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Abstract: The extraction of the photovoltaic (PV) model parameters remains to this day a
long-standing and popular research topic. Numerous methods are available in the literature,
widely differing in accuracy, complexity, applicability, and their very nature. This paper focuses on
the class of non-iterative parameter extraction methods and is limited to the single-diode PV model.
These approaches consist of a few straightforward calculation steps that do not involve iterations;
they are generally simple and easy to implement but exhibit moderate accuracy. Seventeen such
methods are reviewed, implemented, and evaluated on a dataset of more than one million measured
I-V curves of six different PV technologies provided by the National Renewable Energy Laboratories
(NREL). A comprehensive comparative assessment takes place to evaluate these alternatives in terms
of accuracy, robustness, calculation cost, and applicability to different PV technologies. For the
first time, the irregularities found in the extracted parameters (negative or complex values) and
the execution failures of these methods are recorded and are used as an assessment criterion.
This comprehensive and up-to-date literature review will serve as a useful tool for researchers
and engineers in selecting the appropriate parameter extraction method for their application.

Keywords: analytical; explicit; five parameters; Lambert W function; parameters extraction;
photovoltaic (PV); review; single-diode model

1. Introduction

The model of a photovoltaic (PV) generator usually consists of an equivalent circuit and a set of
parameters that describe its electrical response and operation. Determination of these parameters is
not a trivial task, as they are not available in the PV module’s datasheet and their values change with
the operating conditions. Immense research has been carried out in recent decades on the extraction of
the PV model parameters, the literature presenting numerous methods of different nature, reliability,
complexity, and required input data. It now constitutes a research topic on its own, referred to as “PV
cell model parameters estimation problem” or similar in the literature [1].

These methods can be classified into three major categories: the numerical, the non-iterative and the
optimization approaches. The numerical (or iterative) methods form a system of a few equations which
is solved numerically [2–6], in a trial-and-error manner or via another iterative algorithm [7–10].
These equations are usually derived by applying the PV model equation to specific conditions,
such as short-circuit (SC), open-circuit (OC) or maximum power point (MPP). This class achieves
generally high accuracy but suffers from initialization and convergence issues, high calculation cost
and solution suboptimality [1,11–13]. The non-iterative (or explicit or direct or analytical) methods
employ a set of equations as well, but are solved symbolically/explicitly (no iterations) resulting in
simpler formulation and implementation [12,14–28]. These approaches are essentially variations of the
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numerical class that employ a series of simplifications and empirical observations to achieve explicit
formulation. Quite often, they are used in the initialization step of the numerical methods [26,29].
It is worth noting that the term “analytical” is somehow ambiguous in the literature, referring either
to the non-iterative, numerical, or both classes, thus it is not used in this paper to avoid confusion.
The non-iterative methods are easier to implement and more computationally efficient but yield lower
accuracy [13], although some of these approaches perform quite decently [30]. The optimization (or
artificial intelligence or heuristic or curve-fitting or soft-computing) methods follow a non-technologically
specific approach where the model’s equation is optimally fitted on a set of measurements, usually the
I-V curve. Various evolution inspired [31–33] and curve-fitting [34,35] algorithms may be found in
the literature. This class exhibits generally high accuracy and near-global optimality but suffers from
computational complexity and difficulties in the method’s parameters tuning [1].

Another important aspect of a parameter extraction technique is the required input
data. For some methods, the datasheet information suffices (e.g., SC, OC, and MPP data,
temperature coefficients etc.) [12,15,17,20–22,25–27], while others require additional operating
points or/and the slope of the I-V curve at SC or OC [14,16,18,19,23,24]. Generally, the former
cases are preferable as they can be applied more easily and universally, not necessitating extra
measurements [19,27,36]. Furthermore, there is currently a debate in the literature on whether the
extracted parameters should be restricted to real positive numbers to have a physical meaning [4,26],
or should be allowed to take negative or complex values (referred to as parameter irregularities in
this paper) if the resulted curve better matches the measurements [15,30]. Other desirable attributes
of such a method is to be accurate, robust, computationally efficient, and applicable to various PV
technologies [1,27].

The large diversity in the requirements, performance and very nature of these methods has
inspired the publication of several review papers in the literature [1,30,36–41]. The studies in [1,37]
provide a qualitative description and classification of all three classes, but without implementation and
quantitative comparison. The rest of the aforementioned papers are limited to the numerical or/and
non-iterative methods, implementing and evaluating some of them. However, only a small subset
of the available non-iterative methods is assessed, and the evaluation dataset corresponds mainly
to single- and multi-crystalline silicon PV modules [30,36,38]. The copper indium gallium selenide
(CIGS) and cadmium telluride (CdTe) technologies are considered in [39], heterojunction with intrinsic
thin layer (HIT) modules are tested in [40] and a few multi-junction devices are examined in [41].
To this day, there is no comparative study in the literature to consider all the commercially available
PV technologies. Furthermore, although the robustness has been investigated in the numerical and
optimization classes, the aspect of execution failure or irregular results in the non-iterative methods
has not been studied yet.

To shed some light on these topics, this paper performs a comprehensive review and comparison
of the non-iterative parameter extraction methods that are based on the single-diode PV model.
Seventeen such methods are identified dating since 1984 [12,14–27], all of which are implemented
and assessed on a common set of I-V curves provided by National Renewable Energy Laboratories
(NREL) [42]. This dataset contains 1,025,665 I-V curves measured over a one-year period in the USA
for 22 PV modules under a wide range of irradiance and temperature conditions. This is probably
one of the most comprehensive publicly available datasets, including six different PV technologies:
single- (c-Si) and multi-crystalline (mc-Si), CdTe, CIGS, HIT and amorphous silicon (a-Si) (crystalline,
tandem, and triple-junction). It is worth noting that this investigation is limited to the single-diode PV
model, adopted by most of the non-iterative parameter extraction methods, even though other more
sophisticated models may be more appropriate for some thin-film technologies.

The comparison that follows aims to give the full picture on the appropriateness of the
non-iterative methods in terms of accuracy, robustness, and calculation cost for all these PV
technologies. Special focus is given on the execution failures recorded for the 1 million scenarios
to evaluate their credibility, and the number of parameter irregularities (negative or complex values)
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that may be or may be not a limiting factor to some applications. The assessment is performed first for
all 17 methods, and then separately for those that rely solely on datasheet information; furthermore,
a sensitivity analysis takes place on the fitting range for the extraction of the SC slope. This survey is a
thorough and up-to-date comparative assessment of the available non-iterative methods, carried out for
the first time on a comprehensive dataset and accounting for the aspects of reliability and robustness.

The rest of the paper is organized as follows: the basics of the single-diode PV model are given in
Section 2 and the non-iterative parameter extraction methods are described and discussed in Section 3.
The performance of these methods is assessed and compared in Section 4, the main conclusions
summarized in Section 5. The Appendixes A and B clarifies some calculation aspects.

2. The Fundamentals of the Single-Diode PV Model

This section gives a brief description of the PV model theory under consideration; the following
nomenclature is used throughout the paper for consistency. The single-diode model is historically the
first PV model, developed initially for single-crystalline silicon PV cells, but it remains to this day the
most commonly used one due to its simplicity [2,43,44]. Other more sophisticated models involve
two [45] or three diodes [46] for increased accuracy at low irradiance, and sometimes additional
voltage-dependent current sources to account for the breakdown operation [47] or the recombination
phenomenon in some thin-film technologies [48]. This paper is limited to the single-diode model,
as this is the PV model on which the majority of the non-iterative parameter extraction methods are
based, and assesses its effectiveness on all commercial PV technologies, single/multi-crystalline silicon
and thin-film.

This model consists of an equivalent circuit shown in Figure 1 and a set of five parameters
[Iph, Is, a, Rs, Rsh]:

• the photocurrent Iph (or Io or Ipv)
• the diode saturation current Is (or Io or Isat)
• the modified diode factor a (or m)
• the series resistance Rs
• the shunt resistance Rsh (or Rp).

D Rsh

Rs

Iph

I

+

-

V

Figure 1. Electrical equivalent circuit of the single-diode PV model.

Quite often, the modified diode factor a is expressed alternatively as NsnVT in the
literature, where Ns is the number of series-connected cells, n the diode factor and VT = kT

q
the thermal voltage (k is the Boltzmann constant, T the temperature in Kelvin and q the
electron charge). The five parameters depend on both the structural characteristics of the PV
modules and the operating conditions: incident irradiance and cell temperature. The irradiance
is usually considered to affect proportionally Iph [1–4,7,20,21,27,28,36,43,49–54], and Rsh in an
inversely proportional way [1–4,20,27,36,43,49,51,52,54]; the temperature effect is generally assumed
to be weak and linear in Iph, strong and exponential in Is, and strong and proportional
in a [1–4,7,20,21,27,36,43,49–54]. The dependence of Rs is somewhat unclear, some studies
assuming to remain constant [2–4,36,43,50,51,53,54] and others to depend on both irradiance and
temperature [1,20,27,49,52]. Typically, the five parameters are not assumed to be affected by the
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operating point, i.e., they do not change along the I-V curve. For some technologies, however, it has
been reported to vary with the current, especially the diode factor and series resistance; here, the former
approach is considered which is adopted by all parameter extraction methods examined. Please note
that sometimes the literature neglects one or both resistances for simplicity [11,15,17,21,22,55].

The current-voltage equation is given implicitly by

I = Iph − Is

(
e

V+IRs
a − 1

)
− V + IRs

Rsh
. (1)

This equation cannot be solved symbolically and necessitates numerical solution, which raises
some challenges during the evaluation. As an alternative, an equivalent explicit formulation
has appeared lately in the literature, employing the principal branch of the Lambert W function
W0{.} [25,56–58]

I =
Rsh(Iph + Is)−V

Rs + Rsh
− a

Rs
W0

{
RsRsh Is

a(Rs + Rsh)
e

Rs Rsh(Iph+Is)+RshV

a(Rs+Rsh)

}
(2)

V = Rsh(Iph + Is)− (Rs + Rsh)I − aW0

{
Rsh Is

a
e

Rsh(Iph+Is−I)
a

}
. (3)

One can directly find the current for a given value of voltage using (2) or the opposite via (3),
which makes the calculation easy and straightforward, in contrast to (1). The Lambert W function is
readily available in all computational platforms; more information on the computation of this function
are given in Appendix A.

The single-diode model describes any PV generator under uniform operating conditions, from cell
to array, after scaling properly the five parameters [43]; it does not apply to non-uniform operation,
such as partial shading, mismatched conditions etc., when appropriate extensions to account for the
bypass diodes are necessary. Usually, the five parameters are extracted for the PV module, using the
module datasheet information as input data. In the general case, however, one can extract the five
parameters for any PV generator, from cell to array, when the respective I-V curve measurements
are available. To relate the array parameters [Iph,arr, Is,arr, aarr, Rs,arr, Rsh,arr] to the cell parameters
[Iph,cell , Is,cell , acell , Rs,cell , Rsh,cell ] the following expressions can be used [4,21,34,41,54]:

Iph,arr = Np Iph,cell (4)

Is,arr = Np Is,cell (5)

aarr = Nsacell (6)

Rs,arr =
Ns

Np
Rs,cell (7)

Rsh,arr =
Ns

Np
Rsh,cell , (8)

where Np and Ns are the parallel- and series-connected PV cells within the array. These relations hold
true for the other PV structures as well, such the string or module, properly changing the meaning
of the respective terms; e.g., the module-cell relation is given by (4)–(8) if the terms for the array
parameters are substituted by the module ones and Np, Ns meaning is modified to account for the cells
within the module, rather than the array. A typical first-quadrant I-V curve (non-negative voltage
and current) of a PV module at STC (standard test conditions) is shown in Figure 2, indicating the SC,
the OC, and the MPP, as well as the tangent lines at SC and OC. Most of the non-iterative parameter
extraction methods require as input data the coordinates of these points (0, Isc), (Voc, 0) and (Vmp, Imp),
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as well as the so-called experimental resistances Rsho and Rso that relate to the slope of the tangent lines
according to

Rsho = −
dV
dI

∣∣∣∣
SC

, Rso = −
dV
dI

∣∣∣∣
OC

. (9)

The extraction of these slopes from I-V curve measurements is discussed in Appendix B.
Other data possibly needed by a parameter extraction method is the temperature coefficients of
the SC current αIsc and OC voltage βVoc. Please note that these coefficients are used in normalized form
(K−1) in this paper (normalized on the nominal SC current and OC voltage, e.g., βVoc = −0.0034 K−1,
αIsc = +0.0006 K−1), rather than in absolute form (A/K, V/K), as the normalized coefficients do not
considerably differ among PV modules of the same technology which facilitates comparison [59].
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Figure 2. Typical I-V characteristic curve of a PV module in the first quadrant.

3. The Non-Iterative Parameter Extraction Methods

A rigorous review reveals that there are seventeen different non-iterative methods available for
the parameter extraction of the single-diode PV model, given in chronological order and denoted by
the name of their respective main author in Table 1. These are the most clearly described methods in
the literature that are applicable to any operating conditions; the ones intended only for STC are not
included in this comparative assessment. It is worth noting that some of these methods are designed for
single/multi-crystalline silicon technologies, assuming the silicon energy gap and a diode factor close
to 1, but in this study, they are applied to all six PV technologies to assess their universal performance
maintaining consistency with the original studies. Table 1 also shows the number of evaluation steps,
the required input data and whether the datasheet information suffices, or additional measurements
are needed. In the rest of this section, the evaluation steps of these methods are briefly described
using the common nomenclature of Section 2; it is shown that there is significant overlap among the
alternatives, sharing several equations in the exact or very similar form.

3.1. Phang [1984]

Historically, the first attempts to extract the PV model parameters appeared in the 1960s:
they employed semilogarithmic plots of the I-V characteristic to extract some of the parameters
and required experienced users. These techniques were evolved later to complete and easy-to-use
parameter extraction methods based on explicit equations, rather than plotted curves; the first such
non-iterative method was published by Phang et al. in 1984 [14], still performing quite decently as
discussed later. The same authors published later a comparative study [60] and a seven-parameters
extraction method [61], but [14] remains the original publication adopted in several studies in the
literature, such as in [50,62]. First, Rsho and Rso are extracted from the I-V curve slopes at SC and OC
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(see Appendix B), and then the five parameters are calculated by evaluating the following equations in
this order:

Rsh = Rsho (10)

a =
Vmp −Voc + Rso Imp

ln
[

Isc−Imp−Vmp/Rsh

Isc−Voc/Rsh

]
+

Imp
Isc−Voc/Rsh

(11)

Is =

(
Isc −

Voc

Rsh

)
e−

Voc
a (12)

Rs = Rso −
a
Is

e−
Voc

a (13)

Iph = Isc

(
1 +

Rs

Rsh

)
+ Is

(
e

Isc Rs
a − 1

)
. (14)

Table 1. Main attributes of the 17 non-iterative parameter extraction methods.

No Ref. Method Year Number of Eval Datasheet Input
Parameters Steps Sufficient? Data

1 [14] Phang 1984 5 7 Isc, Voc, Imp, Vmp, Rsho, Rso
2 [15] Sera 2008 4 4 X Isc, Voc, Imp, Vmp
3 [16] Saleem 2009 5 7 Isc, Voc, Vmp, I60, V60
4 [17] Saloux 2011 3 3 X Isc, Voc, Imp, Vmp
5 [12] Accarino 2013 5 6 X Isc, Voc, Imp, Vmp, αIsc, βVoc, Voc0
6 [18] Khan 2013 5 7 Isc, Voc, Imp, Vmp, Rsho, Rso
7 [19] Cubas1 2014 5 8 Isc, Voc, Imp, Vmp, Rsho
8 [19] Cubas2 2014 5 8 X Isc, Voc, Imp, Vmp
9 [56] Cubas3 2014 5 9 X Isc, Voc, Imp, Vmp

10 [20] Bai 2014 5 11 X Isc, Voc, Imp, Vmp
11 [21] Aldwane 2014 4 4 X Isc, Voc, Imp, Vmp
12 [22] Cannizzaro 2014 4 8 or 11 X Isc, Voc, Imp, Vmp
13 [23] Toledo 2014 5 13 Isc, Voc, Imp, Vmp, Ixx, Rsho
14 [24] Louzazni 2015 5 7 Isc, Voc, Imp, Vmp, Rsho, Rso
15 [25] Batzelis 2016 5 8 X Isc, Voc, Imp, Vmp, αIsc, βVoc, Voc0
16 [26] Hejri 2016 5 5 X Isc, Voc, Imp, Vmp
17 [27] Senturk 2017 5 7 X Isc, Voc, Imp, Vmp

3.2. Sera [2008]

The method of Sera et al. [15], also adopted by Khezzar et al. [55], is a four-parameter model that
neglects Rsh:

Iph = Isc (15)

a =
2Vmp −Voc

ln
(

Isc−Imp
Isc

)
+

Imp
Isc−Imp

(16)

Rs =
a ln

(
Isc−Imp

Isc

)
+ Voc −Vmp

Imp
(17)

Is = Isce−
Voc

a . (18)

It is worth noting that a typo found in [15] has been corrected in (16), while (18) is somewhat
similar to the Phang’s (12).
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3.3. Saleem [2009]

The method of Saleem [16] is based on an alternative formulation of the PV equation as a power
law function. It requires two additional points as input data: at voltage equal to 60% of Voc (0.6Voc, I60)

and at current equal to 60% of Isc (V60, 0.6Isc). First, the auxiliary parameters γ and m are calculated:

γ =

I60
Isc
− 0.4

0.6
, m =

log
(

0.4−(1−γ)
V60
Voc

γ

)
log V60

Voc

, (19)

and then the five parameters are found by

a =
Voc

m
0.77m(1− Vmp

Voc
)− 1

0.77m ln Voc
Vmp
− 1

(20)

Rs =
Voc

0.6γmIsc

(
1− am

Voc

)
− 0.1 (21)

Is = γIsce−
Voc

a (22)

Rsh =
Voc

Isc

1

1− γ− γ
0.6 exp

[
(0.4+0.6γ)IscRs−0.4Voc

a

] (23)

Iph = Isc

(
1 +

Rs

Rsh

)
. (24)

Note the logarithm with a base of 10 in (19) and the natural logarithm in (20).

3.4. Saloux [2011]

An explicit PV model based on the ideal single-diode equivalent (no resistances) is presented
in [17]. Saloux provides some equations to determine the three parameters at STC, but it seems that
they are applicable to other conditions as well, as slightly manipulated here:

a =
Vmp −Voc

ln
(

1− Imp
Isc

) (25)

Iph = Isc (26)

Is =
Isc

e
Voc

a − 1
. (27)

Apparently, the expressions for Iph and Is are almost the same as (15) and (18) from Sera’s model.

3.5. Accarino [2013]

This is the first extraction method to employ the Lambert W function [12]. First a is calculated via

a =

(
βVoc − 1

T0

)
Voc0

αIsc − 3
T0
− Eg

kT2
0

T
T0

, (28)

where Voc0 is the nominal OC voltage (STC), T0 = 298.15 K is the nominal temperature, Eg = 1.8e− 19 J
the energy gap of silicon and k = 1.38e − 23 J/K2 the Boltzmann constant. Also note that the
temperature coefficients are in normalized form. Then, Iph and Is are found by (15) and (18) from Sera’s
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model. Finally, the auxiliary parameter x is evaluated (after correcting a typo in [12]), used subsequently
to calculate Rs and Rsh:

x = W0

{
Vmp(2Imp − Iph)

aIs
e

Vmp(Vmp−2a)
a2

}
+ 2

Vmp

a
−
(

Vmp

a

)2
(29)

Rs =
xa−Vmp

Imp
, Rsh =

xa
Iph − Imp − Is(ex − 1)

. (30)

For the computation of the principal branch of the Lambert W function W0{.}, please see
Appendix A. It is worth noting that this method was applied in [12] to single/multi-crystalline
silicon modules assuming the energy gap of silicon, thus it is also applied here using the same Eg value
for all technologies to be consistent with original study.

3.6. Khan [2013]

The model of Khan requires Rsho and Rso as additional inputs [18]. First, Rs, a and Is are calculated

Rs = Rso −
Vmp −Voc + Rso Imp

Imp + Isc ln
(

1− Imp
Isc

) (31)

a =
Vmp −Voc + Rs Imp

ln
(

1− Imp
Isc

) (32)

Is =
a

Rso − Rs
e−

Voc
a , (33)

and then Rsh and Iph are found via Phang’s (10) and (14).

3.7. Cubas1 [2014]

Cubas et al. propose one numerical and two non-iterative parameter extraction methods in [19].
The first non-iterative approach requires measurement of Rsho to calculate Rs through the auxiliary
parameters A and B

A = [Vmp + (Imp − Isc)Rsho] ln
(

Vmp + (Imp − Isc)Rsho

Voc − IscRsho

)
, B = Vmp − Rsho Imp (34)

Rs =
A− B
A + B

Vmp

Imp
+

B
A + B

Voc

Imp
, (35)

and evaluate a, Rsh and Is through

a =
(Vmp − ImpRs)[Vmp + (Imp − Isc)Rsho]

Vmp − ImpRsho
(36)

Rsh = Rsho − Rs (37)

Is =

[
Isc(1 +

Rs

Rsh
)− Voc

Rsh

]
e−

Voc
a . (38)

Finally, Iph is found through Saleem’s (24).
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3.8. Cubas2 [2014]

The second non-iterative alternative proposed in [19] employs an empirical estimation of Rsho
derived from [63], in place of the SC slope measurement:

Rsho = 34.49692
Voc

Isc
. (39)

This renders the method reliant only on datasheet information. The remaining parameters are
calculated via the equations of the previous alternative (24), (34)–(36) and (38), except that Rsh is now
found through:

Rsh =
(Vmp − ImpRs)[Vmp − Rs(Isc − Imp)− a]

(Vmp − ImpRs)(Isc − Imp)− aImp
(40)

3.9. Cubas3 [2014]

The same authors published shortly after a similar study based on the Lambert W function [56],
which requires the diode factor n as an input, set to n = 1.1 for the silicon cells under study:

a =
nNskT

q
. (41)

Four auxiliary parameters A, B, C and D are used

A =
a

Imp
, B = −

Vmp(2Imp − Isc)

[Vmp Isc + Voc(Imp − Isc)]
, (42)

C = −
2Vmp −Voc

a
+

Vmp Isc −Voc Imp

[Vmp Isc + Voc(Imp − Isc)]
, D =

Vmp −Voc

a
(43)

to calculate Rs by

Rs = A
[
W−1

{
BeC

}
− (D + C)

]
. (44)

Please note that W−1{.} in (44) is the lower branch of the Lambert W function, rather than the more
commonly used principal branch W0{.}; the calculation formula is given in Appendix A. The remaining
parameters Rsh, Is and Iph are found by the previous alternatives’ Equations (40), (38) and (24).
Please note that in this paper, the same diode factor is used for all PV technologies.

3.10. Bai [2014]

The Bai method [20] requires the slopes at SC and OC as inputs, which however are estimated
rather than measured. First, a simplified four-parameter model is employed to derive [Iph4, a4, Rs4, Is4]

through Sera’s (15)–(18). Then, the SC and OC slopes, or equivalently Rsho and Rso are calculated by

Rsho =
a4 ln

(
0.5(Isc−Imp)

Is4
+ 1
)
− 0.5(Isc + Imp)Rs4

0.5(Isc − Imp)
(45)

Rso = −
a4 ln

(
Isc−0.5Imp

Is4
+ 1
)
− 0.5ImpRs4 −Voc

0.5Imp
. (46)
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Thereafter, Rs is calculated by (47) below, Rsh and Iph through Cubas1’s (37) and Saleem’s (24)
respectively, and finally a and Is by (48) and (49) below.

Rs =
Vmp(−Rso + Rsho)[−Rsho(Isc − Imp) + Vmp] + Rso(−Rsho Imp + Vmp)(−Rsho Isc + Voc)

Imp(−Rso + Rsho)[−Rsho(Isc − Imp) + Vmp] + (−Rsho Imp + Vmp)(−Rsho Isc + Voc)
(47)

a = (−Rso + Rs)
−Rsho Isc + Voc

−Rso + Rsho
(48)

Is =
Iph − Voc

Rsh

e
Voc

a − 1
. (49)

Evidently, (49) is almost identical to Phang’s (12).

3.11. Aldwane [2014]

This is a four-parameter model (Rsh is neglected) [21], which is very similar to Sera’s method
except for a small difference in a:

a =
2Vmp −Voc

ln
(

Isc−Imp
Isc

)
+ Isc

Isc−Imp

. (50)

The remaining parameters Iph, Rs and Is are found via the exact same Sera’s
Equations (15), (17) and (18) respectively.

3.12. Cannizzaro [2014]

Cannizzaro et al. developed their method initially in [11], thereafter completed in [22].
This approach is based on the assumption that the five-parameter model can always be simplified to a
four-parameter model, neglecting either Rs or Rsh according to the series to parallel ratio (SPR):

SPR =
1− γi

e−r , where: γi =
Imp

Isc
, γv =

Vmp

Voc
, r =

γi(1− γv)

γv(1− γi)
. (51)

If SPR ≥ 1, the shunt resistance is neglected, and the series resistance is given by

Rs =
Voc

Isc

γv(1− γi) ln(1− γi) + (1− γv)

γi(1− γi) ln(1− γi) + γi
, Rsh = ∞. (52)

Otherwise, if SPR < 1:

Rs = 0, Rsh =
Voc

Isc

λ2w + λ1

w + λ1
, (53)

where λ1 =
1− γv

1− γi

2γi − 1
γi + γv − 1

, λ2 =
γv

1− γi
, w = W−1

{
−SPRλ1e−λ1

}
. (54)

The term W−1{.} in (54) is the lower branch of the Lambert W function, approximated in this
paper by the formula used by Cannizzaro et al. in [22] (more details in Appendix A). Having the two
resistances permits evaluation of a through

a =
Vmp −Voc + ImpRs

ln

[
(Isc−Imp)(1+ Rs

Rsh
)− Vmp

Rsh
Isc(1+ Rs

Rsh
)− Voc

Rsh

] . (55)

Evidently, (55) is reduced to Khan’s (32) when SPR ≥ 1 (Rsh = ∞). Finally, Iph is found via
Saleem’s (24) and Is through Phang’s (12).
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3.13. Toledo [2014]

Apart from Rsho, the method in [23] uses as inputs the coordinates of the SC and another
three operating points (V1, I1), (V2, I2), (V3, I3) evenly distributed at the right-hand side of the
I-V curve. There is some flexibility on how to select these points; here the MPP, OC and XX
(Vxx =

Vmp+Voc
2 —notation introduced by SANDIA laboratories [64]) are used. The method employs

five auxiliary parameters [A, B, C, D, E] found via the following steps. First, the sum A + B and E are
derived to calculate the function fi for the three operating points (Vi, Ii):

A + B = Isc, E = 1/Rsho, fi = ln(A + B− EVi − Ii) for i = 1, 2, 3. (56)

Using this information, the rest of the parameters are found by

D = exp
[
( f1 − f2)(V2 −V3)− ( f2 − f3)(V1 −V2)

(I1 − I2)(V2 −V3)− (I2 − I3)(V1 −V2)

]
, C = exp

[
f2 − f3 − (I2 − I3) ln D

V2 −V3

]
(57)

B = exp( f1 −V1 ln C− I1 ln D), A = Isc − B. (58)

Finally, the five parameters are retrieved:

Iph =
A ln C

ln C− E ln D
(59)

Is =
B ln C

ln C− E ln D
(60)

a =
1

ln C
(61)

Rs =
ln D
ln C

(62)

Rsh =
1
E
− ln D

ln C
. (63)

3.14. Louzazni [2015]

The main objective of Louzazni et al. in [24] is to present an alternative formulation of the PV
model equation, in which the five parameters are found as follows. First, the experimental resistances
are approximated by the respective slopes: Rsh via Phang’s (10) and Rs via

Rs = Rso. (64)

Thereafter, a is calculated via Phang’s (11), Iph via Saleem’s (24) and Is via Sera’s (18).

3.15. Batzelis [2016]

The Batzelis method [25] introduces a coefficient δ0 at STC found through the temperature
coefficients αIsc, βVoc, used afterwards to derive the auxiliary parameters δ and w:

δ0 =
1− βVocT0

50.1− αIscT0
(65)

δ = δ0
Voc0

Voc

T
T0

(66)

w = W0

{
e

1
δ +1
}

. (67)

Please note that αIsc, βVoc are normalized, T, T0 are in Kelvin degrees and the W0{.} is the principal
branch of the Lambert W function (please see Appendix A). The term 50.1 in the denominator of
δ0 incorporates the Boltzmann’s constant and the energy gap of silicon; this coefficient is used as it
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is in this paper for all PV technologies examined, in order to be consistent with the original paper.
Using these coefficients, the five parameters are found by

a = δVoc (68)

Rs =
a(w− 1)−Vmp

Imp
(69)

Rsh =
a(w− 1)

Isc(1− 1
w )− Imp

(70)

Iph =

(
1 +

Rs

Rsh

)
Isc (71)

Is = Iphe−
1
δ . (72)

3.16. Hejri [2016]

The main purpose of the Hejri method [26] is to approximate the five parameters to be used as
initial values in a numerical solution algorithm. First, a is found via Sera’s (16), then Rs and Rsh by

Rs =
Vmp

Imp
−

2Vmp−Voc
Isc−Imp

ln
(

Isc−Imp
Isc

)
+

Imp
Isc−Imp

(73)

Rsh =

√√√√ Rs
Isc
a exp

(
Rs Isc−Voc

a

) . (74)

Finally, Iph and Is are calculated through Sera’s (15) and (18) respectively. It is worth noting that
during the derivations of these expressions, it has been assumed that Rsho = Rsh to avoid measuring
the SC slope.

3.17. Senturk [2017]

This method is intended for STC [27], but it seems to be applicable to other conditions as well.
First, an arbitrary value of n = 1.2 is assumed for the diode factor, thus calculating a by (41) as in
Cubas3. Then, the experimental resistances are approximated by

Rsho =
Vmp

Isc − Imp
(75)

Rso =
Voc −Vmp

2Imp
. (76)

Thereafter, Iph and Is are calculated by

Iph =
Rso + Rsho

Rsho
Isc (77)

Is =
Iph − Voc

Rsho

e
Voc

a − 1
, (78)
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and finally Rs via Phang’s (13) and Rsh by

Rsh =
Vmp + ImpRs

Iph − Imp − Is

(
e

Vmp+Imp Rs
a − 1

) . (79)

This method too is designed for single/multi-crystalline silicon modules but is applied here as it is to
all technologies under consideration.

4. Comparative Assessment

All 17 methods of Section 3 are implemented and assessed in MATLAB 2017b, in a PC with a
6-core 3.5-GHz CPU at sequential computational mode (not parallel). Each method is denoted by the
name of the respective main author, as shown in Table 1. The dataset used for the evaluation was kindly
provided by the NREL and contains 1,025,665 I-V curves and other measurements from 22 PV modules
of different technology; each curve is recorded in about 180–200 samples. These measurements are
classified into 6 main PV technologies here, as shown in Table 2.

The irradiance and temperature distribution of this dataset is shown in Figure 3a,b, the former
varying within [20, 1440] W/m2 and the latter within [−19, +73] ◦C. A large number of I-V curves were
recorded under low and very low-irradiance conditions, which are known to be challenging for the
single-diode model and therefore for the respective parameter extraction methods. More information
on this dataset may be found in [42]. The comparative assessment that follows is first performed for all
17 methods, repeated afterwards for those that rely only on datasheet information and for those that
require the SC or/and OC slope measurements.

Table 2. Dataset of I-V curves used in the comparative assessment provided by NREL [42].

PV Module Technology No of Curves

xSi12922 c-Si 94,109xSi11246
mSi460BB

mc-Si 280,042

mSi460A8
mSi0251
mSi0247
mSi0188
mSi0166
HIT05667 HIT 93,530HIT05662
CIGS8-001

CIGS 182,994CIGS39017
CIGS39013
CIGS1-001
CdTe75669 CdTe 93,287CdTe75638
aSiTriple28325

a-Si 281,703

aSiTriple28324
aSiTandem90-31
aSiTandem72-46
aSiMicro03038
aSiMicro03036
TOTAL 6 1,025,665
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(a)

(b)

Figure 3. Histograms of (a) irradiance and (b) temperature distribution of the study-case dataset.

4.1. All Seventeen Methods

The full picture in the performance of the 17 methods is given in Table 3 cumulatively for
all PV technologies. The methods whose name start with an “*” are the ones that rely only on
datasheet information (see Table 1), while bold highlighting indicates the lowest value in the respective
columns. The assessment is carried out using three main criteria: accuracy, robustness, and complexity.
The metric for the accuracy is the current Root Mean Square Error (RMSE) of the reconstructed
and measured I-V curve, which indicates how well the characteristic produced using the extracted
parameters matches the sampled one; Table 1 gives the mean/max values of the absolute (A) and
normalized (on nominal Isc—%) RMSE, as both metrics are used in the literature. The robustness
is assessed on the number of scenarios out of the 1 million dataset that led to irregular parameters
(negative or complex parameters) or to execution failure, and the computational performance is
measured on the basis of total execution time and core execution time (excluding the I-V curve
calculations, such as extraction of SC slope).

It is evident that the various methods perform very differently in every aspect of this
comparison. The best mean (absolute and normalized) RMSE is shown by the Toledo method,
which however exhibits moderate worst-case performance. Conversely, Cannizzaro and Cubas3
(only for absolute RMSE) provide the lowest max RMSE, but present much higher average errors than
Toledo. The majority of the methods have thousands of irregularities in the extracted parameters,
mainly negative but also complex values, which may be undesirable for some applications. The fewer
irregularities are shown by the very simple Saloux method that is based on the three-parameter model,
which yields also the lowest computational cost; still, the accuracy of this method seems to be below
par. It is interesting that so many methods suffer from hundreds of thousands of execution failures,
failing to reproduce a meaningful I-V curve with the extracted parameters; only the Saloux, Batzelis,
and Senturk approaches guarantee 100% successful execution. These results are discussed in more
detail in the remaining of this section.
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Table 3. Performance of all 17 parameters extraction methods.

Accuracy (RMSE) Robustness Complexity

Absolute (A) Normalized (%) Execution Time (s)

Method Mean Max Mean Max Irregularities Failures Total Core

Phang 0.016 4.210 0.38 69.4 387,440 9952 13.1 1.3
* Sera 0.026 2.471 0.74 49.6 794,670 52 1.3 1.3
Saleem 0.018 2.255 0.47 45.3 22,810 24 10.7 2.1
* Saloux 0.029 1.271 0.79 25.5 2 0 1.2 1.2
* Accarino 0.034 0.880 1.09 17.7 2804 25 1.5 1.5
Khan 0.043 4.201 1.19 69.3 511,210 8242 13.2 1.4
Cubas1 0.011 2.445 0.36 49.1 529,530 2445 8.2 1.1
* Cubas2 0.026 2.433 0.64 48.8 626,150 53 1.3 1.3
* Cubas3 0.024 0.430 0.83 13.0 1878 224 2.0 2.0
* Bai 0.032 2.544 0.93 51.1 6390 37 1.7 1.7
* Aldwane 0.021 1.032 0.59 20.7 416,650 29 1.3 1.3
* Cannizzaro 0.013 0.431 0.39 11.3 100 28 2.1 2.1
Toledo 0.007 1.119 0.20 97.7 451,220 392 14.0 2.5
Louzazni 0.122 1.449 3.43 27.0 64,194 30,612 12.5 1.1
* Batzelis 0.028 0.932 0.87 18.7 412 0 1.5 1.5
* Hejri 0.231 6.761 7.21 129.4 794,670 14,057 5.4 5.4
* Senturk 0.034 1.285 1.09 25.8 27,847 0 1.2 1.2
The asterisk “*” denotes methods that rely only on datasheet information. Bold font indicates the lowest value in
the respective column.

4.1.1. Accuracy

The mean RMSE varies in the range of∼10–50 mA (0.2–1.2%) for all methods, except for Louzazni
and Hejri that perform much worse; the Toledo method yields the best average accuracy with a mean
error of 7 mA (0.2%). To get an idea of how good this performance is, it is worth noting that the lowest
mean absolute RMSE reported for numerical/iterative methods for the same NREL dataset is in the
range of 2–3 mA [34]: most of the non-iterative methods exhibit a mean error of about one order of
magnitude larger.

For the worst-case accuracy, however, the errors recorded in Table 3 are much higher; only the
Accarino, Cubas3, Cannizzaro, and Batzelis methods present a max RMSE of less than 1 A (20%) for
all one million scenarios. It is interesting that Toledo yields much higher max errors compared to
Cannizaro, which indicates that best average accuracy does not entail best worst-case accuracy as well.

The performance for the various PV technologies is graphically illustrated in Figure 4.
Each stacked bar in Figure 4a corresponds to the sum of the mean normalized RMSE for all
six technologies. It is evident that the largest errors arise for the CIGS (purple) and a-Si (light
blue) technologies in all methods, which indicates that these are the most challenging type to
describe through the single-diode model; the other technologies are pretty much the same from
the modeling perspective.

Figure 4b shows the PV technology that corresponds to the max normalized RMSE for each
method: the largest worst-case errors are found in CIGS (purple), CdTe (green) and a-Si (light blue)
technologies, but also several methods yield their max RMSE surprisingly at the mono-crystalline
c-Si technology (dark blue). This last observation indicates that the Achilles’ heel of these methods
is primarily the simplifications in their core, and secondarily the appropriateness of the single-diode
model for different PV technologies.
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Figure 4. Accuracy of the 17 methods. (a) Cumulative mean normalized RMSE and (b) max normalized
RMSE for the various PV technologies.

An indication of the most accurate method for each of the six PV technologies is given in
Table 4. Evidently, Toledo proves the best option in all six technologies when focusing on average
accuracy, as discussed before. For the worst-case accuracy, the picture is more complicated having a
different method for each type of modules, having Cannizzaro prevalent and Toledo entirely absent
in this column; these results indicate that there is no “best” method to be blindly adopted. This is
expected, as all methods are based on the single-diode PV model which has been developed for the
single/multi-crystalline silicon technologies, thus setting a limit to the accuracy that can be achieved
in other types of modules. What determines the most favorably performing method in each case
is how valid the adopted assumptions are in the different technologies. For example, it seems that
neglecting either the series or the shunt resistance leads to good worst-case accuracy for the Cannizzaro
method in the silicon technologies (c-, mc- and a-Si), whereas a five-parameter model is needed for the
other technologies.

Table 4. Most accurate methods for each PV technology.

Best Average Accuracy Best Worst-Case Accuracy

PV Technology Method Mean NRMSE (%) Method Max NRMSE (%)

c-Si Toledo 0.10 * Cannizzaro 5.6
mc-Si Toledo 0.20 * Cannizzaro 11.3
HIT Toledo 0.23 Saleem 2.9

CIGS Toledo 0.25 Cubas1 2.5
CdTe Toledo 0.17 Phang 2.4
a-Si Toledo 0.24 * Cannizzaro 5.4

The asterisk “*” denotes methods that rely only on datasheet information.
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4.1.2. Robustness

The aspect of robustness has not been studied in a quantitative manner for the non-iterative
methods in the literature before. However, during this investigation it was found that it is common to
get negative or complex values for the five parameters from all methods, which may be inappropriate
for some applications, or even failing to reconstruct a meaningful I-V curve sometimes. In this paper,
the robustness of the case study methods is assessed through the number of irregularities found in the
parameters and the failures to produce an acceptable I-V curve with the extracted parameters.

There is no commonly accepted norm in the literature on whether the five parameters
should be restricted to real positive numbers or should be allowed to get negative or complex
values. Some studies support the former approach to get parameters with physical meaning [4,26],
whereas others do not adhere to this restriction if this leads to better results [15,30]. An example of
the latter approach is model-based Maximum Power Point Tracking (MPPT) algorithms, where the
five parameters must be extracted easily and non-physical values do not matter if the estimated P-V
curve is a good approximation of the actual one. To investigate this aspect, a set of parameters that
contain at least one negative or complex value is marked as “irregular” here; thus, the irregularities
shown in Table 3 correspond to the number of scenarios that led to irregular parameters. It is worth
noting that all methods returned finite values for all 1 million cases (there was no Inf or NaN in any of
the parameters). Table 3 shows that most methods present thousands of parameter irregularities, some
of those at almost half of the total scenarios. The fewer irregularities are found in Saloux, Cannizzaro,
and Batzelis (less than 0.1%), the former yielding irregular results in only 2 cases; this is probably
because of the three-parameter model adopted therein, which neglects the two resistances that most
frequently get irregular values.

The distribution of irregularities among the six PV technologies is depicted in Figure 5a: there is no
“susceptible” technology, as the number of anomalies is approximately proportional to the number of
each technology’s scenarios (see Table 2). The type of irregularities are shown in Figure 5b: the majority
of the anomalies are just negative values (most often in the resistances), whereas a very small number
of complex values have been also observed in most methods; Hejri is an exception yielding a large
number of both negative (series resistance) and complex (shunt resistance) parameters, which is due to
the assumptions and formulation adopted. For all methods, the complex values come from a negative
argument in square root or logarithmic functions.

Still, the irregular parameters are not necessarily an undesirable feature; for some applications,
the nature of parameter values do not matter, if they lead to a good match between the produced
I-V curve and the measured characteristic. To quantify this appropriateness and meaningfulness,
we consider here as an execution failure when the I-V curve contains infinite or NaN (not-a-number)
values, or the absolute RMSE exceeds the respective Isc (max current value). Table 3 reveals that some
of the methods fail thousands of times, mainly in the HIT and CIGS technologies as shown in Figure 5c;
for some methods, this is related to the SC slope extraction, especially in distorted I-V curves as further
discussed in Section 4.3. This drawback seriously undermines the credibility of these techniques.
Only the Saloux, Batzelis and Senturk alternatives fail exactly zero times, which renders them 100%
credible for any PV technology and operating conditions.

4.1.3. Computational Complexity

The low complexity and execution time is the main reason to resort to a non-iterative parameter
extraction method. The number of evaluation steps shown in Table 1 is only indicative of the
computational performance, as each step may widely differ in terms of execution time. Reasons for
higher times may be the slopes extraction or calculations with complex numbers. In general,
the methods that need to perform calculations on the I-V curve measurements (e.g., extraction of the SC
slope or locating a specific operating point) carry an additional computational burden. To quantify this
cost, the execution time in Table 3 is recorded twice: as a total and excluding this overhead (denoted as
core cost).
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Figure 5. Robustness of the 17 methods. (a) Number and (b) types of irregularities.
(c) Execution failures.

Table 3 shows that for all 1 million curves, the total execution time is between 8–14 s for the
methods that involve curve calculations (the ones without an “*”) and 1–2 s for those that rely only on
datasheet information, except for Hejri which exhibits a 5.4 s total time due to the large number of
calculations with complex numbers. A graphical illustration of this performance is given in Figure 6a:
the increased cost of Phang, Khan, Cubas1, Toledo and Louzazni is due to the extraction of the slopes
at SC and OC via linear fitting on several samples (see Appendix B), while for Saleem is because it
has to identify two additional operating points in the curve apart from the inputs SC, OC, and MPP.
The execution time is not affected by the PV technology or operating conditions.
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Figure 6. Computational cost of the 17 methods. (a) Total execution time. (b) Execution time excluding
curve calculations.

If the curve calculations cost is excluded (core time), Table 3 and Figure 6b show that the remaining
time is much lower in the range of 1–2 s, the same as for the only-datasheet methods. This is
because the non-iterative methods involve very few and simple equations, whose evaluation cost
is comparably less than the curve calculations. If the additional curve-related data are provided
as inputs, calculated beforehand, the last column in Table 3 should be used when assessing the
computational performance.

In any case, the times recorded for all methods (with and without the curve calculations cost) are
as low as a few microseconds per curve, which is several orders of magnitude less than the numerical
or optimization counterparts. As an indication of this huge difference, the iterative method given
in [34] was evaluated on the same 1-million dataset using a 20-machine computer cluster, whereas here
a common PC was able to complete this task in only a few seconds collectively for all methods.

4.2. The Methods that Rely Only on Datasheet Information

Relying only on datasheet information is commonly considered a desirable feature for a parameter
extraction method [19,27,36]; the input data are usually the voltage and current at the SC, OC, MPP and
possibly the temperature coefficients (see Table 1). This information is readily available at STC and
there is no need for additional measurements, which renders the respective methods more easily and
universally applicable. In this section, these techniques are reexamined separately to facilitate selection
when there are limitations on the input data.

Table 5 shows the performance of these methods; the main conclusions derived in the previous
section do not change, but the best candidates in some assessment criteria are different. In terms of
accuracy, the Cannizzaro technique is now the most preferable, yielding the lowest both mean and max
errors (along with Cubas3 for the max absolute RMSE). It is worth noting that the four methods that
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never exceed the 1 A (20%) RMSE (Accarino, Cubas3, Cannizzaro, and Batzelis) are all included in this
table, which indicates that the entire I-V curve is not mandatory to achieve good worst-case accuracy.
As for the robustness, the methods that yield irregular results in less than 0.1% of the times (Saloux,
Cannizzaro, and Batzelis) and the ones that do not fail even once (Saloux, Batzelis, and Senturk)
are all of the only-datasheet type (Table 5). Finally, the execution time of all these methods is pretty
much the same (except for Hejri as explained in Section 4.1.3), the small differences being attributed
to the number of calculation steps. It is worth noting that the methods that employ the Lambert W
function (Accarino, Cubas3, Cannizzaro, and Batzelis) do not exhibit any noticeable overhead in the
computational time, due to the approximation formulae used for the principal and lower branches
(see Appendix A).

In conclusion, these results show that the most favorable options in terms of worst-case accuracy,
irregularities, failures, and execution time are methods that do not require additional measurements
apart from the ones available in the PV module datasheet. However, when the average accuracy is
the main assessment criterion, the Toledo method that needs extra information, yields significantly
lower errors.

Table 5. Performance of the methods that rely solely on datasheet information.

Accuracy (RMSE) Robustness Complexity

Absolute (A) Normalized (%)

Method Mean Max Mean Max Irregularities Failures Total Time (s)

* Sera 0.026 2.471 0.74 49.6 794,670 52 1.3
* Saloux 0.029 1.271 0.79 25.5 2 0 1.2
* Accarino 0.034 0.880 1.09 17.7 2804 25 1.5
* Cubas2 0.026 2.433 0.64 48.8 626,150 53 1.3
* Cubas3 0.024 0.430 0.83 13.0 1878 224 2.0
* Bai 0.032 2.544 0.93 51.1 6390 37 1.7
* Aldwane 0.021 1.032 0.59 20.7 416,650 29 1.3
* Cannizzaro 0.013 0.431 0.39 11.3 100 28 2.1
* Batzelis 0.028 0.932 0.87 18.7 412 0 1.5
* Hejri 0.231 6.761 7.21 129.4 794,670 14,057 5.4
* Senturk 0.034 1.285 1.09 25.8 27,847 0 1.2
The asterisk “*” denotes methods that rely only on datasheet information. Bold font indicates the lowest
value in the respective column.

4.3. The Methods that Require the SC Slope as Input Data

The extraction of the slope at SC and OC is a challenging task, especially when the I-V curve
contains measurement noise or exhibits other types of distortions. Erroneous identification of the
slopes has a critical impact on the methods that rely on this data; a factor that affects this identification
is the fitting range, i.e., the part of the curve used for linear fitting to calculate the slope (see Appendix B).
To investigate this dependence, the performance of Phang, Khan, Cubas1, Toledo and Louzazni are
shown in Table 6 for two different SC slope fitting ranges: 0–10% of Voc (short range—used in the
previous sections) and 0–50% of Voc (long range). The former option is theoretically closer to the
definition of the SC slope (samples on the SC region) and thus it is used throughout the paper,
while the latter is less prone to local distortions and irregularities in the I-V curve.

Apparently, the results in all six performance indicators do not fundamentally differ between
the two ranges. No clear conclusion can be extracted on the accuracy, each method being affected
differently by the larger range, either positively or negatively, without any noteworthy deviations.
Exception to this observation is Toledo, which seems to slightly gain from the larger range in terms
of average (absolute and normalized) accuracy, but at the cost of much higher absolute RMSE,
although the normalized RMSE is reduced. On the other hand, a clear trend is evident in the robustness:
all methods exhibit less irregularities and failures at the larger range, which validates the claim that a
larger slope extraction range entails better robustness. It is worth noting that Toledo fails the lowest
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number of times among the slope-relying methods, which is comparable to some of the only-datasheet
counterparts (see also Table 5). The execution times recorded are slightly higher in the larger range
case, as expected, due to the higher number of samples to be processed. In fact, the conclusion of this
investigation is that a larger fitting range for the extraction of the SC slope handles better distorted I-V
curves but does not address the problem and may affect the accuracy.

Table 6. Performance of the methods that require the SC slope as input data.

Accuracy (RMSE) Robustness Complexity

Fitting Absolute (A) Normalized (%) Execution Time (s)

Method Range Mean Max Mean Max Irregularities Failures Total Core

Phang 0–10% 0.016 4.210 0.38 69.4 387,440 9952 13.1 1.3
0–50% 0.013 4.226 0.31 69.7 292,530 9613 15.1 1.4

Khan 0–10% 0.043 4.201 1.19 69.3 511,210 8242 13.2 1.4
0–50% 0.062 4.199 1.70 69.2 490,640 8207 14.4 1.4

Cubas1 0–10% 0.011 2.445 0.36 49.1 529,530 2445 8.2 1.1
0–50% 0.013 2.074 0.32 41.7 330,470 1591 9.3 1.2

Toledo 0–10% 0.007 1.119 0.20 97.7 451,220 392 14.0 2.5
0–50% 0.006 2.528 0.17 51.2 315,110 456 16.4 2.8

Louzazni 0–10% 0.122 1.449 3.43 27.0 64,194 30,612 12.5 1.1
0–50% 0.111 1.508 3.18 43.9 33,147 25,429 14.2 1.3

Bold font indicates the lowest value in the respective column.

5. Conclusions

This paper performs a rigorous review and assessment of the available non-iterative methods
to extract the single-diode PV model parameters. A total of 17 methods are reviewed, implemented,
and compared on a dataset of about 1 million I-V curves of six different PV technologies. Some of the
main conclusion are:

• Although the simple single-diode model is not the best option for thin-film technologies and
low-irradiance measurements, some of the methods perform universally quite decently

• The non-iterative methods are one order of magnitude less accurate than the state-of-the-art
numerical counterparts, but require less input data and are much more computationally efficient

• Toledo exhibits the best average accuracy in all PV technologies, whereas the highest worst-case
accuracy is brought by a different method in each module type

• Several methods yield negative parameter values (and complex in Hejri) in almost half of the
scenarios; this may be acceptable for some applications

• The fewer irregularities are found in Saloux, Cannizzaro, and Batzelis
• Some methods suffer from execution failures quite often, mainly in the HIT and CIGS technologies
• Successful execution is always guaranteed by Accarino, Batzelis, and Senturk
• A major reason for failure is the SC slope extraction due to distorted I-V curve
• A large fitting range for the slope extraction improves slightly the robustness of the slope-relying

methods, but has an unpredictable impact on the accuracy
• The calculation times are in the range of microseconds per curve, the higher times observed in

the methods that perform calculations on the I-V curve measurements, mainly slope extraction;
if this overhead is excluded, the execution time of most methods is quite similar

• The methods that rely only on datasheet information provide the best universal performance in
all aspects apart from the average accuracy

• The Lambert W function is related to excellent performance (Accarino, Cubas3,
Cannizzaro and Batzelis)

To facilitate selection of the most appropriate method for universal application to all PV
technologies, Table 7 below shows the best candidates according to six metrics and accounting for
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different constraints. Toledo should be selected if focusing on average accuracy and there is access to
additional information apart from the datasheet, otherwise the Cannizaro method is more appropriate.
When irregular parameters are acceptable to some extent (less than 0.1% of the cases), Cannizzaro yields
the best accuracy in terms of both mean and max errors. However, if the execution failures are not
acceptable, the Batzelis alternative should be selected instead. Finally, Saloux exhibits always the
fewest parameter irregularities and the least execution time, but at the cost of moderate accuracy.

Table 7. Methods with the best universal performance regarding constraints.

Metric Constraints

None Only-Datasheet <0.1% Irregularities No Failures

Mean absolute RMSE Toledo Cannizzaro Cannizzaro Batzelis
Max absolute RMSE Cannizzaro, Cubas3 Cannizzaro, Cubas3 Cannizzaro Batzelis
Mean normalized RMSE Toledo Cannizzaro Cannizzaro Saloux
Max normalized RMSE Cannizzaro Cannizzaro Cannizzaro Batzelis
Irregularities Saloux Saloux Saloux Saloux
Total time Saloux Saloux Saloux Saloux
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Appendix A. Computation of the Lambert W Function

The Lambert W function W{x} is the inverse of the function wew, i.e., the root of the equation
wew = x (e.g., wew = 2↔ w = W{2} = 0.8526). In general, this relation has several branches in the
complex plane, thus not being a function in the conventional sense. However, if the argument x takes
real values, then W{x} has two real-valued branches: the principal branch W0{x} defined for w ≥ −1
and the lower branch W−1{x} for w ≤ −1 [65].

Since the Lambert W function cannot be expressed in terms of other elementary functions, these
branches must be calculated either numerically or through approximation formulae. The built-in
MATLAB function lambertw corresponds to the first approach; one can write lambertw(0, x) for W0{x}
or lambertw(−1, x) for W−1{x} to achieve machine accuracy but at an increased computational cost.
Alternatively, series expansions are available in the literature, which are applicable only to specific
ranges and exhibit some approximation error but are faster and simpler than the numerical approach.

An approximation formula for the principal branch that is applicable to all real positive values is
given in [66], which is suitable for evaluation of (2) and (3). However, for the parameter extraction
methods presented in Section 3, an even simpler formula may be used [25]:

W0{x} = ln x
[

1− ln (ln x)
ln x + 1

]
. (A1)

This expression is quite accurate for the argument range of Accarino’s (29) and Batzelis’s (67),
thus it is employed here in the implementation of these methods. It should not be used, however,
for the evaluation of the PV Equations (2) or (3), as it is not applicable to small argument values close
to zero.
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For the lower branch, [22] adopts an expression proposed in [67]:

W−1{x} = −1− σ− 2
M1

1− 1

1 + M1
√

σ/2
1+M2σ exp(M3

√
σ)

 , (A2)

where σ = −1− ln(−x), M1 = 0.3361, M2 = −0.0042 and M3 = −0.0201. This equation is used in
Cannizzaro’s (54) and Cubas3’s (44) implementation.

Appendix B. Extraction of the Experimental Resistances (Slopes at SC and OC)

Several parameter extraction methods require as input data the experimental resistances Rsho
and Rso, or equivalently the slope of the I-V curve at SC and OC (see (9) in Section 2) [14,18,19,23,24].
Since this information is not available in the PV module datasheet, it can be only extracted through
a measured I-V curve. Essentially, we need to evaluate the slope of the tangent lines at SC and OC
shown in Figure 2 in Section 2.

This process heavily depends on how the I-V curve is measured, and the technique used to
identify the slope. Usually the I-V characteristic is recorded to several tens up to a few hundreds of
samples, but this is not standard and depends on the measurement equipment. For the NREL dataset
examined in this paper, most curves consist of 180–200 samples. Theoretically, taking the discrete
derivative of the two closest samples at the particular point of interest, e.g., SC, should suffice for
extracting the slope. However, in practice the I-V samples contain measurement noise, they are not
that close to each other (differing by 1 V or more at SC), and the curve sometimes features distortions
for various reasons, resulting quite often in erroneous slope approximation with this simple approach.

It is generally considered preferable to use a wider part of the characteristic to extract the slope,
here referring to as fitting range, such as from 0 to 10%, 20% or even 50% of Voc for the SC slope. One can
either perform curve-fitting on all the samples included in this range or select two specific points to
take the discrete derivative (e.g., SC and MPP). The first approach is adopted in this paper, as it is more
robust under any type of I-V curve distortions; this is linear least squares minimization that involves
explicit and computationally efficient formulae (in contrast to the general non-linear least squares that
is solved iteratively) [68]:

dV
dI

=
S00S20 − S2

10
S00S11 − S10S01

, (A3)

where the auxiliary terms Sxy = ∑i Vx
i Iy

i correspond to sums of sample voltages and currents. For the
SC slope, one has to evaluate (A3) using the samples close to SC included in the respective fitting
range, e.g., 0 ≤ Vi ≤ 0.1Voc, whereas for the OC slope the samples close to OC, e.g., 0 ≤ Ii ≤ 0.1Isc.
Indicatively, theses ranges include ∼15-20 and ∼5 samples respectively for the NREL I-V curves.
This approach is adopted in this paper for all methods that require the SC/OC slopes as input
data [14,18,19,23,24], while the formulation of (A3) makes it suitable for embedded applications to
microcontrollers. A sensitivity analysis on the fitting range of the SC slope is given in Section 4.3.
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