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Abstract: In the Internet of Things (IoT)-supported energy data management infrastructure,
objects from various energy generation and consumption terminals in buildings produce a
tremendous amount of data. However, this data is not useful unless it is available on-time
for services that discover meaningful information in order to provide intelligent decisions.
The microservices-based data caching, data virtualization, data processing, data analysis, and data
ingestion methods can be applied to enhance the data availability for energy efficiency management
services provision across buildings. To foster building energy efficiency management services
(BEEMS), Web of Objects (WoO) provides data abstraction, aggregation, and ingestion mechanism
with virtual objects (VOs) and composite virtual objects (CVOs) by using ontologies and
availability and scalability of services with microservices. This article proposes the use of data
processing microservices modeling to enhance data availability and expose services capabilities
with microservices for BEEMS. We present a semantic web agent based on an ontology for linking,
enhancement, reusability, and availability of data-objects, services, and microservices. For the
evaluation, we present a use case, which includes heterogeneous data collection and processing and
provision of various BEEMS. A prototype for the use case scenario has been built and the results have
been evaluated in the laboratory to mimic the enhanced data availability for BEEMS.

Keywords: energy data; energy management services; data and service availability; data processing
microservices; internet of things (IoT)

1. Introduction

In the ubiquitous Internet of Things (IoT) infrastructure, millions of heterogeneous and distributed
objects including very simple ones like sensors, actuators, RFID tags, and smart appliances as
well as more complex objects, including self-driving autonomous vehicles and smart robots are
connected and coordinated based on the various types of data availability and processing services [1,2].
The data availability is the dimension of data quality [3] and its techniques ensure that sufficient data
continuously available for the provision of services. Moreover, the role of such type of services has
been extended to many IoT-related applications, i.e., healthcare, self-driving autonomous vehicles,
and energy management in buildings for curtailing the effects of climate change and to enhance the
comfort of dwellers. In these areas, building energy efficiency management services (BEEMS) are a
key aspect of sustainable economic growth and in reducing the global greenhouse gas emissions [4,5].
In 2017 buildings and the commercial sector in the United States consumed 39% of the total energy [6].
Similarly, the European energy consumption of buildings was approximately 40% of the total
consumption and they emitted 36% of the CO2 [7].
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BEEMS solutions are required to collect, integrate, and analyze heterogeneous data (i.e., (1) energy
data, (2) environmental data, including indoor and outdoor data, and (3) individual living pattern data)
in a timely manner to enhance data availability for the efficient provision of services. Further, the BEEMS
systems perform the profiling of buildings and apply the energy policies in order to enhance the efficiency
of buildings in terms of cost, comfort and negative effects on the climate. The profiling and policies
include benchmarking, rating, and labeling with respect to the type of energy. In the BEEMS, the failure
of data provision services or insufficient data might have severe consequences such as the breakdown
of energy to the buildings or the increase in billing cost and a decrease in the comfort of the living
environment. The enhanced data availability and reusability can be achieved with the availability of
quality of energy-related data-objects and correctly mapping of these objects with data processing and
analysis services [8]. In the article, we use data-objects interchangeable with VOs and CVOs.

For the intelligent and efficient BEEMS provision, on-time data availability with lightweight
services is crucial because data processing and analysis services enable people and smart agents to
gain insights into the data to discover useful information for taking the right decision at the right
time [9]. The enhanced data availability and services reliability and scalability are the non-functional
requirements as in other information systems [10]. However, these are important for BEEMS;
and can be modeled with microservices. The microservices-based BEEMS must provide efficient
services with a lightweight mechanism in order to consume less energy at all times and should
remain operational even it experiences the failure of some components or unavailability of sufficient
data [11,12]. Data processing and analysis microservices are a set of lightweight granular services which
can replace large monolithic systems [13,14]. Monolithic data processing systems are complex, they take
many efforts to scale or upgrade and the failure of a component can downgrade the whole system [15].
Microservices-based BEEMS have great potential to meet the demand for 24/7 availability and can be
measured as the percentage of time that the service is available with its corresponding data-objects.

To meet the requirement of enhanced data availability for such a demanding BEEMS request,
there are many challenges. For example the dynamic discovery of existing, newly created, and alternate
data-objects; identifying the context of BEEMS requests; scaling the existing services to accommodate
more objects; orchestration of data processing microservices to suitably select, readjust and link
data-objects, etc.

There are popular projects and commercially available platforms such as oneM2M, iCore, NiCE,
and PLEEC in the smart city building energy efficiency management services domain [16–19]. However,
there is a dearth of such a comprehensive platform which can leverage the data capture from various
types of data-objects and provide on-time processed data-objects for BEEMS with high availability,
reliability, and scalability with an efficient and modular microservice approach.

In order to resolve the aforementioned challenges, we propose a microservices model in the
Web of Objects (WoO) platform, which leverages the enhanced data availability, and provision of
services in the building environment. WoO is a simple but efficient layered architecture for the creation
and deployment of effective and modular smart services [20–23]. It facilitates the collection and
abstraction of data from a variety of heterogeneous data sources and fosters the service provision
for energy efficiency management in buildings [4,24,25]. In WoO-enabled BEEMS, the service is
modularized into a set of granular microservices which perform data collection, data cleaning,
data transformation, and data analysis. For an efficient, and scalable BEEMS, the service load can also
be distributed to granular data processing microservices which contain many instances and related
processed data-objects.

Moreover, to foster enhanced data availability for BEEMS we propose a WoO architecture based
on efficient, scalable and reusable data processing microservices. It includes semantic web agents
based on ontology for readjustment, enhancement, and availability of data-objects, an information
model for the creations of microservices template and services discovery and an execution model.
Our contributions may be summarized as follows:
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• We cover energy efficiency services availability, and scalability with the enhanced data processing
and analysis microservices modeling in a layered WoO architecture;

• We proposed enhanced data processing microservices template information model in order to
develop, deploy, discover, and manage BEEMS with enhanced data availability;

• We provide a BEEMS discovery and execution model with microservices, CVOs, and VOs data to
accommodate and adjust the characterization of newly available real-world objects;

• We present a semantic web agent model based on ontology to detect missing data-objects and
map the highly available data-objects to microservices.

The paper is organized as follows: Section 2 presents the background and related work; Section 3
describes microservices in the WoO architecture to enhance data availability for BEEMS; Section 4
discusses data availability in real-world scenario; Section 5 elaborates our microservices model for
BEEMS data availability; Section 6 presents details of a use case, experiments and data description,
and a prototype; Section 7 covered results and discussions; finally, Section 8 concludes the article.

2. Background and Related Work

In the early days data processing, data analysis, and service provision systems were developed
with a monolithic approach [26]. In recent years, the new trends in data processing services are
fostering the concept of microservices-based distributed and scalable data processing modules.
These modules enhance the data availability for the provision of smart services because microservices
foster efficient, reliable, and coherent functionality to enhance the data availability by processing
the data at edge-level [27]. By using the microservices approach, we can scale and extend the
service-oriented (SOA) architecture-based systems because the scalability and availability of IoT
services is feasible [28]. Salvadori et al., [29] used data-driven microservices for the alignment of
ontologies in a cross-domain scenario. As in the proposed model, we used semantic web notions,
including Resource Description Framework (RDF), Web Ontology Language (OWL), Extensible
Markup Language (XML) and SPARQL in VOs, CVOs-based data modeling and data processing
microservices in order to provide modular, scalable, and efficient smart services with enhanced data
availability. The data availability can be enhanced by reducing the services requests for the similar
types of data and pre-processed the required data before the service request.

In [30,31], the authors used the quasi-copies method and cognitive data engines to enhance
the data availability in information retrieval and IoT systems, respectively. The data and services
modeling languages support runtime adaptability, reusability, availability, and heterogeneity in order
to provide efficient IoT services [32]. Xively is a cloud-based platform for reliable data availability and
services to support large numbers of IoT objects with RESTful APIs [33]. However, it does not provide
service modularity with microservices and semantic relations among the services by using ontologies.
The OneM2M standard has been developed to support a wide range of services across the application
domains with enhanced data availability, and scalability. Its supported common service layer can be
embedded in different software and hardware modules [34].

In order to increase the accessibility and availability of IoT data, the data needs to be virtualized
with the VOs by using web technologies as the VO is a digital representation of IoT object over the web
and the crucial component of modern IoT platforms [17,35,36]. In [37] the authors proposed an IoT
framework for resolving the issues of unreliable associated services in a smart city use case scenario.
In this framework, the authors divided their framework into VO, CVO, and service layer. However,
the authors do not discuss the issues of service modularity, scalability, and availability in the case
where one of service supported data-objects experiences a failure. In the case of missing data-objects,
a similar data-object needs to mapped with the services automatically in order to enhance the data
availability for services. The smart agent is another idea for mapping and providing an interaction
among the data-objects and service-objects [38]. By extending the idea of mobile cloud computing,
Bellavista et al., [39] proposed the human-driven edge computing framework to process the data near
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the data-source for the provision of efficient services. This idea can also be applied to enhance the data
availability for BEEMS by utilizing edge computing capabilities as microservices.

Energy efficiency management services based on big data analytics have been discussed in [10,40],
for monitoring and optimizing the energy consumption in buildings. To monitor the energy load and
consumption with respect to appliances various datasets and algorithms have been proposed [41,42].
The energy consumption data processing in real-time enhances the availability of processed data in
order to provide BEEMS in a timely manner that can also enhance the user satisfaction level with less
energy cost. Fadi et al., [43] purposed IoT middleware for the collection and integration of energy data
in order to make timely production management decisions. However, in the architecture the authors
analyze the energy data with a monolithic data processing and analytics software module. For the
prediction of energy consumption in buildings physical and data-driven models have been widely
used [44]. To evaluate the energy efficiency management in the buildings in terms of forecasting the
energy demand and supply, k-means clustering techniques and IoT data analytics have been applied
to over one-year energy data collected from buildings [45,46].

3. Microservices in Web Objects Architecture to Enhance Data Availability for BEEMS

The microservices in WoO foster highly available and scalable energy efficiency management
services. For highly available and reliable smart services, the energy-related data from the real-world
objects are collected, virtualized and annotated with the VOs. The energy-related data from VOs
is aggregated and synthesized by the CVOs in order to extract the actionable knowledge for the
execution of energy efficiency features. To achieve scalable and highly available BEEMS with enhanced
data availability, the service has been granulated into the data processing and analysis microservices.
The microservices-based WoO architecture is shown in Figure 1.

The VO layer and service layer provide an application programming interface (APIs) for the
collection of data from third-party services (i.e., weather service) and provide interfaces to the BEEMS,
respectively. In order to foster the enhanced data availability, data caching and data agility for analysis
services, each layer contains separate databases. These databases are created and deployed in a triple
store graph database software, which stores the resource description framework (RDF) and web
ontology language (OWL)-based documents. In WoO one of the major reasons for using microservices
is to enhance data availability and agility for analysis services and to overcome the limited scalability,
availability, and agility of monolithic-based BEEMS.

The BEEMS API module contains the functions of RESTful Create, Read, Update and Delete
(CRUD) operations. When a smart service request is brokered at the BEEMS API module, the request
is authenticated by the services authentication module so that a tailored BEEMS can be provided to
the user. After the service request authentication, the group of microservices is discovered based on
templates for the execution of smart features inside lightweight containers. The containers provide an
isolated environment and operating system level virtualization for controlling resources and processes
to execute microservices with high availability and scalability [47]. In WoO, containers loaded with
data analysis microservices support libraries, data processing methods and machine learning models
in the form of microcode. In this article, we consider microcode as a small logic for a microservice to
perform a certain task.

When the BEEMS requests arrive, the microservices discovery mechanism searches the related
granular services by matching service context parameters. Initially, the discovery mechanism
search for the static granular services from the microservices database because these microservices
are already composed and instantiated. Static type microservices are fully loaded with filtered
and aggregated data and these are fast in execution compared with the dynamically created
microservices. Service composition (SC) has been used to combine granular services and related CVOs,
and VOs data by using ontologies for composing a smart service from the group of microservices.
SC module continuously works in a loop for checking, creating, and updating the services and
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microservices templates based on the available, and reliable CVOs, and VOs data with corresponding
real-world objects.
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3.1. Microservices for Management Functions

To enhance the availability of the various type of energy-related data, including that from new
and old objects for BEEMS, microservices version management is another important aspect. In WoO,
the version management of microservices is part of the microservices architecture for continuous
delivery of smart services based on various types of data such as environmental and user living pattern
data. For the backward and forward compatibility, the major and minor versions of microservices
are stored in the separate codebase. The microservices version management functions also handle
different quality of services (service demand vs service cost) for BEEMS. To self-configure and manage
microservices for different BEEMS requirement, the microservice management module includes the
microservices energy values configuration function.

In the BEEMS provision, the service requests use a group of data processing and analysis
microservices, and in that group, sometimes the response of one or more microservices is delayed
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due to its corresponding data-objects. Due to the slow response of microservices, the BEEMS request
may run for a longer interval. Therefore, it is necessary that the system should check the status of
microservices and relevant real-world data-objects for services efficiency. In WoO, the health checking
microservices module performs the logging in the microservice registry database for each microservice
instance, and generates alerts upon the failure of instances, so the discovery and SC module can
re-route the BEEMS requests to favorable microservice instances and available data-objects for the next
service request. In the management microservices module, the functions continuously check the indoor
and outdoor environment in order to enhance the energy efficiency management for the buildings.
The microservices energy policy module applies the energy saving policies on the appliances with
respect to indoor and outdoor environment parameters and dwellers’ satisfaction level. In WoO the
heterogeneous energy-related data from many sources are collected and harmonized with the VOs,
and CVOs by using ontologies. The data processing functions use different types of task-oriented
microservices to process VOs, CVOs annotated data and performs descriptive and predictive analytics
based on energy efficiency use cases requirements. WoO data processing and analysis microservices are
categorized as per the data analytics pipeline; which includes data extraction, cleaning, normalization,
and energy consumption pattern identification.

3.2. Data Processing and Analysis Microservices Functions to Enhance Data Availability

One of the significance of microservices is that we can isolate inconsistent data-objects and execute
the service partially. In WoO for reliable BEEMS, it is necessary that other dependent modules of the
systems be notified about the inconsistency of data-objects and data caching and data virtualization
must be incorporated. WoO provides object failure notification functions, which notify the service
discovery module, and SC module about any failure of microservices, VOs, and CVOs. The link to
the inconsistent objects will be disconnected, and this will prevent the use of these objects for the
subsequent service requests.

In the case of the failure of a microservice, CVOs or VOs, a similar microservice, and the relevant
CVOs and VOs will be remapped and reused in the BEEMS provision. The microservices data
access and cache functions decrease the network cost, improve the service response, decrease the
energy consumption by the objects, and ensure the availability of data for BEEMS. For the priority
energy efficiency management service use case scenarios, the service priority selection module
checks and assigns the priorities to the smart services from the priority mapping table. The service
priority is assigned based on service level agreements and the business aspects of the service such as
service quality vs cost. A service priority mechanism is also useful in resolving conflicts among two
microservices which wants to use the VO with the highest data availability or the VO which represents
the actuator. Further, all service requests cannot be redirected to the VO with highest data availability
as the selection of VOs is based on service context parameters which include service priority and
requested service quality.

To connect, accumulate and process a large amount of energy data and to provide smart services
to the building dwellers, the service scalability represents an arduous task for BEEMS. WoO foster
scalability modules which scale the number of service instances in three dimensions by following the
principle of scale cube phenomena [48]. The scalability notification module scales the microservices,
CVOs, and VOs at all three layers and sends a notification to each relevant module. The scalability
module also supports in the service load balancing management when similar microservices, VOs and
CVOs are reused at the same time into multiple service requests. Further, the interactions among
the modules in WoO layered architecture to execute the BEEMS features with microservices, CVOs,
and VOs is shown in Figure 2.
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4. Data Availability in Real-World Scenarios

In the real-world, the continuity of a business or service depends on the availability of data
with freshness and accuracy at the right time and at the right place. Energy management services
use various types of energy data in order to provide efficient and reliable service. This energy data
includes core energy data such as energy generation, distribution, and consumption data and other
supplementary data such as environmental data, user occupancy data, and weather data. In the
real-world scenario, the energy management services are using all these types of data to perform some
task such as energy demand forecasting and management of comfortability in home buildings. If some
attributes of the relevant data are missing that are required for the provision of requested service
become unavailable, then the services may not perform their tasks well.

For example in a home building energy management scenario, the heating, ventilation, and air
conditioning (HVAC) service controls and monitors the environmental condition of a room. This service
uses many types of sensors such as temperature sensors, humidity sensors, smoke detection sensors,
occupancy detection sensors, indoor and outdoor air quality checking sensors, etc. If the room
temperature sensor becomes faulty and its current data is not available, should the HVAC service be
stopped or will it manage the room environment wrongly because of unavailability of temperature
data? There can be many solutions to mitigate this situation of unavailability of temperature sensor
data. The most favorable are: (1) the HVAC service uses a virtual sensor to estimate the current
temperature value based on previously available data; (2) use the temperature readings from similar
sensors installed in another area of the home building, and (3) use the current temperature value from
a weather service API. By using a similar type of temperature sensor values (similar VOs and CVOs)
would support HVAC service to continue its tasks with less quality even though one of its data-object
remains unavailable.

In the energy management services, the actors can be system administrator which manage the
building energy management system, companies that produce and distribute energy, the government
which defines policies, buildings users who consume energy and energy applications. The devices
include sensors, actuators, smart meters, and microcontrollers such as Raspberry Pi which sense the
environment, collect data and perform some actions on the things in the environment, respectively.
The software can be a MQTT server which mediates the communication between the middleware and



Energies 2019, 12, 360 8 of 27

devices, semantic agents which map and link the available data-objects to the services, databases to
store energy data and data analytics tools to analyze energy data.

5. Microservices Model for BEEMS Data Availability

5.1. Data Processing and Analysis Microservices

A data processing and analysis microservice is a small, independent and autonomous minimal
software module that can be developed and deployed independently by adding data mining and
machine learning tasks. In a WoO architecture smart services for BEEMS are created from the group
of data processing microservices and related VOs and CVOs data. Machine learning models are
embedded in the microservices and may contain one or more CVOs and VOs data depending on the
selected model and task. The more fine-grained data filtering and analysis results are formulated by
reducing the models in each next step. In this model four types of data have been characterized for
BEEMS, including data from user activities in the home and office building (ds1), indoor and outdoor
environmental data (ds2), appliances’ wise energy consumption data (ds3), and energy generation
data (ds4). The data processing and analysis microservices functions to improve the data availability
for BEEMS are illustrated in Figure 3.Energies 2019, 12, 360 8 of 26 
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Data access and caching microservices use SPARQL queries to access the energy related-data
forms ds1, ds2, ds3, and ds4 in a distributed manner. The data access and caching microservices cache
the multiple data chunks with multiple service instances and if one instance fails then another instance
takes on the responsibility. Data access and caching microservices foster the availability of data for the
subsequent process in order to allow the timely provision of BEEMS. Data exploration microservices
include the functionality of data characterization, data completeness checking, filling missing data
values, and data profiling. The data exploration microservices also identify the patterns and
relationships among the data by using VOs and CVOs ontologies. The processed data from the
data exploration stage is stored in the temporary cache dataset in order to speed up the process for the
next stage.
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The data filtration and transformation microservices have been used for transforming explored
data in the required format. These microservices transform the data according to given policies such
as batch transformation, real-time transformation and normalization, fixing outliers and mapping
transformation. Multiple instances of microservices can be applied in large dataset transformation to
reduce failover and speed up the process. Data aggregation microservices combine the data-objects
based on the similar data types and context by using statistical tools and methods according to the
given policies. In order to automate the process, the data aggregation and model selection policies
can be represented in the ontology. In the last, the selected model validated according to the required
model accuracy threshold and executed with multiple microservices.

The significance of using the microservices model for data processing and analyzing is to
modularize the process of execution of a large batch of SPARQL queries with lightweight microservice
APIs in order to achieve the high availability and scalability of data for BEEMS. Microservices-based
models support decentralized data management and execution of complex monolithic SPARQL queries
in a simple way by minimizing the usage of join-based queries.

5.2. Microservices Template Information Model

In a WoO platform the microservice template is a crucial component along with VO and CVO
templates for the creation, maintenance and discovery of data processing microservices in order to
provide highly available data for BEEMS. These microservices are created, discovered, and maintained
based on the microservices template. The template contains microservices metadata which is stored in
the microservices template database. An information model for the microservices template is shown
in Figure 4.
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In the microservices template information model, node 01 contains the relevant CVO and VO
information which provides data and metadata to the microservice, such as CVO URI, CVO name,
CVO unique tag and number of CVOs required in the particular microservice. The CVO URI and
CVO tag uniquely identify the CVO, and the CVO name is a more contextual name for human
understanding whereas the CVO tag and URI is for the machine-to-machine (M2M) communication
and understanding. The node 02 contains the information about the source of the data, which is
required to accumulate, preprocess and feature selection for the analytics as a service. Node 03 contains
the version information which also includes data processing and analysis microservice creation date,
current version updating date, and semantic update type (major, minor, patch). To ensure scalability,
and fault tolerance data processing and analysis microservices, each microservice deployment needs a
separate execution environment. The execution environment information node (04 and 05) includes
container information, microservice related support library information, and relevant microcode.
The microservices input and output information nodes (06 and 07) contains input and output properties.
These properties foster the SC, microservices discovery, and availability of data and services for BEEMS.

For the availability of BEEMS, the microservice instance information node (08 and 09) contains
the detail that whether microservice has another instance, how many instances are currently available
and reliable, and how many instances are inconsistent or have poor health. The sub-node 09 also
has location information (LI) as sub-nodes. LI sub-node contains the microservice deployed URI,
port number and URI of edge, in case of edge deployment. The microservices template also contains
information about the analysis model, assumptions for the model, and what is the training data and
validation data for applying the model (node 10).

5.3. Microservices Based BEEMS Discovery and Execution Model

To foster modular and scalable WoO-enabled BEEMS with enhanced data availability,
we distribute the service into granular microservices. Each microservice contains data processing
models and data-objects in the form of VOs and CVOs. The microservices are selected based on the
service context, and priority. In a WoO-enabled data processing and analysis microservices model,
each service object has a predefined threshold and priority of execution. The predefined execution
thresholds and service priorities can be different for a similar type of service because of microservice
execution cost, energy efficiency monitoring and management feature cost and service demands. In
the model, the energy efficiency management service is requested with contextual parameters, which
includes service priority and execution threshold.

Upon receiving the service request, the findSmartService function takes the input as a service
request, and it searches the requested service from the services database and returns the service
request object (sro). The sro contains a BEEMS identifier, BEEMS priority, BEEMS application domain,
and BEEMS execution threshold. The service identifier is the unique id which recognizes the service for
the user in WoO enabled BEEMS. In sro, every BEEMS request contains the service priority information.
For example, the fire detection in smart building and closing of all relevant appliances service has
more priority than setting the air-conditioning thermostat.

The sro contains the information regarding the application domain of the service because the same
service can be reused in different application domains with different rules and threshold. As these
rules are defined in relevant CVOs and executed by the microservices, for example, 39◦ temperature
has a different meaning in weather and healthcare domain services. The sro also contains the service
execution threshold, that shows the maximum execution time limit of the service. The sro of a service
can be defined as: sro = {sid|sid = (spi, spd, sth)}, where sid is the energy efficiency management service
identifier, spi is the service priority, spd is the specific application domain, and sth is the threshold of
service execution.

The findDataProAnalysisMicroservices function takes the sro as input for searching the relevant
microservices and CVOs by semantically matching the sid and microservices application domain.
This findDataProAnalysisMicroservices function issues the SPARQL query to the microservices
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and CVO databases for the microservices and relevant object discovery. The function
findDataProAnalysisMicroservices returns the microservices object (µŞo) which includes building
environment application domain-specific data processing microservices and CVOs with execution
threshold. In this case, µŞo contains the list of execution threshold for each microservice in the group
and its relevant CVOs. Thus we can describe the µŞo for sro as µŞo = {µŞgid|µŞgid = ∑(µŞth,CVOth),
where µŞgid is the group identifier of the data processing microservices for the BEEMS request, µŞth is
the microservice execution threshold and CVOth is execution threshold of the CVO.

The output (µŞo) from the findDataProAnalysisMicroservices function and output (sro) from the
findSmartService function have been sent to the checkAvailability function. The checkAvailability function
takes the sro, and µŞo as input parameters and returns the group of microservices and related service
policies in the form of CVOs which match the execution threshold of the requested service. If the
BEEMS threshold is matched with the sum of a selected group of data processing microservices and
their relevant CVOs, the service features will be executed with the evolutionary energy consumption
predictive model, otherwise, the “service not available message” payload will be sent in the response.
The evolutionary energy consumption predictive model learns the energy consumption situation from
the environmental data, weather data, user living pattern data, and energy consumption history data.
The discovery and execution model of microservices based BEEMS is shown in Figure 5.
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5.4. Microservices Model to Enhance Data Availability and Services for Building Energy Efficiency
Management Applications

5.4.1. Formal Description and Motivation of the Microservices Model

In WoO-enabled BEEMS, the functions of services have been modularized and distributed into
several granular data processing and analysis microservices. The BEEMS provision model has been
created and deployed with many numbers of microservices instances and replicated VOs in order to
minimize the risk of service failure and ensure the maximum availability of data for services with
CVOs and VOs. One of the main motivations of a microservices model is to enhance data availability
for services through reusability of similar VOs, CVOs, and microservices in multiple services and the
continuity of service in any situation when some of the data-objects become unavailable. The reusability
of objects and continuity of service improves the system in terms of scalability and reliability of services.

In the model, each data processing and analysis microservice contains relevant CVOs and VOs
for data collection, (the data collected from sensors, actuators, buildings, smart meters, and appliances)
data caching, data representation, data exploration, data filtration, data aggregation, and data ingestion.
A WoO-enabled microservices model that enhances the availability of data and services for BEEMS is
shown in Figure 6.
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5.4.2. Mathematical Description and Representation of Microservices and Related Data-Objects with
Different Cases

For ease of understanding, we illustrate the enhanced data availability model with five
microservices in four different cases as shown in Figure 6. In the model, the BEEMS request tasks have
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been distributed to five microservices. Therefore, the BEEMS request (esr) can be defined as a set of
data processing microservices as follows:

esr = {µŞ1, µŞ2, µŞ3, µŞ4, µŞ5} (1)

The data filtered and aggregated by CVOs and the corresponding VO data have been modeled
into three groups in each case for the clear illustration of enhanced availability and reusability of
different data-objects with microservices. In the model, the microservices are also reused in multiple
BEEMS requests with their VOs and CVOs. Similarly many VOs and CVOs are reused in multiple
microservices. The reusability of similar VOs and CVOs [22,24] does not negatively affect the services
load balancing and execution because the scalability function in the WoO architecture scales the VOs
and CVOs into many instances as per the requirement of microservices. For simplicity, we present four
different cases of a BEEMS request as follows:

Case 1. A BEEMS request has been executed in a normal situation. The normal situation is a situation
in which all the data-objects in the model are available for the provision of service. In the normal
situation, the service request is accomplished with full capacity, i.e., with five microservices and all
relevant CVO and VO data. The esr with five microservices and all their relevant data-objects can be
defined as in Equations (2a) to (2e):

uS1 = {(CVOi ∈ VOa ∧VOd), (CVOj ∈ VOb ∧VOe), (CVOk ∈ VOc ∧VOe ∧VO f )} (2a)

uS2 = {(CVOk ∈ VOc ∧VOe ∧VO f ), (CVOl ∈ VOa ∧VOb ∧VOh)} (2b)

uS3 = {(CVOl ∈ VOa ∧VOb ∧VOh), (CVOn ∈ VO f ∧VOg)} (2c)

uS4 = {(CVOm ∈ VOb), (CVOn ∈ VO f ∧VOg), (CVOo ∈ VOa ∧VOd)} (2d)

uS5 = {(CVOo ∈ VOa ∧VOd)(CVOp ∈ VOa ∧VOc ∧VOi), (CVOq ∈ VOa ∧VOc)} (2e)

The microservice 1 (µŞ1) contain three CVOs (CVOi, CVOj, and CVOk) and each CVO contains
different types of VOs (VOa, VOb, VOc, VOd, VOe, and VOf ) as mentioned in Equation (2a).
The microservice 2 (µŞ2) representation is shown in Equation 2b and it contains two CVOs (CVOk,
CVOl) and each CVO contains different types of VOs as in µŞ1. The VOs in µŞ2 includes VOa, VOb,
VOc, VOe, VOf, VOh, and VOl. The microservice 3 (µŞ3) also contains two different CVOs (CVOl and
CVOn) and many numbers of VOs as shown in Equation (2c). In the µŞ3, CVOl is the composition of
VOa, VOb, and VOh; and CVOn is the composition of VOf and VOg. The composition of microservice
4 (µŞ4) is shown in the Equation 2d. In this microservice, CVOm includes only a single VO (VOb) and
CVO (CVOn). The last microservice 5 (µŞ5) is composed of three CVOs (CVOo, CVOp, and CVOq) and
four VOs (VOa, VOc, VOd, VOi) as shown in Equation (2e).

Case 2. In this case, µŞ1 depends on data-objects (CVOi ∈ VOa ∧ VOd), (CVOj ∈ VOb ∧ VOe), (CVOk
∈ VOc ∧ VOe ∧ VOf ), but the data from the objects including one CVO and two VOs (CVOi ∈ VOa
∧ VOd) become unavailable due to disconnection with the corresponding real-world objects in the
buildings’ environment. In this case, the functionality of µŞ1 will be degraded. However, the data
for the whole service may not be unavailable and the service will continue its operation. The related
pending tasks with µŞ1 will be queued and processed upon the availability of data from the set of
data-objects (CVOi ∈ VOa ∧ VOd). In this model, the set of unavailable data-objects can be represented
with the prime symbols as shown in Equation (3) and all the remaining available data-objects will be
the same as in Equation (2a).

CVOi′ =
(
VOa′ ∧VOd′

)
(3)

Case 3. In the third case, µŞ2, and µŞ3 both are using data from a set of data-objects (CVOl ∈ VOa ∧
VOb ∧ VOh), but the VOa does not receive data from the corresponding object. Therefore, the CVOl
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start its self-healing process for initiating the disconnection with the VOa and connected with the VOi.
Because in this group VOi provides the replicated data from the other real-world object in place of VOa.
So now, the new set of objects for the µŞ2 and µŞ3 can be represented as in Equations (4a) and (4b).
Hence the complete esr continues its requested features with µŞ2 and µŞ3 without degrading the
functionality of the service:

uS2 =
{
(CVOk ∈ VOc ∧VOe ∧VO f ),

(
CVOl ∈ VOa′ ∧VOi ∧VOb ∧VOh

)}
(4a)

uS3 =
{(

CVOl ∈ VOa′ ∧VOi ∧VOb ∧VOh
)
, (CVOn ∈ VO f ∧VOg)

}
(4b)

Case 4. In this case, data from all the data-objects in group c become unavailable. Because of the
malfunctioning of corresponding real-world objects or any other reason; and µŞ5 stops functioning,
although, µŞ4 will still continue its tasks with degraded functionality and fulfill the service request with
the high availability and reliability. The autonomic semantic web agent (Section 5.5) now considers the
µŞ4 and µŞ5 data-objects with notations (‘) as unavailable as shown in Equations (5a) and (5b):

uS4 =
{
(CVOm ∈ VOb), (CVOn ∈ VO f ∧VOg),

(
CVOo′ ∈ VOa′ ∧VOd′

)}
(5a)

uS5
′ =

{(
CVOo′ ∈ VOa′ ∧VOd′

)(
CVOp′ ∈ VOa′ ∧VOc′ ∧VOi′

)
,
(
CVOq′ ∈ VOa′ ∧VOc′

)}
(5b)

In all the cases we can find the data availability for CVOs by using Equation (6). In the Equation,
CVOx represents any CVO which is used as aggregation function in the microservice that required a
number of VOs such as in Equation (6) the data availability from the derivative of two VOs. The same
way we can also find the data availability for the microservice based on its relevant CVOs as mentioned
in Equation (7). In Equation (7) uSx represents any microservice which contains many types of CVOs
(i.e., CVOx, CVOy, CVOz) and the single quotation (‘) symbol represents the derivative of the term:

CVOx =

{
1−

(
1− (VOx.VOy)′

)2
}

(6)

uSx =

{
1−

(
1− (CVOx.CVOy)′

)2
}

(7)

The total data availability for the BEESMS application request can be calculated based on the total
number of microservices used in service execution. The decision to execute the BEEMS request with
full or partially features can be decided based on the threshold value of the required microservices
as indicated in Equation (8), where fs is a function of BEEMS which represent that the required
microservices are available with their data-objects:

f s =

 1, 1
m

m
∑

x=1
|uSx| ≥ thresholdav

0, otherwise
(8)

In the microservices-based enhanced data availability model, all the calls among the objects are
asynchronous with a timeout and circuit-breaker functionality in order to enhance data availability
and avoidance of recursive failures. Further, the pseudo-code to enhance the data availability for the
efficient microservices based services executions is detailed in Algorithm 1.
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Algorithm 1 Algorithm the enhance data availability for efficient microservices-based service execution
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Given  (service request parameters) and case (Ὗ) 

Task To-do:  Find related µŞ (microservices) and highly available data-objects to execute service  

1.  Procedure exe_svc_data_objects(, Ὗ) 

2.  µŞØ→ microservices template database 

3.  CVØ→ CVO template database 

4.  VOØ→ VO template database 

5.  µ[]→  microservice list 

6.  Ω[] →  CVO (Composite Virtual Object) list 

7.  ∂[] →  VO (Virtual Objects) list 

8.  Ʈ →  flag (initially false) 

9.  fs →  function indicate data availability for service through microservices 

10.    for (j=1; j=   in  µŞØ; j++) 

11.  µ[j] ← get matched microservice based on j 

12.  for (k=1; k= SizeOf (µŞ[j]) in CVØ; k++) 

13.        Ω[k] ← get matched CVOs based on µŞ[k]) templates in  CVØk   

14.  for (m=1; m= SizeOf (CV[k]) in VOØ; m++) 

15.  ∂[m] ← get matched VOs based on CV[k]) templates in  VOØm 

16.  end for 

17.  end for 

18.    end for  

19.  if µŞ1, µŞ2, µŞ3, µŞ4, and µŞ5  are in µ and Ὗ and case-1 then 

20.  do_service_request_execution and exit() 

21.  else if µŞ1, µŞ2, µŞ3, µŞ4, and µŞ5  are in µ and Ὗ and case-2 then 

22.  Ʈ←fs(CVOi in Ω && VO_data_a, VO_data_d in ∂) 

23.  if (Ʈ) then do_service_request_execution and exit()  

24.  end if 

25.  else ischeckreplicatefor(VO_data_a, VO_data_d) and map to CVOi 

26.  else send_temp_suspend_message_for µŞ1 and do_service_request_execution_partially 

27.  else if µŞ1, µŞ2, µŞ3, µŞ4, and µŞ5  are in µ and Ὗ and case-3 then 

28.  Ʈ←fs(CVOl in Ω && VO_data_a in ∂) 

29.  if (Ʈ) then do_service_request_execution and exit()  

30.  end if 

31.  else map CVOl to VO_data_i and update and do_service_request_execution 

32.  else if µŞ1, µŞ2, µŞ3, µŞ4, and µŞ5  are in µ and Ὗ and case-4 then 

33.  Ʈ←fs(CVOO, CVOp and CVOq in Ω && VO_data_a, VO_data_i, VO_data_c in ∂) 

34.  if (Ʈ) then do_service_request_execution and exit()  

35.  end if 

36.  else ischeckreplicatefor(VO_data_a, VO_data_i, VO_data_c) and map to CVOO, CVOp 

and CVOq 

37.  else send_temp_suspend_message_for µŞ5 and do_service_request_execution_partially 

38.  end if 

39.  end Procedure 

 

5.5. Semantic Web Agent

In order to enhance the availability of data and services for BEEMS requests, the semantic web
agent extracts the knowledge, map and maintain the link among the data-objects, microservices,
and services based on the ontology. The web agent semantically navigates in the large and complex
energy-related knowledge base and extracts the knowledge of the available and connected data-objects.
In order to solve the problem of data-objects linking and produce more smart features for BEEMS,
the semantic web agent has been designed based on a WoO layered architecture, to efficiently identify
the available microservices, CVOs, and VOs data. It uses semantic rules designed in Semantic Web
Rule Language (SWRL), RDF and OWL. If there is any data-object does not available or missing, it tries
to map the link with another related data-object in the knowledge graph.
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The semantic web agent model considers services, the data processing microservices, CVOs,
and VOs data as a first class citizens and their instances as individuals. To execute service features for
BEEMS request, the rules have been defined with a minimum number of necessary highly available
data-objects and reliable microservices. For example, the rules µŞ1 → hasCVO some CVOs, µŞ1 →
hasCVO min 2 CVOs, esr → has hasµŞ some µŞs and esr → hasµŞ min 4 µŞs; represent that µŞ1 has
some CVOs, µŞ1 has required at least two CVOs to execute assigned tasks, energy service request has
some µŞs and this service required at least four microservices to successfully execute the smart service
features respectively. Figure 7 shows an excerpt of the semantic web agent ontology model for the
navigation in an energy-related data and knowledge graph.Energies 2019, 12, 360 16 of 26 
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6. A Use Case and Prototype

In this section, we present a use case in which a variety of energy-related data is collected and
processed by using microservices, CVOs, and VOs. The microservices model to enhance the data
availability for BEEMS is a generic and can be applied to a range of use cases.

6.1. Use Case Details

In the energy management process data is generated in a huge quantity but due to the lack
of coordination and workflow mechanism among the different entities it is not processed and
utilized efficiently for purposeful BEEMS. In order to enhance the data availability, data caching,
data aggregation and data analysis for the BEEMS, we create data processing microservices.
These microservices uses data aggregation policies in the form of CVOs over the VOs energy-related
data and apply data mining pipelines and machine learning models. The demonstrated use case
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includes many main entities. Each entity has sub-entities with separate smart meters, energy sensors,
and appliances actuators, as illustrated in Figure 8.
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In the use case, the energy is produced by urban small size wind turbines, solar grid panels,
and building waste in the form of biogas. Then subsequently, this energy is stored in energy storage
units and distributed to the buildings through national grids. By the utilization of BEEMS, the use
of energy shall be optimized in order to save energy. The saved energy can be transferred to other
consumers through national grids. During this process of energy production, distribution, and
consumption, a big amount of energy-related data is generated. In the use case, all this data is
recorded in a real-time and transported with lightweight IoT protocols (i.e., MQTT and COAP) to
the data servers. This energy-related data is monitored and semantically aggregated and annotated
with CVOs, and VOs and processed with analysis microservices. The special monitoring mechanism
is created with data processing and analysis microservices for different uses such as for the home
consumer, electric vehicle charging stations and energy prosumers. The scalable energy efficiency
management services based on enhanced data processing microservices can accommodate more
data-objects through VOs and CVOs in the future. This BEEMS-based system contains replicated
data-objects, data caching mechanism and data processing microservices instances so the data can be
highly available for service provision.

6.2. Prototype Description

In order to demonstrate the proposed model, we designed a prototype to mimic the use case in
the laboratory environment. In the prototype, we used four virtual machines running on the Ubuntu
operating system. The first and second virtual machines have been used to store the energy-related
data. We used the OpenTSDB database, which is suitable for the scalability and massive amount of
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time series energy-related data. We also used lightweight messaging MQTT and COAP protocol with
RabbitMq and data caching service for efficient and reliable data feeds.

The third virtual machine has been used for the deployment of VOs and CVOs templates,
ontologies, and data-objects. The VOs and CVOs ontologies have been created with the Protégé
and stored in the Apache Jena triple store [49,50]. To access VOs, and CVOs data-objects from the triple
store, the Apache Jena SPARQL engine has been used. In the third virtual machine, we also hosted
the codes for the functions of data caching, cleaning and annotation. The data from all the relevant
VOs have been cleaned, filtered and aggregated by the data processing, aggregation and reusability
microservices, and theses microservices also reuses the VOs data at the placement of non-available VOs
by using semantic web agent. To predict energy generation and consumption in real-time, and to know
the consumption pattern (households energy consumption pattern from their lifestyle, vehicle energy
consumption pattern from the driving style of the user), we used Apache Spark’s machine learning
libraries (ASMLL) because ASMLL supports open source fault tolerant, scalable, and real-time big
data analysis and prediction models.

The VOs and CVOs data-related functionality from the first and second virtual machine has
been exposed as RESTful services. We developed data processing and analysis microservices by
using Spring Framework and Apache Spark’s machine learning libraries. The data processing
and analysis microservices were created depending on the BEEMS applications requirements by
using microservices templates. The developed microservices have been deployed on Docker version
18.05.0-he including Apache HTTP Server with WebSphere application server in the fourth virtual
machine. Some of the energy efficiency management services created from the group of microservices
are: (S1) Energy Generation & Load Estimation Analytics for Home, (S2) Home building Appliances
Energy Consumption Prediction, (S3) Electric Vehicle Charging Billing & Reporting, (S4) Energy
Sharing Billing & Reporting to the Prosumers, (S5) Energy Optimization based on User Movement
Tracking in Home & Office, and (S6) Energy Saving Prediction in Home building Environment.
The porotype model for the use case is shown in Figure 9.

6.3. Experiment and Data Description

To evaluate the proposed model and use case scenario we created an experimental setup for
prototyping with synthesized and real energy data. The synthesized energy-related data generated
with Log-Synth tool [51], and a large publically available energy dataset GREEND [41] is used
as real data. We used synthesized energy-related data in order to evaluate the performance
of the microservices model in terms of high availability of data in near real-time for BEEMS
provision. The reason to use synthesized energy-related data is to assume that we are receiving
this data from smart meters and sensors in near real-time. In order to analyze and identify
the relationship among the energy generation, and consumption we distribute the data into two
data types: (1) the energy generation data and (2) energy consumption data, and converted
these datasets into RDF/OWL formats using VOs and CVOs ontologies. The energy generation
data attributes includes: energy_generator_building_id, generation_type, max_generation_capacity,
actual_generated (KWH or BTUs), and timestamp. We further distribute the energy consumption
dataset attributes into two sets: total energy consumed by the building and energy consumption by
the appliances separately in a house building or office building. Data attributes for the total energy
consumption includes building_id, no,_of_electric_appliances, no_of_gas_appliances, consumption_1
(KWH), consumption_2 (m3), and timestamp. Appliances wise energy consumption data attributes
include building_id, appliances_id, consumption_1 (KWH), consumption_2 (m3), and timestamp.
The Log-Synth tool [51] and GREEND [41] data are initially stored in the energy generation and
consumption databases respectively. The stored data semantically annotated with VOs ontologies
and stored in RDF/OWL format in VOs database. For this experiment, we created separate
energy generation data VOs with a different time interval and the type of energy such as wind,
hydro or biofuel.
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We aggregated the data-objects from similar types of energy data as CVOs for the energy
generation and consumption data. The reason for combining and aggregating the energy data into
VOs and CVO data-objects is to identify the semantic relationship among the energy generation and
consumption data and to reuse that data-objects in order to enhance the availability of processed data
for other relative services. The real-world energy generation and consumption situation information
have been detected by using data processing and analysis microservices, with respect to the time of the
day, the number of appliances, type of appliances, and weather condition. In the experiment, we also
reused our created VOs and CVOs data-objects in multiple microservices based on energy consumption
pattern by the households and similar appliances in different homes. This reusability of VOs and
CVOs data creates more knowledge and enhances the availability of processed data for BEEMS.

Based on the use case scenario and keeping the understanding simple, we created six BEEMS from
the group of data processing microservices. The templates of these microservices have been stored in
the template database and used for the discovery and execution of service features. For learning and
activating the energy saving policies from the generation and consumption history data, microservices
also used the CVOs rules and VOs processed data. In this case, an energy optimization CVO
contain the parameters (VOs) of the consumers and appliances such as building_id appliance_id,
appliance_start_time, appliance_close_time, weather_condition, number of dwellers, etc. The data
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processing and analysis microservices for office building energy consumption and optimization used
the CVOs rules which contain policies for various office electric accessories.

In the experiment, we created many instances of scalable data processing and analysis
microservices, CVOs, and VOs for ensuring the availability, and scalability of the system in
consideration of the availability of energy management services and data. To better understand
and compare the effectiveness of BEEMS from the group of microservices, we also created monolithic
services for the use case scenario. The monolithic BEEMS have been created and executed as a single
large service without using containers. We tested our experiments by increasing the number of
concurrent requests to the services, by using the Apache HTTP server benchmarking tool [52] and the
performance of the energy efficiency management services have been tested and evaluated with the
Funkload [53]. We used different types of VOs and CVOs with respect to each microservice and the
context of service in which they were requested and executed in the BEEMS. The examples of SPARQL
queries to insert energy consumption data into the database and select SPARQL statements to inspect
energy generation aggregated data is shown in Figure 10.Energies 2019, 12, 360 20 of 26 
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7. Results and Discussion

To evaluate the proposed framework and analyze all possible behaviors of the services including
CVOs and VOs data-objects all the services have been tested with a repeated number of experiments.
The execution of BEEMS requests with the microservices has also been tested by exponentially
increasing of service requests in order to know the availability of data. During the results analysis,
missing attribute values of the dataset have been assumed that these data-objects are not available,
the details about the experiment and data can be found in Section 6.3. Figure 11a,b show excerpt data
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processing and analysis results of the GREEND [41] dataset. The first graph shows the home building
energy consumption data with respect to appliances for the first eight days of June. During the result
analysis, it is discovered that the fridge consumed more energy and the bedside-light consumed
less energy.

In the second graph it is shown that the dwellers use the dishwasher only on Tuesday and
Wednesday and they do not use the water kettle during this period. From the results, it is also
extracted that the fridge and dishwasher are consuming more energy than the other appliances.
Therefore, by adjusting the fridge temperature, we can reduce the energy consumption. Further,
these energy consumption data processing and analysis results can also help to know the living
behavior of dwellers, and we can predict their occupancy in the building for more energy-optimized
services with comfortable living.

The results presented in Figure 11a,b show that even though some of the data attributes and
values are missing (i.e., data-objects), still we can execute microservices and services. In this case,
our microservices can be categorized as data processing microservices for the energy data visualization.
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and comparison in the weekdays.

Figure 12a shows the availability of energy efficiency management service based on enhanced
data availability for the 04 cases presented in Section 5.4. The results in Figure 12a indicate that the
service can be available fully or partially even though its data-objects are not available. In this case,
similar or virtualized data-objects can be used for the provision of service. In Figure 12a the number of
data-objects is the independent variable and service availability is a dependent variable. The decrease
in the availability of data-objects may decrease the availability of service if the similar data-object is
not available and in another case, the missing data-object cannot be virtualized.

During the results analysis, the availability of the services for Case 1 was 100% both in
microservices and monolithic approach because all the VOs and CVOs data-objects were continuously
available. The service availability for Case 2 was 80% in the microservices approach and 72% in the
monolithic approach. For this case, data from two VOs data was unavailable due to the malfunction
of the corresponding real-world objects. In this case, even though the data of two VOs was not
available, the service still continues its execution. The service availability in the monolithic approach
in Case 2 decreased to 72% because of the tightly coupled dependent tasks in the data and services
workflow. In Case 4, where the data-objects for the microservice 5 are not available, its service
availability is degraded to 25% in the microservices approach, whereas, the service becomes completely
unavailable in the monolithic approach because of the tight dependency among the service tasks and
the unavailability of some important data-objects.
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The results of BEEMS discovery have been compared in the microservices and monolithic
approaches as shown in Figure 12b. Figure 12b shows the service average discovery time which
is obtained when the semantic web agent (the semantic web agent is described in Section 5.5) checks
that the whether the service relevant objects are available and when an application requests the service.
The results in Figure 12b answer the question of how much time is required to know the availability
of a service based on its data-objects because a service that requires more data-objects to execute its
features takes more time to know its availability with the reference of data-objects. For obtaining the
results indicated in Figure 12b we kept the number of CVOs as an independent variable and average
discovery time as a dependent variable.

In each approach, concurrent BEEMS requests have arrived exponentially and are evaluated with
a number of VO and CVO energy-related data-objects. The service discovery time increased gradually
with the increase in the number of VOs and CVOs data and concurrent service requests. However,
the results in microservices implementation were much better than the monolithic one because of the
use of lightweight container technologies, RDF-based lookup templates, and enhanced data-objects.

In the BEEMS application requests, the service response time is very crucial for the enhanced
data and services availability in an emergency situation or for user satisfaction and comfortable living.
We also calculate the service response time in order to know the time agent take: (1) to map and link
the similar data-objects in place of missing data-object and (2) the time taken if the similar data-object
is not available and it attempts the virtualization of values based on the last available data for specific
real-world object. The results in Figure 13a are obtained by keeping the number of parallel service
requests as the independent variable and average service response time as a dependent variable.

In the experiment, we carefully analyze the service response time in both the microservices
and monolithic approaches by exponentially increasing the number of concurrent BEEMS requests
from five to 2560. The average response time for all of the concurrent service requests was about
0.083626 s in the microservices-based implementation and 0.465 s in the monolithic one. However,
for five or more concurrent service requests, the average response time delay starts from 0.04 and
0.12 s in the microservices and monolithic approaches, respectively. In both approaches, the service
response time was increased significantly with the increasing number of concurrent service requests.
However, the services response time in the microservices approach was satisfactory compared with the
monolithic one. During the experiments there was no service timeout in the microservices approach,
however, in the monolithic one, the service timeout ratio was 0.05% when the number of concurrent
BEEMS requests reached 640. The reason for the better services response time in the microservices
approach is that every data processing microservice is considered as a separate server process with a
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data caching mechanism and they share their data through loosely coupled message queues, whereas,
in the monolithic approach, all the processes remains tightly coupled and any failure or delay of one
data-object will affect the other dependent processes.
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We also analyzed the end-to-end average execution of BEEMS requests for our six implemented
services. The end-to-end average BEEMS request execution time includes: (1) the time for the discovery
of the service, data processing and microservices analysis; (2) time taken for the retrieval of VOs,
CVOs data; (3) data aggregation and applying of modeled policies over the energy data at CVO level;
(4) readjustment time taken by the semantic web agent in case of non-availability of some data-objects,
and finally (5) the time required for the execution of the requested service features. The average
execution time result is shown in Figure 13b, where S1, S2, S3, S4, S5, and S6 represent the BEEMS
created with the group of microservices and the names of these services have been presented in
Section 6.2.

In the experiment we created 10 instances per service and tested them with 50 concurrent service
requests. During this experiment, service requests with high priority such as emergency services have
been assigned a VO with high data availability and services with less priority such as entertainment
services have been assigned VOs which are less reliable in terms of data availability. In the results,
service S1, S2, S3, S4, S5, and S6 took 0.190384, 0.251513, 0.2016, 0.125503, 0.186217, 0.14 s average
end-to-end execution time, respectively. The service m2 has the longest execution time whereas m4 has
the lowest end-to-end average execution time. The reason m2 took the longest execution time because
of a large number of VOs and CVOs energy-related data accumulation, data filtering, data aggregation
and applying of the data analysis model. The application service m4 took less end-to-end execution
time because it took only shared energy data through relevant CVOs and VOs data, and send the
billing details to the prosumers.

We compared our approach with some other related platforms in terms of data availability and
service provisions such as iCore [17], Xively [33], and one M2M [16]. These platforms did not discuss
data and service availability, scalability, and modularity with data processing microservices, but our
framework supports these functionalities. We believe that the results of our proposed approach show
the great significance and major contribution in the data and services aspects for the building energy
efficiency management services provision literature because it fosters enhanced data availability,
modularity, and scalability with the microservices approach, and which will open doors to new ideas
to handle data availability, data processing, service modularity, service scalability, and service efficiency
in energy management services and other similar range of use cases.
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8. Conclusions

In this article, we have presented amicroservices model to enhance data availability for the
provision of energy efficiency management services in the building environment with reliability
and scalability. The key concept in this paper is to enhance the data availability, linking of various
energy-related data-objects and ingestion of these objects for buildings energy efficiency management
services (BEEMS), by using microservices. In order to accumulate, processes and analysis of
energy-related data to enhance data availability for various BEEMS, we presented a microservices
model in the Web of Objects (WoO) platform. Out microservices model supports decentralized data
management with improved SPARQL queries, by minimizing the usage of joins and exposes the service
capability with modularity and reliability from the group of granular services. The data processing and
analysis microservices template information model for the creation of BEEMS, and service discovery
and execution model with respect to service request priority and service contextual parameters have
been presented. For readjustment, enhancement, reusability, and availability of data-objects, services,
and microservices semantic web agent based on ontology has been covered. The provision of BEEMS
from the pools of reusable microservices with CVOs and VOs data has been discussed. For the
evaluation of our approach, we described and demonstrated a real-world use case scenario with an
energy consumption dataset and synthetically generated energy data.

We evaluated the results of the prototype with a repeated number of experiments by comparing
the energy efficiency management services with the microservices approach and the monolithic based
approach. In the results, we analyzed and compared the services data availability, services discovery
time, and response time and end-to-end execution time. We believe that the results of our approach are
prominent with microservices approach rather than the monolithic. As to the best of our knowledge,
the data processing and analysis microservices approach was not previously discussed in the related
platforms such as oneM2M, iCore, and Xively. In the future, we would like to evaluate the results in
more detail, explore more features of semantic web agent for the readjustment of data-objects and
provision of more efficient extended IoT based energy services to the other IoT platforms.
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