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Abstract: In this study, the influence of using acid batteries as part of green energy sources, such as
wind and solar electric power generators, is investigated. First, the power system is simulated in
the presence of a lead-acid battery, with an independent solar system and wind power generator.
In the next step, in order to estimate the output power of the solar and wind resources, a novel
forecast model is proposed. Then, the forecasting task is carried out considering the conditions
related to the state of charge (SOC) of the batteries. The optimization algorithm used in this model is
honey bee mating optimization (HBMO), which operates based on selecting the best candidates and
optimization of the prediction problem. Using this algorithm, the SOC of the batteries will be in an
appropriate range, and the number of on-or-off switching’s of the wind turbines and photovoltaic
(PV) modules will be reduced. In the proposed method, the appropriate capacity for the SOC of the
batteries is chosen, and the number of battery on/off switches connected to the renewable energy
sources is reduced. Finally, in order to validate the proposed method, the results are compared with
several other methods.

Keywords: renewable energy sources; lead-acid battery; state of charge; feature selection; forecasting

1. Introduction

One of the main problems with the use of renewable energy sources is the high forecast error
percentage. Hence, due to increased solar and wind energy utilization, researchers are today looking
for new methods of prediction with the highest possible accuracy. The above-mentioned problem
affects the dispatching, sustainability, and quality guarantee of the power systems [1]. One of the
common solutions to deal with this problem is the use of energy storage systems in power systems
containing solar and wind resources. In many developed countries, these storage systems have been
used for years. With the emerging advanced batteries used in the power systems, the output power
quality of the systems is increasing. In addition to the above challenges, the battery’s treatment forecast
is the main challenge in synthetic power systems composed of wind-solar and storage devices [2-5].
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Despite the high penetration of various battery technologies in power systems, the electrochemical
reactions conceal an unforeseen intricacy. In different research works, the behavior of the utilized
battery is simulated in various ways. According to the complexity and quality of battery behavior
simulation, various methods are classified in different categories. On the other hand, there are various
methods for predicting battery performance. Lead—acid batteries are used in renewable energy sources
(wind-solar) to meet any circumstance [6-9].

Regarding the mentioned literature, different models have been proposed by researchers for
considering the economic and environmental features of renewable energy generation [10]. This point
indicates the application of the active power placement model through wind and PV by active power
control of wind, solar, and battery hybrid power systems. There has been sufficient deliberation in the
literature regarding the particular operation situation of production parts which will vary considerably
thanks to the intermittent and instable nature of the wind, the subsequent giant active energy tracking
error, and the redundant on-or-off shift of wind as well as PV, which in turn harmfully increases the
operation price, and adds additional unsought fluctuations to the power output [11]. Additionally,
classical power placement strategies tend to be rather conformist in order to be safe and responsible,
and to dispatch the power reference averagely through the output power and rated power of the power
generation unit [12]. In this work, a new hybrid method for simulating battery behavior is proposed.
The parameters which are predicted in this model are the output power of wind and solar power
generators. Since wind and solar resources have oscillating and complex behavior, different methods
are suggested to increase the forecasting accuracy. This paper presents a new model based on a
combination of solar and wind, as well as a battery storage system. Additionally, the proposed solution
method is framed to adjust the output power of the proposed system to obtain the reference power
ordered by the grid, in which the amount of on/off and off/on switching of the renewable energy
sources is minimized, and the application of the regulation ability of wind turbines is maximized.
Specifically, the forecasted power of these signals is taken as the production aptitude of wind turbines
and PV. In order to evaluate the performance of the prediction method, an artificial power system in the
presence of wind and solar sources along with a battery is simulated using the proposed method. After
the proposed hybrid system is simulated, a stochastic search-based method is proposed to minimize
the amount of on/off and off/on switching of the wind turbine and solar system. This approach also
minimizes the usage of the regulation ability of wind turbines, especially the anticipated output power
of the wind and solar systems. The proposed method is a combination of the mutual information (MI),
interaction gain (IG) of features, and neural network (NN) approaches [13]. In order to optimize the
predictive engine parameters, a neural network-based stochastic seeking technique is used in feature
selection. Analyzing the numerical results and comparison with actual values proves the high accuracy
of the proposed prediction method. It is also seen that the amount of switching in wind turbines is
reduced significantly. The main contributions of this research work are categorized as follows:

a.  Inorder to simulate battery behavior, a new method is proposed that is used in energy production
systems in the presence of wind and solar sources.

b. A new optimization algorithm is proposed by combining the honey bee mating optimization
(HBMO) algorithm and a new stochastic search technique. This algorithm is applied on a three
stage forecast engine to set the optimal weight values in the prediction process.

The structure of this article is composed of 5 sections, which are as follows. In the second section,
a simulated system in the presence of wind-solar sources and batteries is introduced. A new proposed
method for predicting battery behavior is defined in the third section. In Section 4, simulation results
are presented, and finally the conclusion is presented in Section 5.

2. Synthetic Wind-Solar and Battery Based Power System

In this section, the power system modeling consists of a wind turbine, solar panel, and battery
combined system. In this section, each of the system components is modeled and then the general
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framework of battery behavior is examined [1]. In the following, the simulation details of each section
are described.

2.1. Wind Power System Model

Formulation of the blade tip speed ratio and blade pitch angle, as the most principal parts of a
wind power system, is as follows:

1
Pyt = Ecp(7\, B)Apv® (1)

In this formula, the mechanical elicited power related to the rotor of the wind turbine, and the
swept area of the rotor, are denoted by Pyt and A, respectively [14,15]. C;, indicates the power factor.
This factor defines the aerodynamics of the rotor in the form of a function in terms of tip speed ratio
and pitch angle. Finally, the pitch angle and the tip speed ratio are denoted by 3 and A, respectively.
The tip speed ratio is based on the ratio between the blade tip speed and the wind speed, which is

calculated by
wrR

v

A=

@

In this equation, the rotor speed and radius of the rotor are denoted by w; and R, respectively.
With wind turbines, the output power is proportional to the speed of the blades and the pitch angle,
which is regulated based on the turbine blades. By examining Equation (1), the output power from the
wind turbine is maximized. By optimizing the power curve, the generated power from wind turbines
is maximized for a wide range of wind speeds [2].

2.2. Solar System Model

This section presents modeling of the photovoltaic panel, which is one of the most important
issues in solar power production [16].

The output terminals of the circuit in this system are coupled to the load. The voltage current
formulations of this panel are as below:

Vv + LpvRs Vv + IpovRs
Lo = Lo —1 P P 1| = P P 3
pv = Ipn —Io {GXP <nSth > ] B 3)
kT
Vi= —= 4)
q

In this formulation, the PV output current, photo current, and diode reverse saturation current
are denoted by Ipv, I, and Iy, respectively. Vpy denotes the PV panel output voltage. In Equation
(3), Rs, Rp, and n; are the series resistance, shunt resistance, and cell numbers in series, respectively.
m and q are the diode ideality factor and electron charge, respectively. k and T, are the Boltzmann
constant and panel temperature, respectively, and m is the diode ideality factor. Finally, V; is the
thermal voltage [17].

The presented photo current L}, is appraised by solar irradiance G, panel temperature T, and the
temperature coefficient o, and is computed by
Ge

= 7[Icc + O‘(TC - Tr)] (5)

I
ph G,

In the above equation, the criteria solar radiance, criteria temperature, and short circuit current
to criteria radiance and temperature, are represented by G;, Tr and I, respectively. I denotes the
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diode reverse saturation current, which is a function in terms of the diode ideality factor m, criteria
temperature T;, panel temperature T, and thermal voltage V¢, and is calculated by

3 T _
To = Tor )" L(Tf Y 6
o=lor{F | exp mv, (6)

where the reverse saturated current is denoted by Iy, for the criteria temperature, and the energy gap
is represented by V. The output power for a photovoltaic panel is computed by

Ppy = Vpylpy (7)

In this relation, Ipy and Vpy indicate output current and operational voltage for the photovoltaic
panel, respectively, and as mentioned, Ppy is the output power of the PV panel.

2.3. Forecast Model for Battery Treatment

In the simulated system, the lead-acid battery is exploited as a storage system. The main
specifications of the lead—acid battery are the state-of-charge (SOC), and the floating charge voltage or
terminal voltage. In this work, using the hour counting technique, the SOC behavior of the lead—acid
battery is modeled [18]. Additionally, the NN approach is used to map battery parameters, namely the
terminal voltage in volts and current in amperes across and through the battery, respectively, to the
SOC of the battery. However, since the degree of error in the measurement of the mentioned method is
high, the variable charge voltage method is used to simulate this part.

2.3.1. Battery State-of-Charge Model

Although the SOC method is one of the most suitable methods for simulating battery behavior,
this method also has some disadvantages, such as not being entirely charged, excessive discharge,
being overcharged, etc. [14]. In this section, the ampere-hour counting technique is used to compute
SOC. The relationship between the time of charge or discharge and current values is calculated using
Equation (8):

.t I
SOC = SOC, + Cbat dt 8)
Jty “bat

In this formula, SOCy is the initial value for the battery SOC, and interest time and initial point
time are represented by t and ty, respectively. I,,; and Cp,,; indicate the current and capacity of the
battery, respectively. Moreover, regarding the losses during battery charging and discharging and
storing times, the SOC is appraised by

t
O (t—t)] + [ batloat gy ©)

SOC =SOCy + [1 —
0+ to Chat

In this equation, o denotes the rate of the self-discharge, and the competence of battery charging
and discharging is denoted by mnyy. The battery capacity Cpy, similar to all chemical processes,
is dependent on temperature, and is appraised by [19-21]

Cphat = Clpat(1 4 0¢(Tpat — 298.15)) (10)

where Cp,; and C'p,; are the accessible or useful size of the battery considering the battery temperature
Tpat and the nominal capacity of the battery, respectively [21]. In the studied synthetic power system,
three main components, the photovoltaic panel, wind turbine, and storage device, are regarded as
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supplying the load. The cable casualties are disregarded in this work. Thus, the battery current I,

can be written as [20]
Lpat = Psolar + PwindNrectifier — PLoad / Ninverter (11)

Vbat

In this equation, Psjar, Pwind, and Pp.q denote the energy of the PV set, wind turbine, and load,
respectively. The voltage of the battery is defined by Vy,;. In order to exchange the obtained AC power
from the wind turbine to DC power, a rectifier is employed. In this work, the battery has a rated
capacity of 4.5 Ah and a nominal voltage of 6 V. Furthermore, its charge and discharge is measured
based on a controlled current source. All the data, i.e., terminal voltage (V), current (A), as well as SOC,
are measured by the scope block. The developed data is saved in a structured format into a MATLAB

workspace, where NNs can be applied.

2.3.2. Model of Battery Floating Charge Voltage

The simulation of the battery floating charge voltage is done through the equation-fit approach

as follows:
Vipat = a(SOC)® 4+ b(SOC)? + ¢(SOC) +d (12)

The voltage of the battery floating charge is represented by V'p,; in this formula. This voltage
depends on the influence of temperature on the battery voltage forecast dt, which can be represented by

Vpat = Vpar + 0V (Tpar — 298.15) (13)

where Vi, and by are the calibrated voltage of the battery based on temperature influx and the
temperature factor, respectively. Moreover, the computation of the parameters introduced in Equation
(12) can be presented as follows:

al a2 a3

a 12
b bl b2 b3 bat

c - cl 2 3 Toat (19
d dl d2 d3 I

The calculation of al, ... ,a3,...,d1, ..., d3 in this equation is completed by the least squares
fitting approach. The battery charging and discharging was tested with various currents, and the
obtained results are plotted in Figure 1 [20].
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Figure 1. Charging of the battery and discharging validation of the floating charge voltage model.
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In this work, we have to solve an optimization problem minimizing the following general risk
function to get the best hyper parameter value:

—

1,—,.2 L X _
Rw,b, ] = 5wl +CY (& +&) (15)
i=1
subject to
— g +
W, 9(Xi) ) +b—y; <e+

- —
Vi — <w,(p(Xi)> -b<e+d
/6 =0

i=1,...,L (16)

The first term of Equation (15) (1/ 2||7VH2) is applied as a measurement of function flatness.
The second term is the empirical error insensitive loss function, that shows no penalty errors
below e. All the mentioned parameters are determined by the proposed optimization algorithm,
while these parameters are considered as decision variables in the optimization process to find the
best optimization objective function. After the final iteration, the proposed parameters are finalized as
optimal parameter values.

3. Short-Term Energy Forecasting for the Wind and PV System

The real energy control structure is depicted in Figure 2. The control structure is composed of total
energy generated by wind, PV, and battery resources [18-23]. Related specifications of dispatching
power, the sought oscillation of output power, and also the restriction of power rate in the simulated
system, have been investigated. With regards to operating conditions and the available active power,
the output power from wind turbines, solar panels, and batteries is predicted in the short term. Figure 2
shows the structure of the prediction equipment. In the next section, the structure of the prediction
equipment will be described in detail.

I " Pwind
Wind Power
Proposed Forecast I
Puispate S | Model > - —|  Generation
iyl Ell— =1 | 3
= = Fpv PO
Power Ramp =| P delta P o
o Limitor se -
Rate Limite g., ; Photovoltaic
; ——P» o = —P» Generation [P =
Dispatch C ¢ [ ,.... | E| + 5
[e)
Frequency & & pPCC
- =
_> o) —
= o B T
g' = _-’ atte y Pbattery)
0Q Generation

Figure 2. Schematic of active power control.

Construction of the Forecast Engine

One of the proper ways to simplify complex learning processes is to combine different neural
networks [18,22-24]. In the mentioned algorithm, the input data is contributed within the building
blocks; in other words, the mature distribution between these blocks. In this study, a hybrid model of
predictive tools is presented to solve this problem. This model consists of three main stages. Each of
these steps contains several layers of a multilayer perceptron (MLP) NN as a prediction tool. It should
be noted that all layers of the NN have the same features, hence the weight factor is used directly for
the next step, and it can then improve the obtained knowledge of the previous one. In the hybrid
neural network (HNN) method, using the multiple methods of MLP for the NNs increases the learning
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ability. The three main layers of HNN consisting of a NN are: The LM (Levenberg-Marquardt),
SCG (scaled conjugate gradient backpropagation), and CGP (conjugate gradient backpropagation
with Polak-Ribiére updates) training approaches. Details of each layer are described in Reference [25].
In the proposed model, the accuracy and power of prediction are increased to obtain better results for
predicting the load signal by this method. In case of choosing unsuitable values for the weight factor of
NN, there are over-fitting or under-fitting problems created with the proposed prediction tool [26,27].
In this study, a new and upgraded HNN-based prediction tool for predicting load signals is presented
to solve the problem. The proposed tool consists of combining the proposed HNN method with the
new stochastic seeking approach called HBMO. Using the new hybrid method, the predictive tools
training capabilities increase, and the input and output of the mapping function in a complex signal
are extracted with more precision. If one of the NN members in the prediction tool falls to the lowest
local area during the training, both this member and the next member is unable to escape from the
trap. In order to solve this problem, the HBMO element is combined with each member of the NN of
the proposed model. Therefore, in the case of the above-mentioned circumstances, the NN member
has the ability to exit from these conditions.

In the next step, HBMO compares the value of the target function of the current state to the
previous state and selects the best value of the target function [13]. If the stop criterion is met, the next
step is executed; otherwise, it returns to the previous step, the target function is calculated, and this
process continues until the stop criterion is met. In the end, among the obtained values from target
functions, the lowest objective function value of the HBMO algorithm is chosen as the best solution.
The weight factor of the selected solution is replaced in NN1 and then the next step of the prediction
tool is implemented. Once the best NN values are achieved, all members of the prediction tool are
trained and selected to predict future values of the load signal. In Figure 3, the prediction model is
depicted. More details are given in References [28-30].

Weight ”
Input Signall NN; with o o NNy with Woights | N5 with Final
from LM training SCG " CGP Torooe

feature algorithm training training
‘ . Target | N Target R redicted
selection varable | algorithm [ variable algorithm (predicte
(wind forecast of forecast of signal)
: T NN1 T NN2 T

speed/humidity/ !

Weight Weight Weight
lemperature

and etc.) | HBMO | @)

Forecast
Sliding Window 1 Sliding Window 2 Sliding Window 3 Day
-150]-149]-148] ... [-101]-100[-99]-98] .. [-s1|-50[-a0]-a8] .. [-1]o0]
—~— ~ = " = ~- -

had gy ———

Figure 3. The proposed forecast engine structure: (a) Main model and (b) Training mechanism.

In this model, the NN output constitutes the signal forecast of the proposed model. Furthermore,
in the training of this block, 50 days of historical data consisting of 50 x 24 = 1200 hourly training
samples have been considered. Therefore, the main engine needs 3 x 50 = 150 days of historical data.
At the beginning, the first block is trained by the historical data of 150 days ago to 101 days ago,
then the second NN is trained by data from 100 days ago to 51 days ago, and finally the third block is
trained by data from 50 days ago to 1 day ago. The mentioned process is frequent until the first block
of the NN forecasts the signal of days —100 to —51. These signals with the selected candidates are
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included in sliding window 2, therefore the second NN is trained and forecasts the signal of day —50.
This process will be continue to get the final output of the wind and PV signal as the predicted value.

4. Numerical Analysis

4.1. Training and Model Analysis

In this section, the proposed prediction tool is tested on actual information in order to investigate
the effectiveness of the proposed prediction tools performance in the training phase. A usual curve
based on its trial and error is shown in Figure 4. In this figure, the error function is defined by mean
absolute error (MAE).

4
. - -
~.7

~~ /
g ~.7
5
= SCG Epochs
=
g |-3iL o a2
S
g ; “.HBMO
=2 [N
O R R

1 1 CGP Epochs

1 1

1 1

e L ____TS
! 1 . HBMO
L . 1 1 :_ e
i 1 I 1 >
86 99 142 162
—p —— —p — > — > —>
LM HBMO LM HBMO LM HBMO

Training Iteration

Figure 4. Calculation of training results: (solid line) NN training algorithm, (dotted line) training by
optimization algorithm, (dashed dotted line) overfitting of training.

In fact, this analysis is conducted to validate the planned approach around overfitting and
anachronistic convergence. It can be understood from Figure 4 that the increment of the error function
for every phase of the suggested forecast engine based on NNs leads to a stop in the learning procedure
through exchanging the last weights, which will be done based on the proposed optimization algorithm.
Therefore, the learning epochs of the learning algorithm half period for the first three repetitions are
28,86 — 56 = 30, and 142 — 99 = 43, which are determined by the initial stopping model. Accordingly,
production of the suggested HBMO half period in the first three repetitions are 55 — 29 = 26, 99 — 86 =
13, and 162 — 142 = 20, which are assigned by the HBMO stopping standards.

Additionally, to get the best effects of the proposed forecast engine structure, an additional
analysis is presented to show the optimal number of selected blocks. Accordingly, one to six blocks of
NNs have been considered here to select the best number of blocks.

In this model, we assumed that the training mechanisms of all the blocks are same. The gained
validation errors, measured in terms of mean squared error (MSE), as well as the training times,
are shown in Figure 5a,b, respectively. In this figure, we can see that the minimum error is in NN
block number 3. Additionally, the training time is increased step by step as more NN blocks are added.
From this figure, it can be seen that an overfitting issue based on NN blocks occurs, leading to the
minimum validation error, while additional NNs cannot learn more from the input/output mapping
function of the wind and PV signal. Accordingly, three NNs are assumed for the proposed structure
with different training mechanisms to improve the performance of total training with minimum error.
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Figure 5. Analysis of optimal number for NN blocks: (a) Obtained validation error, and (b)
training time.

Additionally, to present a proper vision of the presentation of the proposed model of the training
mechanism, the first LM half cycle is continued after the early stopping point and represented by
a dashed-dotted line. The overfitting problem is solved via this procedure. As noted earlier, if a
premature convergence occurs in the local minimum in this phase, LM does not have the ability to quit
these conditions and causes an overfitting. Using the proposed method based on the hybrid model
presented in this paper, the mentioned problem is resolved. The proposed prediction method has
been applied to the obtained data from wind speed and solar radiation related to Inner Mongolia.
The obtained data is used as real data to model wind speed and solar radiation. This data is plotted in
Figure 6.

To validate the authenticity of the suggested method, diverse error standards, such as MAE,
root mean square error (RMSE), and normalized mean absolute percentage error (NMAPE),
are considered in this case study. The pertaining formulas of these error standards are as follows:

f T

100 N [PV; — PV;

NmapE = 20y T
i=1 ‘I’Vir

x 100% (17)

The amount of data is represented by N in this formula. The predicted data of PV energy and
the actual data of PV energy are determined by PV! and PV?, respectively. Bar notation represents the
mean of these values.

N
MAE = %Z‘Pvf —pVr (18)
i=1
1N, 2
_ _ _ T
RMSE = NZ:(PVi PVI) (19)

Il
—_

1
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Figure 6. Wind speed trend and solar radiation curve. Red dotted line, PV; blue dashed line, wind.
4.2. Obtained Results for the Forecast Engine

In order to compare the performance of the proposed method with other methods under
equivalent circumstances, the modeling results were compared with the results presented in
Reference [6]. The obtained results from the proposed method in comparison with the other four
methods presented in Reference [6] are listed in Table 1.

Table 1. Generated numerical results of the suggested forecasting model in comparison with
other strategies.

Winter Spring Summer Fall
Methods Error 23 5 o7 o7 18 28
December December 12 May April 26 June August October September

NMAPE 29.65 35.47 18.55 23.45 21.05 18.67 15.17 32.74

BPNN [6] MAE 1.08 1.47 1.56 1.98 1.88 1.35 0.81 2.01
RMSE 1.92 2.15 2.04 273 220 1.86 0.96 2.68
NMAPE 16.71 35.46 17.24 18.21 10.84 5.12 722 21.86

RBFNN [6] MAE 0.61 1.47 1.45 1.54 0.94 0.37 0.38 1.34
RMSE 0.74 1.72 1.94 2.20 143 0.45 0.49 1.80
WT + NMAPE 11.94 30.26 16.99 17.95 17.62 5.98 13.07 22.44
BPNN [6] MAE 0.43 1.25 1.44 1.51 1.54 0.43 0.70 1.38
RMSE 0.62 1.66 1.70 1.89 2.05 0.55 0.79 1.52
WT + NMAPE 8.16 13.81 891 13.14 8.54 4.25 4.32 12.17
RBENN [6] MAE 0.29 0.57 0.75 1.11 0.74 0.30 0.23 0.75
RMSE 0.40 0.64 1.01 157 1.06 0.38 0.32 0.87

NMAPE 713 10.56 6.78 10.47 6.2 3.46 3.4 9.84

Proposed MAE 0.26 0.51 0.62 1 0.73 0.3 0.28 0.61
RMSE 0.36 0.45 09 1.31 0.84 0.25 0.33 0.7

By examining the obtained results from Table 1, it can be stated that the performance of the
proposed method is better than the other four methods in terms of all the error criteria. In order to
demonstrate the superiority of the active power distribution method in comparison with the classical
mean method, the effect of the proposed active power method for controlling the active power of the
network and supplying the network power in two modes was investigated. The two cases are: (a)
The energy storing batteries were not complicated in active power control, and (b) the energy storing
batteries were complex in active power control.

4.3. Test Cases in the Power System

Case one: In this case, the forecasted output power of the proposed strategy through the high-level
network is a stationary signal, as shown in Figure 7. The minimum and maximum power is equal to
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2000 and 1000 kW, respectively, and shifts occur at 3, 5, 10, 13, 15, and 20 h. In this test case, the outputs
of the wind-solar battery power system generated through the average model and the suggested
power placement method were compared by the anticipated output power. Regarding this mode,
the error of the output power was lower and the output power curve was flatter than that of the
average method. In this test case, the max tracking error as well as the mean square of the tracking
error provided by the suggested method are 889.7 and 339.6 kW, respectively. Moreover, the suggested
model outperformed the conventional model. Additionally, regarding this system (considering wind
and PV), the PV modules were not permitted to launch until the modifiable ability of the wind turbines
was insufficient to meet the desired output power. In Figure 8, the simulation results of the network
connected to the wind turbine and the photovoltaic panels are shown. It is assumed that the maximum
capacity of the wind turbine for power extraction is used; that is, when the wind turbine does not have
the required power to provide the maximum capacity, the solar system is operational. It can be stated
that when the number of solar modules in a connected network is greater than zero, the number of
wind turbines is equal to 8. By analyzing Figure 9, the number of on/off switches in the proposed
method is lower than the mean model in all stages of the modulation test.

In the second test case, the predicted output power of the proposed strategy through the high-level
network is a stationary signal, as shown in Figure 7. The minimum power and maximum power
is equal to 4000 and 11,000 kW, respectively, and shifts occur at 3, 5, 11, 16, and 19 h. During daily
performance of the complex method, the demand path of the output power has been determined.
In Figure 9, the output power of the proposed complex method assessed via the power allocation
method is related to the predicted output power.
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Figure 7. Wind speed trend and solar radiation curve. Red dotted line, PV; blue dashed line, wind.

As illustrated in Figure 9, if the sum of the forecast energy obtained from wind turbines and
photovoltaic panels is more than the predicted output energy, then the output of the whole system is
controlled using the suggested appropriation method and can track the sought energy. It is remarkable
that the output energy curve is flat and without oscillation. Earlier, when the whole predicted power
was lower than the predicted output power, the batteries were allowed to unload. As shown in
Figure 9, this procedure was continued until the battery’s SOC reached SOCpi. Therefore, the desired
power can be tracked using the suggested approach, until the battery SOC is higher than SOCpjy,.
Subsequently, to improve the usage of the wind and solar power generators for the equipment,
when SOC is lower than SOC,, the wind power and photovoltaic panels have the highest power
output of the predicted power.
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Figure 8. The statistics of component numbers connected to the grid based on the suggested model.
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Figure 9. SOC of the energy storage battery.

4.4. Optimization Analysis

In this section, an additional analysis is provided to show the effectiveness of the proposed
optimization algorithm. In order to find out why HBMO is used to solve this problem instead of many
other optimization algorithms, an optimization analysis is presented to prove the advantages and
ability of HBMO [31].

The Ackley benchmark function, which is the reference of the data, is considered to show the
effectiveness of the proposed optimization method [32]. This function is formulated as follows:

2

2
. iEl xi2 151 cos(c.xj)
f(x;,x) = —ae V" —e wn  +atel (20)

a=20,b=02,c=2x7m,-20<x; <20,i=1,2

In this function, the target is getting the minimum value, and as can be seen in Table 2,
the best results are yielded by HBMO compared to the other optimization algorithms, namely the
evolutionary algorithm [33], genetic algorithm (GA) [34], differential evolutionary (DE) algorithm [35],
ant colony (ACO) algorithm [36], and particle swarm optimization (PSO) [37]. In Table 2, minimum,
maximum, and mean values for all optimization algorithms are presented through an equal number
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of trial runs—10 trials. As shown in this table, the proposed optimization algorithm could provide

better results.

Table 2. Obtained results for the Ackley benchmark function.

Index EA GA DE ACO PSO Proposed
MIN 314 x 1078  615x107° 521 x1071* 487 x 101 0.00 0.00

MEAN 2.031 0.583 502 x 1071 509x107!  3.05x10°! 153 x 102
MAX 4182 4.361 1.572 854 x 1071  730x107! 581 x10°2

To show the graphical representation of the proposed benchmark function, the Ackley function
is presented in Figure 10. This figure is plotted in the feasible region of —20 to 20 for x; and x;.
In Figure 11, the proposed optimization algorithm is compared with the five other algorithms in terms
of iteration speed and final optimal values. As presented in this figure, the proposed method and the
other five obtained results in the first iteration (section A) and the last iteration (section B) are presented.
All figures demonstrate the validity and superiority of the proposed algorithm in comparison with
others. In this problem, the number of iterations and the population were set to 50 and 10, respectively.

Sxrx)

=20 -20

Figure 10. The proposed Ackley function.
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Figure 11. Optimization algorithm on Ackley function: Values of the first iterations for the algorithms:
A1 (Proposed), A, (PSO), A3 (DE), A4 (ACO), A5 (GA), and A4 (EA). Values of the final iteration: By
(Proposed), B, (PSO), B3 (DE), B4 (ACO), B5 (GA), and By (EA).
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Furthermore, to show the abilities of the proposed method, different mathematical benchmarks of
CEC2013 have been considered, including 28 problems. In this analysis, 10, 30, and 50 dimensions,
as well as the complexity of the algorithm, were evaluated. The proposed benchmarks include F1 to
F5 as unimodal functions, F6 to F20 as multimodal functions, and F21 to F28 as composite functions.
The obtained results of the proposed algorithm over the mentioned benchmarks in 10-D, 30-D, and
50-D are presented in Tables 3-5, respectively.

Table 3. Obtained numerical results for D = 10.

Func. Best Worst Mean Std.
1 0 0 0 0
2 0 0 0 0
3 0 6.316 1.20 x 1071 8.82 x 1071
4 0 0 0 0
5 0 0 0 0
6 0 9.83 7.87 392
7 8.00 x 107° 23.5 1.31 x 1073 411 x 1073
8 14.0 250 x 1072 20.0 8.71 x 102
9 1.6 45 3.21 0.721
10 0 3.11 x 1072 1.02 x 1072 8.72 x 1073
11 0 0 0 0
12 1.2 5.04 3.02 0.952
13 1.01 8.34 3.11 1.62
14 0 0.521 3.20 x 1074 1.10 x 1073
15 1.90 x 102 421 x 102 3.21 x 102 1.10 x 102
16 0.23 1.1 0.43 0.123
17 10.0 11.2 14.2 0
18 11.2 35.0 13.1 1.32
19 0.22 0.321 0.241 420 x 1072
20 1.32 2.11 2.01 0.231
21 3.43 x 102 3.80 x 102 3.80 x 102 0
22 211 x 107° 20.3 3.21 5.31
23 1.11 x 102 5.33 x 102 4.09 x 102 1.40 x 102
24 1.02 x 102 2.04 x 102 2.00 x 102 13.0
25 1.00 x 10% 2.04 x 102 2.00 x 102 0.431
26 1.00 x 102 2.02 x 102 1.03 x 102 24.1
27 3.00 x 102 3.04 x 10? 3.00 x 102 1.18 x 102
28 3.00 x 102 3.04 x 102 3.00 x 102 0

Table 4. Obtained numerical results for D = 30.

Func. Best Worst Mean Std.
1 0 0 0 0
2 1.22 x 10° 410 x 10* 8.00 x 103 6.41 x 103
3 0 1.20 x 103 34.1 1.51 x 102
4 5.33 x 1077 0.12 1.51 x 10 242 x 10
5 0 0 0 0
6 0 221 0.434 241
7 0.412 22.1 3.44 421
8 20.1 21.0 20.6 1.31 x 107>
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Table 4. Cont.

Func. Best Worst Mean Std.
9 21.2 30.3 23.3 1.21
10 1.30 x 102 0.165 5.45 x 1072 231 x 1072
11 0 0 0 0
12 11.6 31.2 21.3 3.13
13 21.6 73.0 434 11.1
14 0 0.101 2.32 x 1072 1.41 x 1072
15 2.14 x 103 3.20 x 103 2,51 x 103 2.10 x 102
16 6.54 x 1072 1.11 0.841 0.1
17 10.2 232 25.2 240 x 10715
18 23.2 83.4 66.1 2.32
19 0.652 1.32 1.20 1.30 x 1072
20 5.41 11.3 10.1 230 x 1072
21 2.00 x 102 412 x 102 2.52 x 102 32.1
22 10.1 1.03 x 102 7.52 x 10% 13.1
23 2.11 x 103 3.34 x 103 3.21 x 102 23.1
24 2.00 x 102 2.23 x 102 2.00 x 102 431
25 2.00 x 102 2.43 x 10? 2.31 x 102 14.1
26 2.00 x 102 3.01 x 102 2.01 x 102 12.0
27 3.00 x 102 6.34 x 102 3.40 x 102 14.1
28 3.00 x 102 3.00 x 102 3.00 x 102 0

Table 5. Obtained numerical results for D = 50.

Func. Best Worst Mean Std.
1 0 0 0 0
2 432 x 103 453 x 10* 2.30 x 103 1.12 x 104
3 143 6.54 x 10° 540 x 10° 1.42 x 10°
4 252 x 106 532 x 1073 1.33 x 1072 1.31 x 1073
5 0 0 0 0
6 2.32 324 33.8 1.31 x 1072
7 6.50 45.5 432
8 10.0 14.2 2.09 1.30 x 1072
9 30.0 455 23.9 1.12
10 6.50 x 1073 0.00 448 x 1072 2.23 x 1072
11 0 0.00 0 0
12 25.0 50.0 429 10.1
13 11.0 1.37 x 102 1.11 x 1072 12.6
14 0 5.45 x 1072 246 x 1072 11.7
15 3.30 x 103 424 x 103 5.34 x 103 2.38 x 102
16 0.23 1.23 1.26 0.139
17 32.4 425 434 3.16 x 10715
18 12.3 1.26 x 102 1.23 x 102 1.64
19 1.40 2.33 2.37 0.141
20 13.0 20.7 155 0.528
21 2.00 x 102 1.18 x 10° 4.33 x 102 241 x 102
22 7.40 435 12.7 531
23 450 x 103 5.38 x 103 452 x 103 421 x 102
24 21.0 2.35 x 102 1.48 x 103 1.02
25 2.20 x 102 347 x 102 3.23 x 102 2.41
26 2.00 x 102 3.26 x 102 2.17 x 102 440
27 5.12 x 102 1.35 x 10° 5.33 x 102 34.0
28 4.04 x 102 2.67 x 103 3.54 x 102 34.0

150f18
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5. Conclusions

In this work, a novel method for controlling the output power of renewable energy sources using
an intelligent algorithm is presented. The parameters which are predicted in this model are the output
power of wind and solar power generators. This paper presents a new model based on a combination
of solar and wind, as well as a battery storage system. Additionally, the proposed solution method is
framed to adjust the output power of the proposed system to obtain the reference power ordered by the
grid, in which the amount of on/off and off/on switching of renewable energy sources is minimized
and the application of the regulation ability of wind turbines is maximized. Specifically, the forecasted
power of these signals is taken as the production aptitude of wind turbines and PV. Furthermore, a new
forecasting tool based on the artificial prediction tool has been introduced to predict wind and solar
signals. The prediction model is inspired by the performance of the HBMO algorithm. In this model,
free parameters in the multi-stage forecasting tool in the learning mechanism are optimized. One of
the optimization issues is the ability to locate active power. The proposed algorithm is looking for the
best answer. The validity and advantages of the proposed method have been examined by considering
factors such as output power performance, the reduction degree of change, and maintaining SOC at
the same time. The superiority of the proposed method has been proven in comparison with other
methods. Through this method, the maximum output power of the wind turbine, and a reduction in
the number of on/off switches with respect to PV, are obtained.
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