heating
equipment power.

Table 5. Comparison of energy consumption for Calophyllum inophyllum oil (200 mL).

Methods
Energy Consumption (Wh)

Total Energy (Wh)
Degumming Esterification Transesterification

Hotplate 150 900 96 1.146
Microwave 19.2 50 6.4 75.6

Electromagnetic
Induction 7.68 38.7 0.91 47.29

5.5. Testing of Viscosity and Density

The viscosity of biodiesel plays an important role in the fuel injection process. A precisely small
viscosity causes leaks in the fuel injection pump. Conversely, too high viscosity will produce large
droplets of fuel and will have high momentum and collide with the cylinder wall, but the injection
pump cannot fog properly. Density is related to the value of heat and to the energy produced by a
diesel engine. Low density will produce high calorific value and vice versa. Density is a parameter
marking the success of the transesterification reaction. Fulfillment of density parameters indicates
that the biodiesel purification process is successful. The lack of biodiesel due to impurity can produce
high-density values. Table 6 illustrates the Nyamplung biodiesel properties compared with those
of SNI, ASTM D6751, ASTM PS 121, C1 Biodiesel, and EN 14214. The test results present that the
obtained biodiesel viscosity is 5.54 Cst, meeting the requirements of the Indonesian National Standard
(SNI) in the fuel injection process between 2.3 and 6.0 Cst.

Table 6. Nyamplung biodiesel properties compared with those of SNI, ASTM D6751, ASTM PS 121, C1
Biodiesel, and EN 14214.

Properties ASTM D6751
(USA)

ASTM PS
121

EN 14214 C1
Biodiesel SNI

Nyamplung
Biodiesel

(This Study)

Acid value (mg KOH/g) <0.5 <0.5 <0.5 0.34 0.8 0.8
Density (20 C) (g/mL) 0.87–0.9 0.7328 No specific 0.877 0.850–0.890 0.882

Kinematic viscosity,
40 ◦C (mm2/s) 1.9–6.0 1.9–6.0 3.5–5.0 5.6872 2.3–6.0 5.54

5.6. GC-MS Analysis

The biodiesel composition was quantified using Gas Chromatography - Mass Spectrometer
detector (GCMS) testing at the Integrated MIPA Laboratory, State University of Malang. Based on the
results of GC-MS testing that has been done, it can be identified the compound components of the
Nyamplung oil biodiesel as shown in Table 7.

Table 7. Major Components Based on GC-MS Analysis.

Component Peak Detection Time Identified Compounds Molecular Formula Percentage (%)

I. 6
7

35.006
35.109 Linoleic acid methyl ester C19H34O2C19H34O2

16.78 +
17.17 = 33.95

II. 8 35.388 Oleic acid methyl ester C19H36O2 20.06
III. 9 35.997 Stearic acid methyl ester C19H38O2 18.62
IV. 3 28.563 Palmitic acid methyl ester C17H34O2 17.12

As shown in Table 7, four fatty acids were clearly detected in the oil extracted by GC from the
Nyamplung oil. The most major component was linoleic methyl ester 33.95% having a molecular mass
of 294 m/z, at peaks 6 and 7 as shown in Figure 11. The percentage of the second major component of
oleic methyl ester is 20.06% which has a molecular mass of 296 m/z at peak 8 (Figure 12). Figures 13
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and 14 show stearic methyl ester with a mass of 298 m/z and palmitic methyl esters with a mass of
2970 m/z are the third and fourth most components at 18.62% and 17.12% respectively.
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6. Discussion

Some ways to reduce the cost of biodiesel production are to find optimal parameters, including
reaction temperature, reaction time, amount of catalyst to be added to the reaction, and the
methanol-to-oil ratio. Previous researchers have experimented with base catalytic reactions, acid
catalytic reactions, and enzymatic transesterification and have found that a base-catalytic reaction
obtained the best result. Biodiesel can be produced under a lower temperature with a base catalyst,
whereas a transesterification reaction with an acid catalyst requires higher temperatures and longer
reaction time [72,73]. On the other hand, the use of longer reaction times in biodiesel processing has an
impact on production costs. Generally, the biodiesel production process is performed by a heating
device such as a hotplate or heating coil. With the development of high technology, the microwave
radiation method in biodiesel making becomes a smart choice compared to conventional systems.
An alternative heating system of “microwave irradiation” has been applied in transesterification
reactions in recent years. Microwaves are considered as electromagnetic radiation that represents
non-ionizing radiation influencing molecular motions such as ion migration or dipole rotation but that
does not change the molecular structure [74,75].

According to [50], the advantage of using a microwave in the biodiesel process is that it efficiently
accelerates the transesterification process through short reaction time. In addition, a drastic reduction
in the number of products is obtained, a short separation time is obtained and a high yield of a very
pure product is achieved in a short-time [76]. Compared to conventional systems, production costs are
also reduced and fewer products occur. Therefore, microwave heating is more preferred compared
to conventional methods, where heating time is very slow and is inefficient because the transfer of
energy to the sample depends on the convection current and the thermal conductivity of the reaction
mixture. However, a shorter heating reaction has been achieved through electromagnetic induction
than in microwave technology.

Experimentally, a comparison of 3 methods in the production process of Calophyllum inophyllum
biodiesel is attached. In the transesterification process, electromagnetic induction requires only
0.43 min, compared to both in microwave and conventional methods, lasting for 10 min. Likewise,
other stages such as degumming and esterification, such as in Figure 8 present a significant time
difference among the three methods. Some characteristics of the electromagnetic induction method
show better progress than the others, such as the shorter time, more energy saving, more qualified
FAME, better viscosity, and higher yield. Therefore, the findings of this method present promising
expectations for biodiesel production.

7. Conclusions

An experimental investigation has been carried out to process Calophyllum inophyllum oil into
biodiesel by a new method of electromagnetic induction. The most important conclusions obtained are
summarized as follows:

1. Biodiesel produced from Calophyllum inophyllum oil with electromagnetic induction radiation
generally meets ASTM D6751, C1 biodiesel, EN 14214, and SNI standards, so it can be used as an
alternative for biodiesel processing.

2. Under optimal conditions, the energy consumption of electromagnetic induction is more efficient
than the hotplate and microwave method. Compared to heating both hotplate and microwave,
the reaction time is significantly reduced.

3. Due to having faster reaction time in the transesterification process, the FAME value obtained
is higher than the hotplate and microwave. The optimal condition for this experiment is the
molar ratio of methanol to oil 6:1, 2% (b/b) of KOH catalyst, a reaction temperature of 65 ◦C, the
reaction time of 0.43 min, and FAME of 65.96%.

4. Compared to microwaves and hotplate, electromagnetic induction is achieved at a shorter time
in all stages of degumming, esterification, and transesterification. Overall, the time needed to
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process biodiesel is hotplate (130 min), microwave (112 min), and electromagnetic induction
(21.93 min). As a result, the overall energy used from the biodiesel production stage is also more
economical and efficient.
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