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Abstract: Wind speed prediction is the key to wind power prediction, which is very important to
guarantee the security and stability of the power system. Due to dramatic changes in wind speed,
it needs high-frequency sampling to describe the wind. A large number of samples are generated
and affect modeling time and accuracy. Therefore, two novel active learning methods with sample
selection are proposed for short-term wind speed prediction. The main objective of active learning is
to minimize the number of training samples and ensure the prediction accuracy. In order to verify
the validity of the proposed methods, the results of support vector regression (SVR) and artificial
neural network (ANN) models with different training sets are compared. The experimental data are
from a wind farm in Jiangsu Province. The simulation results show that the two novel active learning
methods can effectively select typical samples. While reducing the number of training samples,
the prediction performance remains almost the same or slightly improved.

Keywords: short-term wind speed prediction; active learning; support vector regression; artificial
neural network

1. Introduction

Energy is the basic industry of the national economy, which plays an important role in
guaranteeing the sustained development of the economy and the improvement of people’s lives.
The shortage of fossil energy and its pollution has become the bottleneck of sustainable social and
economic development. Sustainability transitions are necessary and long-term processes, which shift
socio-technical systems to more sustainable modes of production and consumption. Better transitions
can be achieved by adopting effective support policies of renewable energy and making concrete
efforts to improve energy efficiency [1,2].

Wind energy is an important renewable energy source with the advantages of large reserves
and wide distribution. Small-scale wind turbines are easy to transport and install. They are suitable
for remote areas, mountainous areas, and islands [3,4]. As the cleanest source of renewable energy,
wind power is rapidly becoming a potential and viable alternative energy source to burning fossil fuels.
However, wind power generation has a high volatility and randomness. It may experience voltage
fluctuation, even off-grid with large-scale wind power grid integration [5]. An accurate wind power
prediction is necessary. Short-term wind speed prediction is the key to the safety and scheduling
optimization of power systems [6].

In the prior literature, wind speed prediction methods are often divided into three categories
based on different mechanisms: physical methods [7], time series methods [8], and machine learning
methods [9,10]. The estimation of the wind speed can be considered as a nonlinear regression problem;
therefore, machine learning methods are frequently adopted for short-term wind speed prediction
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with accurate results [11,12]. In [13], three forecasting techniques were compared: autoregressive
moving average with generalized autoregressive conditional heteroskedasticity (ARMA-GARCH),
artificial neural network (ANN), and support vector regression (SVR). The results showed that the
SVR and ANN, with superior nonlinear fitting, obtained better forecasting accuracy. In [14], ANN was
used to predict wind speed. The article used particle swarm optimization to select input parameters
to achieve desired results. For machine learning methods, parameter optimization is a problem that
needs to be studied. In [15], SVR combined with feature selection was used for wind speed prediction.
It validated that SVR was suitable for short-term wind prediction, and that the performance of an
SVR model could be improved by adding relevant input features. Machine learning is a data-driven
decision or prediction through establishing a model from sample inputs. The forecasting performance
also depends on the quantity and the quality of sample inputs used to train the regression and
classification model.

Active learning, as a special case of a semi-supervised machine learning method, is used to
deal with sample selection. The added new sample is to compensate for deficiencies in existing
samples. It selectively queries some useful information to obtain the desired outputs at new data
points. In statistics, it is also called optimal experimental design [16]. The active learning methods
have often been successfully applied to classification problems [17,18]. In the work of Douak et al. [19],
the active learning method was firstly used for wind speed prediction. The results showed that due to
the ability to filter out the training samples, active learning could outperform full samples in some
cases. However, the active learning method used in the article was based on the sample information
and no model information was added. Based on this, two novel active learning algorithms coupled
with model information for short-term wind speed forecasting models are proposed in this work.
The motivation of this paper is to use the active learning method to predict short-term wind speed by
optimizing the training sample sets, which can reduce the complexity of the model and ensure model
accuracy. The main contents of the present work are to: (1) select the training samples by using two
novel active learning methods, and (2) develop the prediction model for wind speed using ANN and
SVR and compare the two active learning methods.

The remainder of this paper is organized as follows. Section 2 presents two novel active learning
methods for forecasting wind speed. The experimental data and forecasting indexes are presented in
Section 3. The results and performance analysis are discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Active Learning

The samples play an active role in the active learning process. The active learning method
usually restricts the input area, then aims at sampling in the less redundant information input area.
The samples that are most conducive to improving the performance of the training model are selected.
The quality of training sets can be improved by active learning. The active learning mechanism is
generally realized by the “Query” approach [20–22]. Firstly, select the initial training sample sets,
then learn by some approach and add useful learning samples to the training sample sets. The training
sample sets are obtained through continuous learning and optimization.

2.1. Euclidean Distance and Error (EDE-AL)

The first active learning approach (EDE-AL) is proposed by inserting samples that are distant
from the current training samples, and removing samples by forecasting error. The Euclidean distances
Edl = {Edl,t} (t = 1, 2, . . . , n) between each sample xl (l = n + 1, n + 2, . . . , n + m) of the learning subset
Ui (i = 1, 2, . . . , k) and n different current training samples xt (t = 1, 2, . . . , n) are computed as follows:

Edl,t = ‖xl − xt‖. (1)
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After that, for each learning sample xl (l = n + 1, n + 2, . . . , n + m), the corresponding minimum
distance value is considered as the addition criterion:

fED(l) = −min{Edl}. (2)

However, a single distance criterion cannot reflect the validity of samples well. The forecasting
errors of the new additional samples are calculated and the samples with lower forecasting errors are
removed from the training set.

The strategy selects the samples with larger difference from the current training samples,
and avoids choosing samples that are not useful for the model. The flow chart of the Euclidean distance
combined with the forecasting error algorithm is shown in Figure 1 and summarized as follows:

Step (1) Define the initial training samples xt (t = 1, 2, . . . , n) and the learning subset Ui (i = 1, 2, . . . , k);
Step (2) Compute the Euclidean distances Edl = {Edl,t} (t = 1, 2, . . . , n) from the n different training
samples xt (t = 1, 2, . . . , n) for each sample xl (l = n + 1, n + 2, . . . , n + m) of the learning subset;
Step (3) Define the sample similarity as f ED(l) = −min{Edl};
Step (4) Label and insert the N most distant samples to the training set and update the
forecasting model;
Step (5) Calculate the forecasting errors of the new N training samples and remove samples with errors
less than the threshold ξ;
Step (6) Reestablish the model to predict the next learning subset until the iteration stops.
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2.2. Support Vector Regression (SVR-AL)

In machine learning, the SVR algorithm is a supervised learning model used for regression
analysis. The objective of SVR is to maximize the margin of separation and to minimize the
misclassification error [23]. The SVR defines a loss function that ignores errors, which are situated
within a certain distance of the true value. The function is often called ε-intensive loss function [24].
Figure 2 shows an example of a one-dimensional linear regression function with an ε-intensive band.

So, the SVR optimization problem [25] is as follows:

min
w,b

1
2
‖w‖2 + C∑ L (3)
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where w is weight vector, C is a constant, and L is loss function

L =

{
0, i f | f (xi)− yi| ≤ ε

| f (xi)− yi| − εotherwise
. (4)
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The above formula can be described by introducing slack variables ζi, ζi
∗, i = 1, . . . , n,

to measure the deviation of samples outside the ε-insensitive zone. Thus, SVR is formulated as
minimization of the following function

min
w,b,ζi ,ζi

∗
1
2‖w‖

2 + C
n
∑

i=1
(ζi + ζi

∗)

s.t. f (xi)− yi ≤ ε + ζi
∗

yi − f (xi) ≤ ε + ζi
ζi, ζi

∗ ≥ 0, i = 1, . . . , n

. (5)

Introducing Lagrange multipliers α, α∗, η, and η∗, the corresponding Lagrangian function can be
written as

Lagrangian = 1
2‖w‖

2 + C
n
∑

i=1
(ζi + ζi

∗)−
n
∑

i=1
(ηiζi + η∗i ζi

∗)

−
n
∑

i=1
αi(ε + ζi + yi − f (xi))−

n
∑

i=1
α∗i (ε + ζi

∗ − yi + f (xi))

s.t. αi, α∗i , ηi, η∗i ≥ 0

(6)

This in turn leads to the optimization problem

min
αi ,αi

∗
1
2

n
∑

i=1,j=1
(αi − αi

∗)(αj − αj
∗)(xi · xj) + ε

n
∑

i=1
(αi + αi

∗)−
n
∑

i=1
yi(αi − αi

∗)

s.t. 0 ≤ αi, α∗i ≤ C
n
∑

i=1
(αi − αi

∗) = 0

(7)

Introducing the kernel function, the above formula is written as

min
αi ,αi

∗

1
2

n

∑
i=1,j=1

(αi − αi
∗)(αj − αj

∗)K(xi, xj) + ε
n

∑
i=1

(αi + αi
∗)−

n

∑
i=1

yi(αi − αi
∗). (8)

Uncertainty sampling is the main strategy of active learning methods. Geometrically, the sample
errors outside ε-intensive bands have great uncertainty and are important to the final design of the
model. The proposed strategy selects the samples with uncertainty information. The flow chart of the
SVR-AL algorithm is shown in Figure 3 and summarized as follows:
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Step (1) Define the initial training samples xt (t = 1, 2, . . . , n) and the learning subset Ui (i = 1, 2, . . . , k);
Step (2) Establish an ε-SVR model by using training samples, and calculate the model error of each
sample xl (l = n + 1, n + 2, . . . , n + m) of the learning subset;
Step (3) Label and insert the samples with model errors outside the ε-intensive band into the training set;
Step (4) Update the training set and reestablish the ε-SVR model to predict the next learning subset
until the iteration stops.Energies 2018, 11, x FOR PEER REVIEW  5 of 11 
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3. Materials and Experiment

3.1. Wind Speed Data Sets

The wind speed data were collected from a wind farm in Jiangsu Province in China. The acquisition
equipment is a low-wind-speed wind turbine FD-77 with 1.5 MW rated power. The turbine is composed
of three blades with a diameter of 77 m and a sweep area of 4657 m2. The collected wind information
included real-time wind direction and speed, 5-min average wind speed, and standard deviation.

The 30-min average wind speed was calculated and used in the experiment from 1 June 2011 to
30 July 2011. There were 2729 groups of data. The first 2000 data were used as a training set and the
remaining 729 data were for testing. The typical samples were selected from the training set. Therefore,
the training set was divided into an initial training set and learning subsets. The first 100 data were
used for the initial training set and then each of 100 samples was a learning subset. The final training
set was used to train the models for short-term wind speed prediction, and the testing set was used to
compare the performance of the two active learning strategies. Figure 4 displays the wind speed time
series. Table 1 shows the descriptive statistics of different wind speed datasets.
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Table 1. Descriptive statistics of wind speed datasets (m/s).

Mean Standard Deviation Minimum Maximum

All 5.25 2.50 0.04 19.37
Training 5.14 2.58 0.04 19.37
Testing 5.54 2.17 0.59 11.41

3.2. Model Selection

Model selection selects a certain structural statistical model from a set of given data. If the input
dimension is too small, the input information is not enough and the prediction accuracy will be
reduced. If the input information is redundant, the complex prediction model will also reduce the
prediction accuracy [26]. The criterion function method is to determine the degree of approximation of
the original data based on the residual value. Bayesian information criterion (BIC) is a criterion for
model selection and the model with the lowest BIC is preferred. In this paper, the BIC function method
was used to determine the model input dimension. The autocorrelation function (ACF) and partial
autocorrelation function (PACF) were also used to identify the input dimension. The PACF is zero at
lag p + 1 and greater, so the appropriate lag is the one beyond which the partial autocorrelations are all
zero. According to the result of PACF and BIC criterion (Figure 5), the input dimension of the model
was 3.
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3.3. Prediction Models

The ANN and SVR were used to develop the prediction models for short-term wind speed.
The multilayer perceptron (MLP) is one of the most popular ANN algorithms [27]. In this study,
MLP was used with an input layer, a hidden layer, and an output layer. There were 3 input nodes,
6 hidden-layer nodes, and 1 output node. The transfer function on the hidden layer was a sigmoid
function and the training algorithm was Levenberg-Marquardt.

The SVR is a popular non-linear modeling tool. The SVR maps the input data into a high
dimensional feature space via a kernel [28]. In this study, a radial basis kernel was used for SVR,
and the gradient optimization method was used to determine two important parameters: the penalty
coefficient and the width of the RBF kernel function.

The models are evaluated synthetically using the following evaluation criteria. The main variables
in this paper are shown in the Table 2.
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(1) root mean square error (RMSE)

RMSE =

√√√√√ M
∑

t=1
(yt − ŷt)

2

M
(9)

(2) mean absolute error (MAE)

MAE =
1
M
×

M

∑
t=1
|yt − ŷt| (10)

(3) mean absolute percentage error (MAPE)

MAPE =
1
M
×

M

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣× 100% (11)

where yt and ŷt are the measured and predicted wind speed, respectively, at time t, and M is the
number of test data.

Table 2. The description of the main variables.

Variables Description

xt Training samples
xl Learning samples
N The inserted numbers of samples in EDE-AL
ξ The error threshold for removing samples in EDE-AL
ε The threshold of epsilon intensive band in SVR-AL
yt Measured wind speed
ŷt Predicted wind speed

4. Results and Discussion

In order to better verify the effectiveness of the two proposed active learning methods, the random
selection of a similar number of samples was used for comparison. The model was used for 1-step
ahead (30 min) and 4-step ahead (2 h) wind speed prediction. The prediction results combining
different models and different training sets are shown in Tables 3 and 4. From Tables 3 and 4, it can be
seen that the number of training samples were both reduced by half by using two proposed active
learning methods, and the performance was similar to the all training samples model. Comparing the
results of different models, the persistence model had the worst performance and the SVR model was
more suitable for wind speed prediction than the ANN model.

Table 3. 1-step ahead (30 min) prediction of short-term wind speed with different sample sets. ANN is
artificial neural network. SVR is support vector regression.

Model Sample Set RMSE (m/s) MAE (m/s) MAPE (%) Number

Persistence - 1.271 0.942 23.97 -

ANN

All 1.081 0.832 18.96 2000
Random 1.131 0.859 21.04 900
EDE-AL 1.082 0.831 18.93 680
SVR-AL 1.092 0.844 18.96 813

SVR

All 1.080 0.831 18.97 2000
Random 1.125 0.853 19.96 900
EDE-AL 1.083 0.830 18.73 680
SVR-AL 1.084 0.830 18.72 813
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Table 4. 4-step ahead (2 h) prediction of short-term wind speed with different sample sets.

Model Sample Set RMSE (m/s) MAE (m/s) MAPE (%) Number

Persistence - 1.876 1.448 39.49 -

ANN

All 1.578 1.214 28.74 2000
Random 1.620 1.229 29.91 1300
EDE-AL 1.584 1.215 28.71 1329
SVR-AL 1.583 1.214 28.73 1318

SVR

All 1.552 1.192 28.53 2000
Random 1.621 1.231 29.90 1300
EDE-AL 1.576 1.200 27.86 1329
SVR-AL 1.559 1.196 28.72 1318

Table 4 shows the results of the 1-step ahead (30 min) prediction; it can be seen that the RMSE
with all training samples was the best. This means that the model could be trained more adequately
with all training samples. However, the ANN model with the typical samples selected by EDE-AL
could obtain a similar RMSE and a relatively better MAPE and MAE. At the same time, the MAE and
MAPE by the SVR model with SVR-AL sample sets were lowest. The performances of the two active
learning methods were better than that of the similar number of random training samples. Compared
to the performance of all training sample set, the performances of two active learning methods were
similar or slightly worse. The numbers of training samples were reduced by about 60%. Two active
learning methods combined with different models had different performances. In conclusion, these two
methods significantly reduced the training samples and ensured model accuracy.

Table 4 shows the results of 4-step (2 h) ahead prediction. The RMSE, MAE, and MAPE were
poorer than 1-step ahead prediction. Compared to the all training samples, the numbers of training
samples by EDE-AL and SVR-AL were reduced by 34 percent. Meanwhile, the two active learning
methods outperformed the random method. The performance discrepancy between the two active
learning methods was not obvious.

Figures 6 and 7 show the 1-step ahead prediction results by two active learning methods combined
with SVR models for short-term wind speed.
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For EDE-AL, two parameters needed to be determined. The larger the N, the more samples were
labeled and added. The larger the ξ, the more samples were removed. When the forecasting errors of
samples were less than half of the RMSE of all training sample sets, we argued that the samples were
useless for the model. Therefore, ξ was chosen to be half of the RMSE of all training sample sets and
N was variable. From Figure 6, it can be seen that the changes of RMSE and MAPE were moderate.
When the number of training samples was 847, the MAPE was minimal and RMSE was relatively
large. Therefore, the point at 680 was selected with relatively small values of RMSE and MAPE at the
same time.

For SVR-AL, the number of additional samples gradually increases as ε becomes smaller. From
Figure 7, it can be seen that the RMSE gradually decreased as the number of samples increased.
However, the MAPE between 600–800 was significantly less than that of the all training sample set.
The samples outside the ε-insensitive zone generally fluctuated greatly. Due to the addition of these
samples, the marginal samples had better predictions. More intermediate samples were added as ε

became smaller. Therefore, the MAPE decreased first and then increased.
Figures 8 and 9 show the 4-step ahead prediction results by two active learning methods

combined with SVR models for short-term wind speed. Compared with 1-step ahead prediction
results, the performance of 4-step ahead prediction was poor and the trends of RMSE and MAPE
were consistent.
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Figure 8. 4-step ahead prediction results of the SVR model by EDE-AL with ξ = 0.79 and different
N values.
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5. Conclusions

Active learning was used to select samples for short-term wind speed prediction in this study.
Starting from the initial training set, the proposed method selected typical samples from a large number
of samples. Two novel active learning methods using model information to label and add samples were
proposed in this study. The ANN and SVR models combined with two novel active learning methods
were investigated for 1-step (30 min) and 4-step (2 h) ahead wind speed prediction. The results showed
that the EDE-AL and SVR-AL had better performance than the random approach. Compared with
all the training samples, the selected samples by the proposed methods were significantly reduced,
while ensuring model accuracy.
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Abbreviations

Abbreviations in this manuscript are summed up as follows:
ANN Artificial neural network
SVR Support vector regression
MLP Multilayer perceptron
EDE-AL Active learning approach by Euclidean distance and error
SVR-AL Active learning approach by support vector regression
BIC Bayesian information criterion
ACF Autocorrelation function
PACF Partial autocorrelation function
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
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