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Abstract: Switched inductor (SI) converters are popular in applications requiring a steeper conversion
ratio. However, these converters operate a twin inductor switching cell, which complicates the
small-signal modeling. This paper proposes an expeditious small-signal analysis method to model
the SI converters. The offered modeling approach is hinged on the analogy existing between the
SI converters and certain Tapped Inductor (TI) converters. It is suggested here that by virtue of
the analogy of the SI converters and TI converters the small-signal model of the SI converter is
identical to that of its ideal TI counterpart. Hence, the recently developed Tapped Inductor Switcher
(TIS) methodology can be applied to the modeling of the SI converters as well. As an example, the
small-signal model of the Switched Inductor Buck converter is obtained. Theoretical analysis was
confirmed by simulation and experimental results. In addition, several other SI converters and their
TI counterparts are identified.

Keywords: high order dc/dc converter; unified modeling cell; switched inductor; tapped inductor

1. Introduction

Renewable energy applications, such as solar and fuel cell-based energy generation systems
produce low DC voltage that has to be stepped up significantly to match the grid level. To meet the
challenge, a number of high gain converters were developed and reported in recent literature. Tapped
Inductor (TI) converters are a well-known class of converters and are quite popular for renewable
energy applications that use a coupled magnetic device with several but, in most cases, just two
windings [1–3] to attain higher gain. As compared to their uncoupled counterparts TI converters
can attain wider conversion ratio by a proper choice of the turn ratio and winding polarity. Yet, this
desirable feature comes at a price of pulsating currents and higher voltage stress. The switch voltage
stress in TI converters is further aggravated by the leakage inductance discharge. To lower the voltage
spike across the semiconductors as well as increase the efficiency of the power stage, the clamp and
snubber circuits have to be employed to capture the leakage energy [3–5]. Snubbers, however, usually
have a limited performance envelope, affect the converter’s conversion ratio, and complicate the
converter’s design.

An alternative solution to attaining a wider conversion ratio is using the switched inductor (SI)
and switched capacitor (SC) cells [6–8]. SI converters can achieve moderately wider conversion ratio
and may have an advantage over the TI converters with similar specifications. The key benefit of
the SI cells is that they are free from problems associated with the leakage inductance. Therefore, SI
converters exhibit lower voltage stress and may need no snubbers [9–11]. The increasing popularity
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of the SI converters can also be attributed to their simplicity, robustness, and modest cost. For these
reasons, SI converters became particularly popular in the field of alternative and renewable energy
power generation, such as PV applications [12–15].

As shown in Figure 1, switched inductor cells consist of two inductors and multiple diodes.
The large component count and switching action may bring complications to analysis and modeling.
State space averaging (SSA) [16] was one of the most popular modeling techniques for switching
converters, which can also be employed to analyze SI converters [15]. However, for more complicated
topologies, such as multiple SI cells [17], extended SI cells with switched capacitor [12], hybrid SI
cells [18], complicated and tedious formula derivations were required when using the SSA method.
An attempt to derive the equivalent circuit model of SI cell has been reported in [19], however it only
discussed the circuit model to the proposed topology. A unified equivalent circuit model of a hybrid
type SI cell was proposed in [20]. The method may cover a wide range of converters but cannot be
used for traditional SI cell converters.

Recently an equivalence in between SI Boost and TI Boost converters was suggested [21]. As
reported, under equivalence conditions the ideal SI Boost and its ideal equivalent TI Boost converter
are functionally identical as far as their terminal voltages and currents as well as conversion ratio
are concerned. The equivalence holds in both continuous and discontinuous modes. Moreover, the
equivalent converters have identical frequency responses. This implies that their dynamic models are
also identical.

While in [21] a step-up SI cell was examined, in this paper, with the aim to extend the method
further, the step-down SI cell is investigated. Here, the equivalence existing between a number of
additional SI converters and their candidate TI equivalent counterparts is revealed. The paper also
offers small signal modeling approach of SI converters that can be accomplished in two easy steps.
First, the problem SI converter is examined, and its equivalent TI topology is found. Then, taking the
advantage of the equivalence feature, the Tapped Inductor Switcher (TIS) model [22] is applied to the
equivalent TI topology. This yields the desired dynamic model of the SI converter.

This paper is organized as follows. Firstly, three basic types of SI cells are reviewed. Then the
equivalence conditions of SI Buck, SI Buck-Boost, and SI Boost with their Tapped Inductor counterpart
are presented. According to the proposed equivalence methodology, high order hybrid converters
with SI cells and their equivalent tapped-inductor converters are discussed in Section 6. Based on the
equivalence between SI converters and TI converters, the unified tapped inductor switcher modeling
method (TIS) is studied in Section 7. As an application example, the small-signal model of the SI Buck
converters is derived. The analysis results are confirmed by simulation and experiment.

2. Brief Review of the Switched Inductor Cells

The SI cells, illustrated in Figure 1, are comprised of a pair of equal valued inductors and a passive
(diode only) switching network [6]. Such SI cells can be used as building blocks of various step-up and
step-down dc-dc converters. An SI variant converter can be derived from its traditional counterpart by
replacing the regular inductor by the switched inductor cell. The SI cells in Figure 1a,b can be used in
step-down topologies, whereas SI cell in Figure 1c can provide step-up action.

The SI step-up cell in Figure 1c has just one pair of terminals. Hence, the SI step-up cell can
point-by-point replace an ordinary inductor and readily modify a step-up converter. However, the SI
step-down cells in Figure 1a,b are two-port networks that have to be installed on both the feed and
return lines. The latter, however, keeps the output floating.

Moreover, taking a closer look at Figure 1a and unfolding the twisted wiring reveals that the
circuit can be redrawn similarly to an H bridge as shown in Figure 2. The same drill can be repeated in
Figure 1b, which leads to the same Figure 2. Here it becomes obvious that the circuits in Figure 1a,b
differ only in the designation of the output (load) terminals. That is, except for the polarity of the
output voltage, both cells are identical. Since the polarity of the output voltage is merely a matter of
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convention, such a minor difference is immaterial. Therefore, in the following, only the SI step-down
cell in Figure 2 is considered.Energies 2019, 12, x FOR PEER REVIEW 3 of 18 
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Figure 1. The Switched Inductors cells [6]: (a) non-inverting step-down cell; (b) the inverting step-
down cell; (c) the step-up cell. 
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Figure 3. Ideal Non-Inverting SI Buck converter: (a) topology; (b) on-state equivalent circuit; (c) off-
state equivalent circuit. 

3.2 Review of the TI Buck Converter 

Figure 1. The Switched Inductors cells [6]: (a) non-inverting step-down cell; (b) the inverting step-down
cell; (c) the step-up cell.
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Figure 3. Ideal Non-Inverting SI Buck converter: (a) topology; (b) on-state equivalent circuit; (c) off-
state equivalent circuit. 

3.2 Review of the TI Buck Converter 

Figure 2. Generic step-down Switched Inductor cell.

3. Equivalence of the SI Buck and TI Buck Converters

3.1. Review of the SI Buck Converter

The Switched Inductor Buck (SIBk) converter can be derived off the traditional Buck by imbedding
the SI cells as suggested in Figure 3a. The resulting SIBk is a single switch, simple, and rugged
topology. As already mentioned, SI Buck can achieve a steeper conversion ratio than the traditional
Buck converter and operate in a wider duty cycle range.
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Figure 3. Ideal Non-Inverting SI Buck converter: (a) topology; (b) on-state equivalent circuit; (c)
off-state equivalent circuit.

In the following it is assumed that SI Buck in Figure 3a is comprised of ideal components, i.e., the
switches have zero switch-on resistance and no forward voltage drop, and the inductors have zero
resistance. It is also assumed that the converter operates in CCM (Current Continuous Mode), so that
its switching cycle is comprised of only two intervals: the “on” interval and the “off” interval.

When the active switch in the SI Buck converter is on, a positive voltage, Vg, is applied to the cell’s
input terminals 1 and 2 (see Figure 3b); the diodes are switched off forcing the inductors to assume
series configuration and charge up. Since SI cell is comprised of equally sized inductors, L1 = L2 = L,
the equivalent “on” state inductance of the SI Buck (see Figure 3b) is

Lon = L1 + L2 = 2L (1)

When the active switch is turned off, the diodes turn on to freewheel the inductors’ currents as
shown in Figure 3c with both inductors discharging in parallel to the output. Hence, it is evident (see
Figure 3c) that the equivalent “off state” inductance of the SI Buck is
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Lo f f =
L1L2

L1 + L2
=

1
2

L (2)

3.2. Review of the TI Buck Converter

The topology shown in Figure 4a can be classified as diode-to-tap Tapped Inductor Buck converter
with cumulative windings. Henceforth, the topology in Figure 4a is referred to as the TI Buck
(TIBk) converter.
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In the following it is assumed that the candidate TIBk converter is ideal (i.e., lossless switches and
the ideal tapped inductor with neither leakage nor resistance).

During the “on” interval (see Figure 4b), the tapped inductor charges through a series cumulative
connection of both the primary, N1, and secondary, N2, windings having the equivalent inductance of

L′on = Lm (3)

Here, the magnetizing inductance, Lm, is defined as the combined inductance of both N1 and N2

windings (see Figure 4).
During the “off” interval (see Figure 4c), the active switch is turned off while the diode freewheels

the magnetizing current to the output through the N1 winding. Thus, through the autotransformer
action of the tapped inductor, the equivalent inductance is

L′o f f = LN2 = Lm

( n
n + 1

)2
(4)

Here n = N2/N1 is the TI’s turn ratio.

3.3. Derivation of the SIBk and TIBk Equivalence Conditions

The hypothesis proposed herein is that if the parameters of the TIBk converter are adjusted to
fulfill the following constraints: L′on = Lon and L′o f f = Lo f f , the resulting TIBk converter can precisely
imitate the function of SIBk converter and, thus, can be considered as a functional equivalent (with the
exception of different voltage stress across the switches).

Therefore, the necessary equivalence conditions between SIBk and TIBk converters can be obtained
equating Equations (1) to (3) and (2) to (4). This yields the following:

Lm = 2L (5)

n = 1 (6)

In other words, the tapped inductor of the equivalent TIBk converter should have an equal turn
winding arrangement, which inductances relate to its SI counterpart according to:

LN1 = LN2 = Lm

( n
n + 1

)2
= L/2 (7)
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Moreover, since SIBk inductances are equally valued, compared with Figure 3b,c and Figure 4b,c,
it is evident that, under the equivalence conditions, the TIBk’s magnetizing inductance voltage and
current are related to SIBk’s inductors’ voltage and current by

vLm = 2vL (8)

iLm = iL (9)

3.4. Comparison of the SIBk and TIBk Simulation Results

To verify the hypothesis above, benchmark SIBk and its equivalent TIBk were simulated in time
domain by PSIM 9.1.4. Both converters were operated with identical duty cycle, D, and had identical
filter capacitor Co; identical load R; as well as identical input voltage, Vg. Since this paper aims to
study small-signal behavior of SI converters, which have no leakage, the leakage inductance in its
TI counterpart is not considered. For this reason, the tapped inductor was simulated by the ideal
transformer model in parallel with magnetizing inductance.

The parameters of the benchmark SIBk converter were L1 = L2 = 200 µH at CCM and 2 µH at
discontinuous conduction mode (DCM), Vg = 24 V, D = 0.5, R = 10 Ohm, Co = 47 µF, fS = 50 kHz. The
equivalent TIBk converter parameters calculated by Equations (5) and (6) were n = 1 and Lm = 400 µH
for CCM and 4 µH for DCM. Zero leakage inductance was assumed.

Comparison of key simulated waveforms of both converters in the CCM mode is shown in
Figure 5a, whereas the DCM waveforms comparison is presented in Figure 5b. In both cases the
simulated responses of both SIBk and its equivalent TIBk converters were found to be precisely identical.
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4. Equivalence of The SI Buck-Boost and TI Buck-Boost Converters 

Figure 5. Comparison of time domain waveforms of an ideal Switched Inductor Buck (SIBk) vs. the
equivalent Tapped Inductor Buck (TIBk) converters: (a) CCM; (b) discontinuous conduction mode
(DCM). Top trace: output voltage, Vo; second trance: the output current, iout; third trace: the input
terminal current, ig; bottom trace: the inductor current, iL.

The frequency response of the ideal SIBk and that of its equivalent ideal TIBk converters was
compared and is plotted in Figure 6. As expected, the results are precisely matched. Thus, the notion
of the equivalence of SIBk and TIBk converters is confirmed.
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4. Equivalence of The SI Buck-Boost and TI Buck-Boost Converters

4.1. Preliminary Considerations and Basic Assumptions

Both the step-down cells in Figure 1a,b seem incompatible with the Buck-Boost converter. However,
by imbedding the step-up SI cell in Figure 1c into the traditional Buck-Boost topology, the Switched
Inductor Buck-Boost (SIBB) converter can be derived as shown in Figure 7a [6].
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The same as above, it is assumed here that SIBB is made of ideal and lossless components, operates
in CCM, and its inductors are identical, that is L1 = L2 = L.

4.2. Review of the SIBB Converter

Examining the SIBBs on state equivalent circuit in Figure 7b reveals that the equivalent on state
inductance seen between the input and the switch terminals is
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Lon =
L1L2

L1 + L2
=

1
2

L (10)

Whereas during the off interval, the off inductance of the SI Buck-Boost seen between the input
and output terminals (see Figure 1c) is

Lo f f = L1 + L2 = 2L (11)

4.3. Review of the TIBB Converter

The candidate equivalent Tapped-Inductor Buck-Boost topology (TIBB) is shown in Figure 8a and
can be classified as switch-to-tap TI converter with cumulative windings.
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Figure 8. Ideal Tapped-Inductor Buck-Boost (TIBB) converter: (a) topology; (b) on-state equivalent
circuit; (c) off-state equivalent circuit.

In the following, an ideal TIBB (i.e., lossless switches and the ideal tapped inductor with negligible
leakage) which operates in CCM is considered.

During the on interval (see Figure 8b) the active switch energizes only the N1 winding. Thus,
equivalent inductance seen between the input and the switch terminals (0, 1) is

L′on = Lm, (12)

where the magnetizing inductance, Lm, is referred to as the N1 winding as shown in Figure 8b.
During the “off” interval (see Figure 8c), the active switch is turned off while the diode freewheels

the magnetizing current to the output through both the primary N1, and the secondary N2 windings.
Thus, through the autotransformer action of the tapped inductor, the equivalent inductance seen
between the terminals (0, 2) is

L′o f f = (1 + n)2Lm. (13)

Here, n = N2/N1 is the turn ratio.

4.4. Derivation of the SIBB and TIBB Equivalence Conditions

Equivalence conditions between SIBB and TIBB converters can be derived equating Equations (12)
to (10) and (13) to (11) yielding

Lm =
1
2

L, (14)

n = 1. (15)

Hence, regardless of the definition of the magnetizing inductance, the ratio of self-inductances of
the tapped inductor of the equivalent TIBB can be derived by Equation (14) which is same as described
by Equation (7).
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4.5. Comparison of the SI Buck-Boost and TI Buck-Boost Simulation Results

A benchmark SIBB and its equivalent TIBB were simulated in time domain. Both converters were
operated with identical duty cycle, D, and had identical filter capacitor Co; identical load R; as well as
identical input voltage, Vg.

The parameters of the benchmark SIBB converter were L1 = L2 = 200 µH at CCM and 2 µH
at DCM, Vg = 24 V, D = 0.5, R = 10 Ohm, Co = 47 µF, fS = 50 kHz. The equivalent TIBB converter
parameters calculated by Equations (14) and (15) were n = 1 and Lm = 100 µH at CCM and 1 µH at
DCM. Zero leakage inductance was assumed.

Comparison of key simulated time domain waveforms of both converters in the CCM mode is
shown in Figure 9a, whereas the discontinuous conduction mode (DCM) waveforms comparison is
presented in Figure 9b. In both cases the simulated responses of both SIBB and its equivalent TIBB
converters were found to be precisely identical.
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Figure 9. Comparison of time domain waveforms of an ideal SIBB vs. the equivalent TIBB converters:
(a) CCM; (b) DCM. Top trace: output voltage, Vo; second trance: the output current, iout; third trace:
the input terminal current, ig; bottom trace: the inductor current, iL.

The small signal duty-cycle to output frequency response of the ideal SIBB and that of its equivalent
ideal TI Buck-Boost converters was also compared and is plotted in Figure 10. The results are precisely
matched. Thus, the simulation results further support the notion of the equivalence of SIBB and
TIBB converters.
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Table 1. Basic hybrid converters with switched-inductor cells and their equivalent tapped-inductor 
counterparts. 

Figure 10. Comparison of simulated small-signal duty-cycle to output voltage frequency response of
the benchmark SIBB converter (solid blue) vs. the equivalent TIBB converter (star, red). Both converters
operate in CCM.
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5. Equivalence of the SI Boost and TI Boost Converters

The SI Boost (SIB) converter shown in Figure 11 and its equivalent TI Boost (TIB) converter
in Figure 12 were analyzed earlier [21]. Here, for completeness of this text, only the equivalence
conditions between SIB and TIB are briefly mentioned.
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The SIB in Figure 11 applies the step-up SI cell, the same as SIBB in Figure 7. Hence, applying the
same considerations as described in the previous section, the equivalence conditions of the SIB and
TIB are found identical to Equations (14) and (15), where the magnetizing inductance Lm is referred to
the N1 winding of TI in Figure 12. The basic hybrid converters with switched-inductor cells and their
equivalent tapped-inductor counterparts were presented in Table 1.

Table 1. Basic hybrid converters with switched-inductor cells and their equivalent
tapped-inductor counterparts.
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6. High Order SI Converters and Their Equivalent TI Counterparts 

The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters 
as well [23–25]. The SI variants of Cuk, Sepic, and Zeta topologies were also derived in [26]. Yet, 
constructing the TI equivalent counterparts of these topologies requires deeper consideration. 

Firstly, consider the step-down converters. According to [6], the SI Cuk in Table 2 (a) applies the 
SI cell in Figure 1a, whereas the SI SEPIC in Table 2b makes use of SI cell in Figure 1b. However, as 
mentioned, both cells are identical (except for the polarity of the output voltage) therefore, both 
circuits in Table 2 (a) and (b) can be considered identical. For this reason, both converters have the 
same TI equivalent counterpart as illustrated in Table 2 (d) and (e). The step-down SI Cuk and its TI 
counterpart are shown in Table 2 (e) and (f). 

Next, refer to the step-up SI Cuk, Sepic, and Zeta converters in Table 2. These topologies 
comprise of a series capacitor in between the active switch and the output diode (the passive switch). 
Thus, in these cases, the simple tap-to-switch TI arrangement used to construct the equivalent TI Cuk 
and the equivalent TI Sepic converters (see Table 2 (d) and (e)) cannot be applied. Using two active 
switches makes it possible but such a scheme undermines the idea of equivalence. Therefore, in order 
for the equivalent TI converter to retain the single switch feature, a special “two-terminal” tapped 
inductor configuration can be applied to substitute the step-up SI cell, as shown in Table 2 (j), (k), and 
(l). 

The derived above rules of equivalence Equations (5), (6), (7), (14) and (15)) also apply to the 
high order step-up and step-down converters. A simulation study was launched to compare the SI 
topologies to their proposed TI equivalent counterparts in Table 2. The simulated waveforms are 
presented in Appendix A which confirm the theoretical predictions. 
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The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters 
as well [23–25]. The SI variants of Cuk, Sepic, and Zeta topologies were also derived in [26]. Yet, 
constructing the TI equivalent counterparts of these topologies requires deeper consideration. 

Firstly, consider the step-down converters. According to [6], the SI Cuk in Table 2 (a) applies the 
SI cell in Figure 1a, whereas the SI SEPIC in Table 2b makes use of SI cell in Figure 1b. However, as 
mentioned, both cells are identical (except for the polarity of the output voltage) therefore, both 
circuits in Table 2 (a) and (b) can be considered identical. For this reason, both converters have the 
same TI equivalent counterpart as illustrated in Table 2 (d) and (e). The step-down SI Cuk and its TI 
counterpart are shown in Table 2 (e) and (f). 
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The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters 
as well [23–25]. The SI variants of Cuk, Sepic, and Zeta topologies were also derived in [26]. Yet, 
constructing the TI equivalent counterparts of these topologies requires deeper consideration. 

Firstly, consider the step-down converters. According to [6], the SI Cuk in Table 2 (a) applies the 
SI cell in Figure 1a, whereas the SI SEPIC in Table 2b makes use of SI cell in Figure 1b. However, as 
mentioned, both cells are identical (except for the polarity of the output voltage) therefore, both 
circuits in Table 2 (a) and (b) can be considered identical. For this reason, both converters have the 
same TI equivalent counterpart as illustrated in Table 2 (d) and (e). The step-down SI Cuk and its TI 
counterpart are shown in Table 2 (e) and (f). 

Next, refer to the step-up SI Cuk, Sepic, and Zeta converters in Table 2. These topologies 
comprise of a series capacitor in between the active switch and the output diode (the passive switch). 
Thus, in these cases, the simple tap-to-switch TI arrangement used to construct the equivalent TI Cuk 
and the equivalent TI Sepic converters (see Table 2 (d) and (e)) cannot be applied. Using two active 
switches makes it possible but such a scheme undermines the idea of equivalence. Therefore, in order 
for the equivalent TI converter to retain the single switch feature, a special “two-terminal” tapped 
inductor configuration can be applied to substitute the step-up SI cell, as shown in Table 2 (j), (k), and 
(l). 

The derived above rules of equivalence Equations (5), (6), (7), (14) and (15)) also apply to the 
high order step-up and step-down converters. A simulation study was launched to compare the SI 
topologies to their proposed TI equivalent counterparts in Table 2. The simulated waveforms are 
presented in Appendix A which confirm the theoretical predictions. 
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6. High Order SI Converters and Their Equivalent TI Counterparts

The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters
as well [23–25]. The SI variants of Cuk, Sepic, and Zeta topologies were also derived in [26]. Yet,
constructing the TI equivalent counterparts of these topologies requires deeper consideration.

Firstly, consider the step-down converters. According to [6], the SI Cuk in Table 2 (a) applies the
SI cell in Figure 1a, whereas the SI SEPIC in Table 2 (b) makes use of SI cell in Figure 1b. However,
as mentioned, both cells are identical (except for the polarity of the output voltage) therefore, both
circuits in Table 2 (a) and (b) can be considered identical. For this reason, both converters have the
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same TI equivalent counterpart as illustrated in Table 2 (d) and (e). The step-down SI Cuk and its TI
counterpart are shown in Table 2 (e) and (f).

Table 2. High order hybrid converters with switched-inductor cells and their equivalent
tapped-inductor counterparts.

Type Cuk SEPIC Zeta
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The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters 
as well [23–25]. The SI variants of Cuk, Sepic, and Zeta topologies were also derived in [26]. Yet, 
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mentioned, both cells are identical (except for the polarity of the output voltage) therefore, both 
circuits in Table 2 (a) and (b) can be considered identical. For this reason, both converters have the 
same TI equivalent counterpart as illustrated in Table 2 (d) and (e). The step-down SI Cuk and its TI 
counterpart are shown in Table 2 (e) and (f). 

Next, refer to the step-up SI Cuk, Sepic, and Zeta converters in Table 2. These topologies 
comprise of a series capacitor in between the active switch and the output diode (the passive switch). 
Thus, in these cases, the simple tap-to-switch TI arrangement used to construct the equivalent TI Cuk 
and the equivalent TI Sepic converters (see Table 2 (d) and (e)) cannot be applied. Using two active 
switches makes it possible but such a scheme undermines the idea of equivalence. Therefore, in order 
for the equivalent TI converter to retain the single switch feature, a special “two-terminal” tapped 
inductor configuration can be applied to substitute the step-up SI cell, as shown in Table 2 (j), (k), and 
(l). 

The derived above rules of equivalence Equations (5), (6), (7), (14) and (15)) also apply to the 
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topologies to their proposed TI equivalent counterparts in Table 2. The simulated waveforms are 
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The SI step-up and SI step-down cells in Figure 1 can be applied to modify many other converters 
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counterpart are shown in Table 2 (e) and (f). 
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7. Application to Small Signal Modelling of Switch Inductor Converters 

Switched inductor cells consist of two inductors and multiple diodes. The switching action 
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(l)

Param. ratio L1 = L2 = L; LN1 = LN2 = L/2; N1 = N2

Next, refer to the step-up SI Cuk, Sepic, and Zeta converters in Table 2. These topologies comprise
of a series capacitor in between the active switch and the output diode (the passive switch). Thus, in
these cases, the simple tap-to-switch TI arrangement used to construct the equivalent TI Cuk and the
equivalent TI Sepic converters (see Table 2 (d) and (e)) cannot be applied. Using two active switches
makes it possible but such a scheme undermines the idea of equivalence. Therefore, in order for the
equivalent TI converter to retain the single switch feature, a special “two-terminal” tapped inductor
configuration can be applied to substitute the step-up SI cell, as shown in Table 2 (j), (k), and (l).

The derived above rules of equivalence Equations (5)–(7), (14) and (15)) also apply to the high order
step-up and step-down converters. A simulation study was launched to compare the SI topologies
to their proposed TI equivalent counterparts in Table 2. The simulated waveforms are presented in
Appendix A which confirm the theoretical predictions.

7. Application to Small Signal Modelling of Switch Inductor Converters

Switched inductor cells consist of two inductors and multiple diodes. The switching action
brings complications to modeling. Due to the equivalence of switched inductor and tapped inductor
converters, the dynamic and steady state model of the SI converters can be obtained by borrowing
and adapting the models of the equivalent TI counterpart. Earlier, an approach to modelling of
tapped inductor converters was suggested in [22]. The proposed Tapped Inductor Switcher with
Switched Flow Graph (TIS-SFG) method relies on substituting the switching part of the converter by
a prefabricated equivalent subgraph. Such modeling approach proved expeditious and well-suited
to tapped inductor converters. For these reasons TIS-SFG is also a viable candidate to modeling of
SI converters.
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While in [21] a step-up SI cell was examined and modeled by the proposed method, here, with
the aim to extend the method further, the step-down SI cell is studied in detail. As an application
example, in the following, small-signal model of the SI Buck is derived and verified by simulation
and experiment.

7.1. Brief Review of TIS-SFG Modeling Approach

The TIS-SFG method relies on point-by-point substitution of the tapped inductor switching
block of the converter (see Figure 13a) by its equivalent sub-graph shown in Figure 13b. Here, K(D)
represents the active switch function and placed at terminal 1, while K’(D’) stands for the passive (or
complementary) switch at terminal 2. The common terminal is designated 0. Once the switcher, which
is the problematic part of the converter, is modeled, the rest of the converter circuit is just a linear
circuit and easily lends itself to modelling. To clarify the modeling procedure, an example of switched
inductor Buck converter is presented as below.
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Figure 13. TIS block and its reference voltages and currents (a); Tapped Inductor Switcher (TIS)-SFG
averaged small-signal model (b).

7.2. Example: TIS SFG Dynamic Models of TIBk and SIBk

As mentioned above, the SIBk converter in Figure 3 is equivalent to the TIBk converter in Figure 4
which has same frequency response and steady state performance, thus, the SIBk model is identical to
the model of an ideal TIBk. The latter can be derived by the TIS-SFG method [22]. First, the switching
part of the converter is symbolically substituted by the TIS block, complemented by the flow graph of
the linear part of the converter as shown in Figure 14b. Here the output filter and load are modeled
by a single equivalent branch (shown in blue). Then the TIS-SFG small signal model in Figure 13b
is point-to-point substituted into Figure 14b. simplification of the graph yields the averaged small
signal model of the TIBk converter as illustrated in Figure 14c. The ideal model in Figure 14c does not
account for the capacitor’s equivalent series resistance (ESR) as well as for parasitic resistances of the
inductor and the switches.

Note that the capital letters in Figure 14c designate the steady-state values, whereas the hatted
variables designate the small-signal variations of the respected quantities. For instance, the steady
state duty cycle is labeled D and its small-signal variation by d̂. As usual D’ = 1 − D.

As shown above, with the parameters properly adjusted, the dynamic model of SIBk converter is
identical to that of the TIBk converter. Hence, the small-signal averaged model of the SIBk converter
can be derived by applying the equivalence conditions of Equations (5), (8), and (9) to Figure 14c to
properly modify the equivalent inductance and the winding ratio. Note that the winding ratio, a in
Figure 14 is defined as [22]:

a =
N1 + N2

N2
= 1 +

1
n

(16)

and n = N2/N1 is the turn ratio. Substitution of Equation (6) into Equation (16), results in a = 2.
Substitution of Equations (8) and (9) into Figure 14c, this leads to the model in Figure 14d. Note
that here, the effect of the capacitor’s equivalent series resistance (ESR), rC, is incorporated simply by
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modifying the transfer function of the filter and load branch, whereas the combined effect of parasitic
resistances of the switch, rF, the diodes, ron, and inductors, rL, is modelled by a single inductor’s
equivalent series resistor, r. The derivation of the generalized equivalent series parasitic resistor, r, was
presented in [22]. Here, r can be estimated as

r = rL +
1
2

Dron + D′rF (17)
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8. Experimental Verification

To experimentally verify the analysis above, a laboratory SIBk converter and its equivalent TIBk
converter prototype were designed, built, and tested. The prototype of the SIBk converter had the
following parameters: the inductors, L1 = 213.2 µH, L2 = 213.2 µH; switching frequency: fs = 46.92
Khz; input voltage: Vin = 24 V; Output capacitor: Co = 47 µF; load resistor: R = 10 Ohm. At the duty
cycle of D = 0.5014 the circuit was operated in CCM. The measured output dc voltage was 7.84V and
the measured efficiency was 96.01%.

The TIBk converter had the following parameters: the inductance of the primary side of the tapped
inductor is LN1 = 102.89 µH, turns ratio of the tapped inductor: n = 1, the magnetizing inductance of
the tapped inductor can be calculated as, Lm =

(
1 + n2

)
LN1= 411.56 µH; switching frequency is fs = 46.5

Khz; input voltage: Vin = 24 V, output capacitor: Co = 47 µF; load resistor: R = 10 Ohm. At the duty
cycle of D = 0.5035 the circuit was operated in CCM. The measured output dc voltage was 7.68 V and
the measured efficiency was 93.72%.

The test bench of the prototype circuit is shown in Figure 15, while the experimental waveforms of
SIBk and TIBk are shown in Figures 16 and 17. The input current, output current of the two circuits are
compared in Figure 16a, while the voltage over MOSFET, vds, are shown in Figure 16b. The waveforms
of the two converters are almost identical. Only a small difference is observed, except the higher
voltage spike, vds, in the TIBk circuit.

The dynamic response of the SIBk circuit was also calculated and tested. The dynamic model
of SIBk in Figure 14d requires the steady state solution data in order to calculate the gain of various
branches of the model, which was derived the same as [6]

Vout = Vg
D

(2−D)
, (18)
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IL =
Vg

R
D

(2−D)2 , (19)
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Figure 16. Comparison of experimental waveforms of SIBk vs. the equivalent TIBk converters in
CCM. (a) the output current iout; the input terminal current ig; (b) the gating signal vgs, Drain-to-Source
voltage of MOSFET vds.
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The non-ideal small signal duty-cycle to output voltage transfer function was obtained from
Figure 14d as

v̂out

d̂
=

G
(
1 + s

ωz1

)(
1 + s

ωz2

)
1 + s

Qω0
+

(
s
ω0

)2 , (20)

where,

G =
Vg

(2−D)2
[2R(2−D)2

−Dr]
[r+R(2−D)2]

, ωZ1 =
[2R(2−D)2

−Dr]
2DL , ωz2 = 1

rcC , ω0 =

√
R(2−D)2+r
2LCo(R+rc)

, and Q =√
[r+R(2−D)2]2LCo(R+rc)

[RrcCo(2−D)2+Cor(R+rc)+2L]
.

The inductors’ resistance was measured as rL = 0.08 Ohm; the switch on resistance of the MOSFET
(30N06B), is ron = 0.025 Ohm; and the diodes’ (MBR40250) forward resistance is predicted by the
measured switch-on voltage drop and current which is rF = 1.12 Ohm. Plugging the aforementioned
parameters into Equation (17) yields r = 0.67 Ohm.

The dynamic response of the SIBk circuit was measured by Venable 8805 frequency response
analyzer. The comparison of the calculated vs. experimentally measured responses is shown in
Figure 17. The predicted response is well matched to the measurements and correctly predicts the
gain peaking. Yet, some deviation can be seen at high frequency range due to uncertainties in the
component values and the increase in the ac resistance of the inductors at high frequency.

9. Conclusions

The paper is concerned with the analogy existing in between the switched inductor converters and
the tapped inductor converters. The equivalent counterparts were proposed and examined. The rules
of equivalence were derived for several study cases: Switched Inductor modified Buck, Buck-Boost,
Boost converters as well as Cuk, Sepic, and Zeta derived converters.

Practical implication of the proposed equivalence hypothesis is extending the TIS-SFG modelling
approach [22], conceived for the TI converters, to include switched inductor converters as well. This
paper illustrates the small signal modelling of the step-down SI cell to complete the step-up SI cell
counterpart model demonstrated earlier [21]. As an example, SI Buck converter is analyzed theoretically
and confirmed vs. simulated and experimental results.

The equivalence of TI and SI converters is somewhat limited in reality since the practical TI
converters are prone to the problems of the leakage inductance. This, however, presents no hindrance
to the suggested methodology of small-signal modeling the SI converters. As mentioned, SI converters
have no leakage and, for this reason, the small-signal model of SI converter derived from the ideal (i.e.,
leakage-free) TI model attains accurate results in reality. Hence, taking advantage of the equivalence
feature, and using the TIS model as a tool, can facilitate the small-signal analysis of SI converters.

Theoretical expectations were confirmed by an extensive cycle-by-cycle simulation study. The
time-domain waveforms of the ideal switched inductor converters were compared and perfectly
matched the waveforms of their equivalent ideal tapped-inductor counterparts. The equivalence
holds in both continuous and discontinuous operating modes. Moreover, the performance of the
Buck, Boost, and Buck-Boost equivalent converters in the frequency domain was also examined. The
duty-cycle-to-output-frequency response of the switched inductor converters was simulated and
compared to the response of their tapped inductor counterparts and, as expected, was found identical.
Comparison of the experimental results for SIBk and TIBk converters was also reported. A good match
was observed.
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Appendix A

Extensive simulation study was launched to compare the SI topologies in Table 2 to their proposed
TI equivalent counterparts. PSIM v 9.1.4 was used to run cycle-by-cycle time domain simulation of
the candidate equivalent converters and their waveforms compared. The benchmark converters were
operated in both the continuous and discontinuous modes. The simulation results are presented in
Figures A1–A7. In all cases the simulated responses of both SI converters and their equivalent TI
converters were found precisely identical. This supports the proposed notion of converter equivalence.

Furthermore, to verify the claim that the step-up SI cells in Figure 1a,b are identical, the time
domain waveforms of an ideal SI Cuk in Table 2 (a) vs. SI Sepic in Table 2 (b) are compared in Figure A3.
The time domain response of these two converters were found identical.
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Figure A1. Comparison of time domain waveforms of an ideal SI Sepic (Step down) in Table 2 (b) vs. 
the equivalent TIS converters in Table 2 (e): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
Figure A1. Comparison of time domain waveforms of an ideal SI Sepic (Step down) in Table 2 (b)
vs. the equivalent TIS converters in Table 2 (e): (a) CCM; (b) DCM. Top trace: output voltage, Vout;
second trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the
inductor current, iL. (Parameters: Vg = 100 V, D = 0.5, C = 150 µF, Co = 180 µF, Lin = 300 mH, fS = 50
kHz and R = 20 Ohm. The inductors of the benchmark SI Sepic converter were L1 = L2 = 300 mH for
CCM and 3 mH for DCM, whereas the tapped inductor of the equivalent TI Sepic converter: n = 1 and
Lm = 150 mH for CCM and 1.5 mH for DCM.)
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Figure A3. Comparison of time domain waveforms of an ideal SI Cuk (Step down) in Table 2 (a) vs. 
SI Sepic in Table 2 (b): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second trance: the output 
current, iout; third trace: the input terminal current, ig; bottom trace: the inductor current, iL. 

Figure A2. Comparison of time domain waveforms of an ideal SI Cuk (Step down) in Table 2 (a) vs.
the equivalent TIS converters in Table 2 (d): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor
current, iL. (Parameters: Vg = 100 V, D = 0.5, C = 150 µF, Co = 180 µF, Lin = 300 mH, fS = 50 kHz
and R = 20 Ohm. The inductors of the benchmark SI Cuk converter were L1 = L2 = 300 mH for
CCM and 3 mH for DCM, whereas the tapped inductor of the equivalent TI Cuk converter: n = 1 and
Lm = 150 mH for CCM and 1.5 mH for DCM.)



Energies 2019, 12, 4806 16 of 19

Energies 2019, 12, x FOR PEER REVIEW 15 of 18 

 

trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 150 μF, Co = 180 μF, Lin = 300 mH, fS = 50 kHz and R 
= 20 Ohm. The inductors of the benchmark SI Sepic converter were 𝐿ଵ = 𝐿ଶ = 300 mH for CCM and 
3 mH for DCM, whereas the tapped inductor of the equivalent TI Sepic converter: 𝑛 = 1 and 𝐿௠ =150 mH for CCM and 1.5 mH for DCM.) 

40

50

60
VP1 VP7

0
0.2
0.4

I1 -I12

0.24

0.26

I2 I13

0.3374 0.3376 0.3378
Time (s)

0.16

0.18

0.2
ILm IL1+IL2

vout-TICU vout-SICU

iout-TICU iout-SICU

ig-TICU ig -SICU

iLm-TICU iL1+L2-SICU

 

30
40
50
60
70

VP1 VP7

0.12

0.14

0.16

I2 I13

0
-0.5

0.5

1
ILm IL1+IL2

0.2284 0.2286 0.2288 0.229
Time (s)

0

1
I1 -I12

vout-TICU vout-SICU

iout-TICU iout - SICU

ig-TICU ig-SICU

iLm-TICU iL1+L2-SICU

 
(a) (b) 

Figure A2. Comparison of time domain waveforms of an ideal SI Cuk (Step down) in Table 2 (a) vs. 
the equivalent TIS converters in Table 2 (d): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 150 μF, Co = 180 μF, Lin = 300 mH, fS = 50 kHz and R 
= 20 Ohm. The inductors of the benchmark SI Cuk converter were 𝐿ଵ = 𝐿ଶ = 300 mH for CCM and 
3 mH for DCM, whereas the tapped inductor of the equivalent TI Cuk converter: 𝑛 = 1 and 𝐿௠ =150 mH for CCM and 1.5 mH for DCM.) 

0
40
80

120
VP7 VP1

0.2

0.4

I12 -I4

0.04

0.06

0.08

I13 I6

0.5332 0.5334 0.5336
Time (s)

0.28

0.3

0.32

I1+I2 I9+I10

vout-SICU

iout-SICU

ig-SICU

iL1+L2-SICU

vout-SISE

iout-SISE

ig-SISE

iL1+L2-SISE

 

0
100
200

VP7 VP1

0

2

I12 -I4

0.42

0.44

I13 I6

0.4305 0.4306 0.4307 0.4308 0.4309
Time (s)

0

2

I1+I2 I9+I10

vout-SICU vout-SISE

iout-SICU iout-SISE

ig-SICU ig-SISE

iL1+L2-SICU iL1+L2-SISE

 
(a) (b) 

Figure A3. Comparison of time domain waveforms of an ideal SI Cuk (Step down) in Table 2 (a) vs. 
SI Sepic in Table 2 (b): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second trance: the output 
current, iout; third trace: the input terminal current, ig; bottom trace: the inductor current, iL. 

Figure A3. Comparison of time domain waveforms of an ideal SI Cuk (Step down) in Table 2 (a) vs.
SI Sepic in Table 2 (b): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second trance: the output
current, iout; third trace: the input terminal current, ig; bottom trace: the inductor current, iL.Energies 2019, 12, x FOR PEER REVIEW 16 of 18 

 

40

80

VP11 VP7

0.2

0.3

-I16 -I12

0
0.05

0.1
0.15

I17 I13

0.5502 0.5504 0.5506
Time (s)

-0.4

-0.35
I3 I1+I2iLm-TIZE iL1+L2-SIZE

ig-TIZE ig-SIZE

iout-TIZE iout-SIZE

vout-TIZE vout-SIZE

 

80

90

100
VP11 VP7

0

2

-I16 -I12

0

1

2
I17 I13

0.4046 0.4048 0.405 0.4052
Time (s)

0

-2

2
2*I2 I3

vout-TIZE vout-SIZE

iout-TIZE iout-SIZE

ig-TIZE ig-SIZE

iLm-TIZE iL1+L2-SIZE

 
(a) (b) 

Figure A4. Comparison of time domain waveforms of an ideal SI Zeta (Step down) in Table 2 (c) vs. 
the equivalent TIS converters in Table 2 (f): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
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Figure A4. Comparison of time domain waveforms of an ideal SI Zeta (Step down) in Table 2 (c) vs.
the equivalent TIS converters in Table 2 (f): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor
current, iL. (Parameters: Vg = 100 V, D = 0.5, C = 150 µF, Co = 180 µF, Lin = 300 mH, fS = 50 kHz
and R = 185 Ohm. The inductors of the benchmark SI Zeta converter were L1 = L2 = 300 mH for
CCM and 3 mH for DCM, whereas the tapped inductor of the equivalent TI Zeta converter: n = 1 and
Lm = 150 mH for CCM and 1.5 mH for DCM.)
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trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 100 μF, Co = 80 μF, Lout = 100 μH, fS = 50 kHz and R = 
185 Ohm. The inductors of the benchmark SI Cuk converter were 𝐿ଵ = 𝐿ଶ = 600 mH for CCM and 
3 mH for DCM, whereas the tapped inductor of the equivalent TI Cuk converter: 𝑛 = 1 and 𝐿௠ =300 mH for CCM and 1.5 mH for DCM.) 
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Figure A5. Comparison of time domain waveforms of an ideal SI Cuk (Step up) in Table 2 (g) vs. the
equivalent TIS converters in Table 2 (j): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor
current, iL. (Parameters: Vg = 100 V, D = 0.5, C = 100 µF, Co = 80 µF, Lout = 100 µH, fS = 50 kHz
and R = 185 Ohm. The inductors of the benchmark SI Cuk converter were L1 = L2 = 600 mH for
CCM and 3 mH for DCM, whereas the tapped inductor of the equivalent TI Cuk converter: n = 1 and
Lm = 300 mH for CCM and 1.5 mH for DCM.)

Energies 2019, 12, x FOR PEER REVIEW 16 of 18 

 

40

80

VP11 VP7

0.2

0.3

-I16 -I12

0
0.05

0.1
0.15

I17 I13

0.5502 0.5504 0.5506
Time (s)

-0.4

-0.35
I3 I1+I2iLm-TIZE iL1+L2-SIZE

ig-TIZE ig-SIZE

iout-TIZE iout-SIZE

vout-TIZE vout-SIZE

 

80

90

100
VP11 VP7

0

2

-I16 -I12

0

1

2
I17 I13

0.4046 0.4048 0.405 0.4052
Time (s)

0

-2

2
2*I2 I3

vout-TIZE vout-SIZE

iout-TIZE iout-SIZE

ig-TIZE ig-SIZE

iLm-TIZE iL1+L2-SIZE

 
(a) (b) 

Figure A4. Comparison of time domain waveforms of an ideal SI Zeta (Step down) in Table 2 (c) vs. 
the equivalent TIS converters in Table 2 (f): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 150 μF, Co = 180 μF, Lin = 300 mH, fS = 50 kHz and R 
= 185 Ohm. The inductors of the benchmark SI Zeta converter were 𝐿ଵ = 𝐿ଶ = 300 mH for CCM and 
3 mH for DCM, whereas the tapped inductor of the equivalent TI Zeta converter: 𝑛 = 1 and 𝐿௠ =150 mH for CCM and 1.5 mH for DCM.) 

0
100
200
300

Vo2 Vo1

0.7
0.8
0.9

Iout2 Iout1

0.5
1

1.5
2

Iin2 Iin1

0.7912 0.7914 0.7916 0.7918
Time (s)

1.4
1.6
1.8

2
ILm 2*IL

vout-TICU vout-SICU

iout-TICU iout-SICU

ig-TICU ig-SICU

iLm-TICU iL1+L2-SICU

 

160

200

240
Vo2 Vo1

1

1.2

Iout2 Iout1

0

4

8
Iin2 Iin1

0.9058 0.906 0.9062 0.9064
Time (s)

0

4

8
ILm 2*IL

vout-TICU vout-SICU

iout-TICU iout-SICU

ig-TICU ig-SICU

iLm-TICU iL1+L2-SICU

 
(a) (b) 

Figure A5. Comparison of time domain waveforms of an ideal SI Cuk (Step up) in Table 2 (g) vs. the 
equivalent TIS converters in Table 2 (j): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 100 μF, Co = 80 μF, Lout = 100 μH, fS = 50 kHz and R = 
185 Ohm. The inductors of the benchmark SI Cuk converter were 𝐿ଵ = 𝐿ଶ = 600 mH for CCM and 
3 mH for DCM, whereas the  

140
160

VP1 Vo1

0

1

2
-Iout2 -Iout1

0.8
1.2
1.6

Iin2 Iin1

0.6636 0.6638 0.664
Time (s)

1.2

1.6

2

ILm 2*IL

vout-TISE vout-SISE

iout-TISE iout-SISE

ig-TISE ig-SISE

iLm-TISE iL1+L2-SISE

 

180
200
220

VP1 Vo1

0
2
4

-Iout2 Iout1

0

4

8
Iin2 Iin1

0.9143 0.9144 0.9145 0.9146 0.9147 0.9148
Time (s)

0

4

8
ILm 2*IL

vout-TISE vout-SISE

iout-TISE iout-SISE

ig-TISE ig-SISE

iLm-TISE iL1+L2-SISE

 
(a) (b) 

Figure A6. Comparison of time domain waveforms of an ideal SI Sepic (Step up) in Table 2 (h) vs. the
equivalent TIS converters in Table 2 (k): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor
current, iL. (Parameters: Vg = 100 V, D = 0.5, C = 150 µF, Co = 180 µF, Lin = 300 mH for CCM and 30
mH for DCM, fS = 50 kHz and R = 185 Ohm. The inductors of the benchmark SI Sepic converter were
L1 = L2 = 1200 mH for CCM and 3 mH for DCM, whereas the tapped inductor of the equivalent TI
Sepic converter: n = 1 and Lm = 600 mH for CCM and 1.5 mH for DCM.)
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Figure A7. Comparison of time domain waveforms of an ideal SI Zeta (Step up) in Table 2 (i) vs. the 
equivalent TIS converters in Table 2 (l): (a) CCM; (b) DCM. Top trace: output voltage, Vout; second 
trance: the output current, iout; third trace: the input terminal current, ig; bottom trace: the inductor 
current, iL. (Parameters: 𝑉௚ = 100 V, D = 0.5, C = 150 μF, Co = 180 μF, Lout = 300 mH, fS = 50 kHz and R 
= 185 Ohm. The inductors of the benchmark SI Zeta converter were 𝐿ଵ = 𝐿ଶ = 1200 mH for CCM 
and 2 mH for DCM, whereas the tapped inductor of the equivalent TI Zeta converter: 𝑛 = 1 and 𝐿௠ = 600 mH for CCM) and 1 mH for DCM.) 
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