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Abstract: The characterization of a spectrum splitter of both hot and cold mirror, type TechSpec
AOI 50.0, using a 50-Watt halogen bulb light has been done. Both the bulb spectrum, prior to and
after spectrum splitting, are described in this study to see the degradation of radiation that occurs
because partial energy is absorbed by the splitter. This characterization plays an important role in
determining the best position of a photovoltaic (PV) and thermoelectric generator (TEG) in a PV-TEG
system. The light spectrum was recorded using mini USB spectrometer hardware and Spectragryph
version 1.2.8 software as optical spectroscopic software that displays light records coming with
wavelength (nm) on the x-axis and light spectrum intensity in arbitrary units (a.u.) on the y-axis.
The measurement results show that the light intensity in the visible light region (300–750) nm is more
dominant than the intensity in infrared light (>750 nm), so that the PV placement is preferred over
TEG. Furthermore, with a cold mirror, PV is more suitable if placed in a position to receive reflected
light, while using a hot mirror is more suitable in the position transmitted light. For TEG, it is placed
in a position opposite to PV. As a result, the maximum intensity of the PV light spectrum with cold
mirrors is 46.52 a.u at a wavelength of 479.6 nm, while with hot mirrors it is 42.07 a.u with a 457.6 nm
wavelength. It can be concluded that the value of the light intensity with a cold mirror is better than
that with a hot mirror on the visible light (Vis) spectrum, and the current and voltage are equivalent
to the results of the radiation energy area. It was proven that the maximum total output of a hybrid
PV-TEG system with Cold Mirror is greater than that with Hot Mirror (100.53 > 68.77) × 10−3 µW.
Based on the result of this study, it is recommended that further research can be conducted to increase
radiation energy and output power in TEG.
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1. Introduction

Solar cells are technological products that can convert solar energy into electrical energy. However,
not all energy that arrives can be converted into electrical energy, some of it converted into thermal
energy. Solar energy that can be used for solar cells is the energy of photons in the spectrum with a
range of wavelengths of 400–760 nm or in the category of visible light [1]. Spectra that are smaller
than 400 nm and greater than 760 nm, or those outside the band gap of solar cells, will only change to
thermal energy and in the long term will reduce the efficiency of solar cells [2,3]. The division of the
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sunlight spectrum based on wavelength has been carefully observed by Hamdy and Osborn [4], who
categorize visible light in the range 400–800 nm with an electron volt value between 1.5 and 3.1 eV and
infrared light in the range greater than 800 nm.

Furthermore, infrared light with a wavelength >760 nm that can be changed into thermal energy is
more suitable for the needs of a thermoelectric generator (TEG) [1,5,6], which is a device for converting
thermal energy into electrical energy. The mode of operation of this TEG module is that the heat on one
side of the module will cause a temperature difference on both sides of the module so as to generate
electricity voltage, which is known as the Seebeck effect.

Tritt [7] and Tritt et al. [8] explained the phenomena, properties, and material of thermoelectric
generators, while the basic idea of combining and arranging in cascades solar cells and thermoelectric
generators was introduced by Kraemer et al. [5], Van Sark [9], and Kraemer et al. [10]. Another
interesting study on hybrid photovoltaic (PV)-TEG simulation was carried out by Li et al. [11], who
analyzed the effect of the temperature differences on cold sides, the cross-sectional areas, as well as the
distances between PV and TEG. On the other side, the parameter of the research was the concentration
ratio of the radiation source, which was also analyzed as a parameter for the effectiveness in the overall
hybrid PV-TEG.

Furthermore, several papers discuss PV-TEG hybrids with the splitting of the wavelength
spectrum. Ju et al. [6] developed a numerical model on the incorporation of PV-TEG with a beam
spectrum divider as a splitter of the PV and TEG spectrum regions at the standard AM1.5D radiation.
The visible light spectrum was used for PV with a wavelength range of around 400–900 nm, while
for TEG it was above 900 to 1700 nm. Elsarrag et al. [12] designed a simulation and test of PV-TEG
incorporation in a laboratory using a cold mirror as an ultraviolet–visible light splitter for PV with
infrared for TEG. In the simulation, Elsarrag et al. [12] varied the radiation with 0.2, 0.5, 0.8, and 1.1 Suns.
Meanwhile, the spectrum splitter with the hot mirror was introduced by Mizoshiri et al. [13], which
combined a thermoelectric module. with a dimension of 18 × 18 mm, from a homemade Bi2Te2.7 Se0.3

thin film material, with a mini solar cell module. A cylindrical lens was placed in the direction of the
hot mirror’s reflection towards TEG to focus on the Near-infrared (Nir) light spectrum. Karp et al. [14]
in the simulation also used spectrum splitters, but for applications in multi-junction solar cells without
thermoelectric. There were three types of solar cells used in one junction, namely GaInP, GainAs,
and Ge.

Several of the studies mentioned above were generally focused on the numerical studies, which
only divided the light based on their wavelength into visible light (400–760 nm) and infrared (>760 nm).
Although Elsarrag et al. [12] and others [13,14] had already conducted the experimental study, they
still did not expose and analyze the form of the light spectrum. Additionally, Mizoshiri et al. [13] were
only focusing on power output of PV-TEG hybrid using hot mirror, and Karp et al. [14] described PV
only. Therefore, this study will focus on the characterization of two types of light splitters that display
the results of measuring the light spectrum prior to and after passing through the spectrum splitters.
The results of measuring the spectrum of light after passing through the splitter are the basis for the
positioning of both PV and TEG modules.

In this PV-TEG hybrid, spectrum splitters were chosen from the type of Hot Mirror and Cold
Mirror with 50 × 50 mm dimensions produced by Edmund Optic [15] with artificial light radiation
sources from 50 Watt halogen bulbs. This bulb power was chosen as the initial step of investigation and
adjusted to the parameters and limitations of the supporting components in terms of the temperature
of the radiation that could be absorbed by the Fresnel lens (Fl), the mirror, and the temperature of
the PV surface. The light spectrum measurements were obtained using a combination of mini USB
spectrometer hardware and Spectragryph 1.2.8 application software, which displays wavelengths and
light intensities in graphical form.
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2. Materials and Methods

In this study, the halogen bulb was placed at the top position forming a 0◦, in which the incident
halogen light was directly overhead on the zenith angle in degrees of zenith = 0◦ on a Fresnel lens (FL).
This bulb illuminates the FL, which was right below the lamp and served to focus the beam towards
the hot/cold mirror. Some of the light radiation that passed through FL and arrived at the mirror was
transmitted while others were reflected.

The placement of the PV and TEG module was adjusted with the measurement results of
the halogen light spectrum (reflected/transmitted by the mirror). PV is suitable for receiving
high-intensity spectra at low wavelengths while TEG is suitable for receiving high-intensity spectra at
high wavelengths. The hybrid is shown in Figure 1.
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Figure 1. The schematic of a potential photovoltaic-thermoelectric generator (PV-TEG) hybrid.

The working principle of combining PV-TEG above was explained by Skjolstrup et al. [16] who
used a beam splitter on the sloping position as a light spectrum separator, which transmits to TEG
and reflects PV. However, they did not explain the reason for the placement of the PV module in
the direction of the beam splitter and the TEG direction of light transmission, whereas Skjolstrup
et al. [16] referred to Ju et al. [6] who placed the PV module in the direction of transmission and TEG
direction of light reflection with the spectral beam splitter. Therefore, in this study, two light spectrum
splitters were used (hot and cold mirrors, type TechSpec AOI 50.0 mm2) alternately to see each of its
characteristics of both transmitted and reflected light. Cold and Hot Mirror slope angles were 45o [15].
Slope angles (x) < 45◦ and (x) > 45◦ are not optimal to produce splitting of a light spectrum with a
beam splitter [16]. The light spectrum, which is transmitted or reflected by the mirror, was measured
using Spectragryph 1.2.8 application software [17].

Furthermore, two pieces of solar cells from polycrystalline silicone material were used with
specification 0.14 W, 0.5 Vmax, 0.28 Imax, and dimensions 52 × 19 mm in series; therefore, the dimensions
were 52 × 38 mm in total. The dimensions of the solar cell were adjusted to the dimensions of the
hot mirror and cold mirror used, which was 50 × 50 mm2. For TEG, ceramic material (Bismuth
Telluride, SP1848-27145 material) was used with dimensions 40 × 40 × 3.4 mm and operating
temperatures of −40 to 150 ◦C. Meanwhile, to focus the halogen radiation light, a Fresnel lens from
polymethylmethacrylate (PMMA) was used with dimensions of 112 × 73 mm and a focal length of
110 mm; the lens was 2 mm thick with 92% light transmission.

As for the experimental set-up as illustrated in Figure 2, it was conducted using a 6-GW Instek
GDM-8135 digital multimeter model capable of measuring electric current and PV voltage-TEG up
to a micrometer unit. Measurements of the halogen light spectrum reflected or transmitted by either
hot mirror or cold mirror were carried out using a Mini USB spectrometer and with Spectragryph
version 1.2.8 as optical spectroscopic software designed by Menges [17].
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Meanwhile, the specifications of the multimeter gauge as shown in Figure 2 above can be seen
in Table 1 with a unit of current uncertainty (Ucurrent = 0.414 µA) at standard deviation (SD) 3.127.
For power output, the SD = 6.182 with Upower = 0.819 × 10−3 µW. This calculation refers to Chandel [18].
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Table 1. Specifications of GW Instek GDM-8135 Digital Multimeter.

AC Voltage DC Voltage

Range 200 mV, 2 V, 20 V, 200 V, 1000 V 5 ranges 200 µA, 2 mA, 20 mA, 200 mA, 2000 mA, 20 A 6 ranges

Accuracy

40 Hz ~ 1 kHz: +(0.5% rdg + 1 digit)
1 kHz ~ 10 kHz: +(1% rdg + 1 digit)
10 kHz ~ 20 kHz: +(2% rdg + 1 digit)
20 kHz ~ 40 kHz: +(5% rdg + 1 digit)

200 µA ~ 200 mA 4 ranges 40 Hz ~ 1 kHz: +(0.5% rdg + 1 digit)
1 kHz ~ 10 kHz: +(1% rdg + 1 digit)
10 kHz ~ 20 kHz: +(2% rdg + 1 digit)
2000 mA ~ 20 A 2 ranges 40Hz ~ 2kHz: +(1% rdg + 2 digits)

3. Results and Discussion

3.1. Light Spectrum of a Halogen Bulb Through Fresnel Lens

In Figure 3 the halogen light spectrums indicate that most of them are at wavelengths between
340 and 700 nm, while the above 700 nm decreased slowly. The light spectrum that passed through the
Fresnel lens was lower in intensity than before, except that at the wavelength range of 340–486.67 nm,
the intensity of both of them almost coincided at approximately 88 arbitrary unit (a.u.). However,
above the visible light limit (>700 nm), the radiation spectrum difference prior to and after the FL was
getting bigger. In general, the percentage of light transmitted was slightly lower than FL specifications
in the range of 300–700 nm, which was approximately 79% < 92% (FL specification). This means that
there was lost about 13% of the spectrum of light radiation not absorbed by FL and was transmitted to
the mirror. Possibly, this occurred because not all of the light spectrums of the halogen bulb radiation
were perpendicular to the FL, or it could be the quality of the lens material that needed to be replaced
from PMMA to acrylic material. This is because polymethylmethacrylate (PMMA) has disadvantages
in terms of thermal expansion, where the lens center may shift for a long-term use [19].
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Figure 3. The halogen bulb and before the mirror (after FL) spectrums (a.u. is arbitrary units).

3.2. The Light Spectrum that is Transmitted and Reflected

3.2.1. Hot Mirror

A light spectrum characteristic transmitted by the hot mirror (HM) is shown in Figure 4. It can
be seen that the intensity of light was much greater at the wavelength limit of 300–749.62 nm than
between 749.62 and 1200 nm. The intensity of light increased sharply from a wavelength of 300 nm to
its peak at a wavelength of 457.6 nm with an intensity value of 42.07 a.u. After that, there were several
stages of decreasing intensity until it reached the value of 13.36 a.u. at a wavelength of 749.62 nm.
The wavelength of light between 300–751 nm can be included as the range of visible light (Vis), which
is classified in the band gap of photon light [20,21]. Furthermore, at wavelengths above 751 nm, which
are near-infrared (Nir), the light intensity was low and could be ignored. This indicates that the hot
mirror worked well in the visible light range.
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Figure 4. The halogen spectrum transmitted by hot mirror (HM).

Meanwhile, the hot mirror reflected halogen light illustrated a different pattern, as shown in
Figure 5, where the area of the intensity curve was relatively smaller. The larger area of the curve
indicated greater radiation energy [22]. At visible light intervals (300–750) nm, a quite large intensity
only occurred around the 400 nm wavelength, or precisely at 377 nm continuously declining to a
wavelength of 749.61 nm. Furthermore, for wavelengths above 750 nm, the intensity that occurred was
very small. At wavelengths above 750 nm, the intensity that occurred was also relatively low, as in
transmitted light. In short, even though the reflected spectrum of light was much smaller than the
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transmitted one, the intensity was still relatively high in the range of 300–500 nm, which is still within
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Figure 5. The halogen light spectrum reflected by hot mirror.

3.2.2. Cold Mirror

The characteristics of the light transmission spectrum from the cold mirror (CM), as in Figure 6,
showed a spectrum pattern that was much different from the hot mirror (Figure 3). Light energy in the
visible light region appeared much smaller even though it had high enough peak intensity (44.79 a.u.
at a wavelength of 304.5 nm). Furthermore, at wavelengths above 600 nm, it was relatively very small.
This means that at the wavelength limit of 300 to 500 nm, the radiation spectrum could be utilized.
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Figure 6. The halogen light spectrum transmitted by cold mirror (CM).

Furthermore, from the characteristics of the reflected light spectrum of the cold mirror, it appears
that relatively larger radiation energy occurred in the visible light region where the peak intensity was
46.52 a.u. at a wavelength of 479.6 nm. After that, the intensity decreased to the Vis boundary (at the
value 749.62 nm, 13.94 a.u.). The intensity at the wavelength limit of 749.62–1200 nm also decreased
dramatically; thus, it could be ignored as an energy source (Figure 7).
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Figure 7. The halogen light spectrum reflected by the cold mirror.

3.3. The Light Spectrum after Passing the Fresnel Lens and Hot Mirror

Figure 8 shows a light spectrum that was traversing the Fresnel lens and then transmitted to
the PV and reflected to the TEG by the hot mirror. The reduction of intensity was more than 50%,
either which was transmitted to the PV or that was reflected to the TEG. As for the example at 435 nm
wavelength, the intensity after passing the Fresnel lens showed a number accounting for 86.703 a.u,
while light intensity that was transmitted and reflected by HM, decreased, respectively, to 39.35 a.u
(same amount on PV and TEG). This change occurred due to the absorption of radiation energy by
the light spectrum splitter HM, which eventually affected the power generated by the PV and TEG
modules. The other potential cause was the illumination of light radiation that was not 100% facing
the HM surface.
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Figure 8. The halogen light spectrum reflected and transmitted by hot mirror.

3.4. The Light Spectrum after Passing the Fresnel Lens and Cold Mirror

Similar to the trend that occurred on the HM, the light spectrum on the CM showed a declining
intensity as well (as seen in Figure 9). This can be explained also by the example of the wavelength
of 460 nm. After passing the Fresnel lens, the light spectrum intensity was 87.374 a.u. In addition,
the intensity transmitted to the TEG and reflected to the PV was 12.293 and 46.145 a.u., respectively.
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Figure 9. The halogen light spectrum reflected and transmitted by cold mirror.

Comparing the radiation energy transmitted by CM to PV and reflected by HM to PV, both
energies were relatively the same. These results were indicated by a comparatively same curve area.
Otherwise, this did not occur on the TEG module, where the radiation energy reflected by the HM was
far greater than that transmitted by the CM.

The degradation of the halogen light spectrum in every measurement position on Figure 3 to
Figure 9 is briefly shown in Table 2 below.

Table 2. Halogen light spectrums of different positions.

Light Spectrums Optimum Value

Wavelength (nm) Intensity (a.u)

Halogen bulb 688.33 93.74
Halogen bulb + Fresnel lens 433.1 86.81
Transmitted hot mirror 436.67 41.06
Reflected hot mirror 365 45.60
Transmitted cold mirror 301.67 44.59
Reflected cold mirror 466.67 45.98

It can be seen from the trends in Table 2 that every halogen light spectrum position shows a
declination of intensity. It might have occurred due to the specification of the Fresnel lens, which was
only able to transmit light up to 92%, as was explained in Section 2. The ability of the hot mirror and
cold mirror to transmit and reflect the light spectrum was also a parameter that affected radiation
intensity degradation.

3.5. Position of PV and TEG Modules

The characteristics of the light spectrum that was reflected or transmitted by a light spectrum
separator with the hot mirror and cold mirror of the TechSpec AOI 50.0 mm2 type can be used as a
placement indication for PV or TEG module positions.

From the characteristics of the light spectrum for the hot mirror, as seen in Figures 4 and 5,
it appears that the greatest light energy occurred in the visible light region of transmitted light as
indicated by the area of the larger intensity curve. Based on these results, the best position of the PV
module was under the hot mirror, while the TEG was placed to receive reflected light from the hot
mirror (see Figure 8).

While using the cold mirror shown in Figures 5 and 6, it can be seen that the visible light energy
(Vis) was reflected much more than it was transmitted, so that the proper placement of the PV module
was in the direction of halogen light reflection, by placing TEG under the cold mirror (Figure 10).
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Figure 10. The scheme of PV-TEG hybrid testing with hot and cold mirrors.

From Figure 8 it can also be explained that hypothetically the spectrum of light received by PV
was in the visible light region, which is in accordance with the theory of photon energy. While leading
to TEG, the resulting spectrum has not been optimally useful for TEG module. Although not yet
optimal, this energy was still useful as in the simulation of Kraemer et al. [10] in hybrid PV-TEG using
a spectrum splitter, which proves that the wavelength spectrum below 300 nm (ultraviolet) is still
useful as energy for TEG even though it only contributes about 1.35% of the total incident radiation
energy. Ideally, the light spectrum that is needed by TEG should be above 750 nm [7–9].

Furthermore, Figure 11 shows the trend of power and current in the voltage variable as
described below.
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Figure 11. Characteristics of power-voltage (P-V) and current-voltage (I-V) in PV; (a) transmitted HM,
(b) reflected CM.

3.6. Typical P-V and I-V Characteristics of PV-TEG the Hybrid Scheme

3.6.1. PV

Figure 11 presents the characteristics of power-voltage (P-V) and current-voltage (I-V) of the PV,
which was transmitted by the HM and reflected by the CM when the temperature differences were
0.3–1 ◦C between the upper and lower surfaces of PV. The maximum upper surface temperature of the
PV using HM was 38.5 ◦C, while by the CM, the upper surface temperature PV was at 41.3 ◦C and
39.3 ◦C. This PV operating temperature was still below the maximum operating temperature range
(50 ◦C) [23,24]. Meanwhile, the power generated by the PV from the reflected light by the CM was
almost double compared to that transmitted by the HM at a similar voltage (0.75 mV). This is in line
with the magnitude of the light radiation spectrum intensity curve in Figure 4 compared to Figure 7.
The characteristics of increasing electrical power in the hybrid PV-TEG also illustrated the importance
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of designing temperature controls on PV to maintain a maximum power point for the whole time of
the given operating conditions.

3.6.2. TEG

The I-V characteristics of TEG and PV are different (comparing Figures 11 and 12) where as
Figure 11 shows, the TEG electric current moderately decreased with increasing voltage, while as
seen in Figure 9, the current was constant before sloping down. Likewise, the power increased
to its maximum point, and after that decreased to almost 0 at the maximum voltage. In TEG the
reflected light radiation of the CM showed a better increase in power than the transmitted power by
the HM. The maximum power in TEG that was generated by the radiation spectrum using CM was
39.9 × 10−3 µW while using the HM was 24.4 × 10−3 µW. In other words, power by using the CM was
39% greater than that using the HM.

The total power at the peak point of the PV-TEG hybrid by using the HM was equal to
68.77 × 10−3 µW, while by CM it reached 100.53 × 10−3 µW. This means that the power generated
using the CM as spectrum splitter is approximately 40% better than the HM.
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Figure 12. Characteristics of P-V and I-V in TEG; (a) reflected HM, (b) transmitted CM.

It is shown in Figure 12 that the power produced by TEG had different characteristics from
the power produced by PV in Figure 11. The output power of TEG formed a raised curve with the
maximum power point in the middle, while the current continued to decrease with increasing voltage.
In contrast, in PV, the power rose as the voltage increased, while the current remained constant. Then,
until a certain point, both current and power decreased. It could be interpreted that the spectrum of
radiation in the visible light even in a relatively small intensity can produce better electrical power for
PV, but not yet for TEG. For additional information, light spectrum generated was focusing on the PV
polycrystalline material and TEG Bismuth Telluride SP1848-27145 material. Further research is also
required for other PV and TEG, since the spectrum emitted by the halogen light to PV was only tested
on polycrystalline silicon material, and has not been tested on other types of PV technologies, not on
all TEG types.

Characteristics of changes on PV-TEG hybrid power output by using hot and cold mirror spectrum
splitters are shown on Table 3.
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Table 3. Characteristics of PV-TEG in P = f(V) using spectrum splitters Hot and Cold Mirror.

Spectrum Splitters Position Voltage (mV) Power (× 10−3 µW)

Hot Mirror
Transmitted to PV 0.76 44.38

Reflected to TEG 6.70 24.39

Cold Mirror
Reflected to PV 0.75 71.05

Transmitted to TEG 6.58 29.48

4. Conclusions

In this study, a new method for determining the best position of PV and TEG modules is based on
the characteristics of the light spectrum prior to and after the beam splitter using a halogen bulb as a
sample. Splitting of the light spectrum was done using a hot mirror and cold mirror of the TechSpec
AOI 50.0 mm2 type. In maximum power conditions, the results showed that the total power of the
PV–TEG hybrid was 68.77 × 10−3 µW by using the HM, while it was 100.53 ×10−3 µW by using the
CM, with PV and TEG area 0.001872 m2 and 0.0016 m2, respectively. It can be concluded that using
the Cold Mirror is 40% approximetly better than the Hot Mirror as a spectrum splitter. As for PV and
TEG, the output energy of PV was greater than TEG. It also showed that although the intensity of light
radiation was low, it was able to produce photons needed by PV where the radiation spectrum was
in the visible light spectrum area (400–760) nm; otherwise, the spectrum that had the potential to be
thermal required by TEG was still low. In other words, for further research, it is highly recommended
to conduct research on improving light spectrum that headed to TEG, enlarging the dimensions of
the light splitter, and using acrylic Fresnel lens material, which is more resistant to high temperatures
than PMMA.

Moreover, the current research was limited by only using polycrystalline silicon (PV) and bismuth
telluride (TEG) materials; therefore, further research is also required to enrich the data by using other
PV technologies and TEG materials.
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Nomenclature

I current (µA)
Imax maximum current (µA)
P power (µW)
Ppower power uncertainty (µW)
V voltage (mV)
Vmax voltage maximum (mV)
Ucurrent current uncertainty (µA)
x slope of angle (o)
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Abbreviations

a.u arbitrary unit
CM cold mirror
HM hot mirror
Fl Fresnel lens
Nir near-infrared
nm nanometer
PMMA polymethylmethacrylate
rdg reading of AC voltage in multimeter
PV photovoltaic
SD standard deviation
TEG thermoelectric generator
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