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Abstract: Voids or cracks in basin insulators inside a GIS (gas-insulated metal-enclosed switchgear)
could trigger partial discharges or surface flashover under electrical stresses, threatening safe GIS
operation. For this paper, some epoxy composite specimens were made from similar materials and
manufacturing processes to make 252 kV GIS basin insulators. Some voids with different diameters or
cracks with different diameters and orientations were artificially made in the specimens with different
thicknesses. An ultrasonic pulse-echo system was set up, and ultrasonic tests were carried out on the
specimens with voids or cracks. A method to calculate the depth of a defect was proposed by the
propagation time of defect reflected waves. The results showed that a depth of 50 mm, a diameter φ
of 2 mm void, and a diameter φ of 1 mm crack in epoxy composite insulation were detected by the
ultrasonic system using a 1 MHz transducer.
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1. Introduction

Because of its advantages such as high reliability, small ground space requirements, long
maintenance cycle, and low environmental impact, the gas-insulated metal-enclosed switchgear (GIS)
is widely used in large-scale hydropower projects and urban high-voltage power grids with a complex
terrain and a narrow area. Two areas of the insulation design of the GIS are considered critical,
namely support spacer reliability and metallic particle contamination. Basin insulators play the roles
of electrical insulation, the isolation of gas chamber and supporting conductor in the GIS, and, mainly,
the determiners of the safe and reliable operation of the GIS [1].

Reports on GIS reliability have shown that basin insulator defects accounted for about 23% of the
GIS failures from 2010 to 2014 [2]. Internal defects in basin insulators include voids and cracks. Voids
might result from the incomplete removal of air or impurity gases when the epoxy resin and filler are
mixed during manufacturing. Cracks might be generated under huge internal stress in the following
conditions: the temperature change during curing, the unbalanced force during transportation or
installation, the ambient temperature difference during operation, or the mechanical extrusion of
the central conductor and the enclosure. Tiny cracks on the surface of insulators gradually develop
towards the depth direction, eventually resulting in damage to insulators, a sharp decline in insulation
performance, and even an explosion—thus causing power outage accidents [3].

Regarding allowable defects in basin insulators, the NB/T 42105-2016 [4] and QGDW 1127-2013 [5]
standards state that the partial discharge of a single basin insulator should be not higher than 3 pC
under the power frequency voltage, the diameter of a void should be no larger than 0.5 mm in the area
with the high field strength, and 2 mm in other areas.
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As for defect detection technology in basin insulators, the charge method, the ultra-high frequency
method (UHF), the very-high frequency method (VHF), the vibration method, and the acoustic method
are recommended for partial discharges in withstand voltage tests on-site by the GB-Z 24836-2009 [6]
and DL/T 555-2004 [7] standards, as well as an X-ray flaw detection test for allowable defects in a
routine tests by the NB/T 42105-2016 [4] and QGDW 1127-2013 [5] standards.

The charge method can effectively detect metal particles, protrusions on electrodes, defects in
insulators by variation in discharge magnitude. The UHF method can detect the discharge of several
pC, and a range of 300–1000 MHz is effective. Couplers should be located inside GIS on the inner
surface of enclosure, and the installation distance should be less than 20 m. Defects can be located by
the time difference between UHF signals. The VHF method with a frequency range of 40–300 MHz can
locate discharge sources by combining the propagation time of signals with the distance of couplers.
The vibration method, based on the important parameters of signal amplitude and flight time, receives
10–30 kHz signals generated by discharge sources through transducers placed on GIS enclosures, and
this method is particularly sensitive to metal particles. The principle of the acoustic method, with a
range of 20–100 kHz, is similar to that of the vibration method. It is sensitive to metal particles, burrs
and protrusions on electrodes, but it may be insensitive to voids in insulators.

At present, investigations on detecting defects in basin insulators have focused on the UHF method,
partial discharge ultrasonic detection, and the pulse current method, which are, respectively, based
on electromagnetic waves, acoustic waves, and currents generated by partial discharges originated
at defects.

Meijer et al. [8] picked up discharging signals by external and internal couplers on a GIS by the
UHF method. The signal-to-noise spectra obtained by their spectrum analysis could distinguish free
moving particles, protrusions on conductors, and floating electrodes on conductors. Hoshino et al. [9]
used loop-type and disc-type of UHF sensors to detect metallic particles with a diameter of 0.25 mm
on a conductor and an enclosure. The frequency range of these two types of sensors was increased to
8 GHz. The loop-type sensor had a higher sensitivity to particles on conductors, and the disc-type
sensor had a higher sensitivity to particles on enclosures. The UHF method is mostly used for on-site
monitoring and can detect a discharge of 5 pC. However, this method’s defect location ability is not
accurate enough, and it is not able to quantitatively detect discharge [9–11].

Lundgaard et al. [12] used an acoustic emission (AE) sensor to receive the ultrasonic signal
propagating along a GIS enclosure. It could distinguish flaw type and magnitude by signal shape and
peak, respectively. Qi et al. [13] used an ultrasonic sensor to detect simulated defects in a 252 kV GIS.
The change in signal amplitude could find defects, which have a high sensitivity to free metal particles,
protrusions on inner shells, and high voltage electrodes. Partial discharge ultrasound detection is
often used for live inspection, as it has an accurate location ability and can detect a discharge of 10 pC.
However, it is insensitive to the discharge of voids in basin insulators, and its detection efficiency is
low [11,13].

Yoshida et al. [14] set up two sets of oscilloscopes to collect discharge signals through the pulse
current method. The discharge time and signal amplitude were obtained, and a discharge of 0.1 pC
was detected. The pulse current method was able to quantitatively detect a discharge of 2 pC. Because
of its susceptibility to interference signals, this method is mostly used in laboratory settings [11,15].

Xu et al. [16] applied an X-ray to penetrate insulators and obtain a digital image. A metallic
particle with a diameter of 3 mm on the insulator surface was observed, but the crack on the surface
could not be detected. This method was able to detect voids in basin insulators, but its sensitivity to
cracks with smaller widths is not high. Additionally, the equipment is large in volume, and radiation
has potential harm to the human body [16,17].

In this paper, a nondestructive ultrasonic pulse-echo method for detecting internal defects in basin
insulators is studied. At present, there have been more studies on the detection of fiber-reinforced
composites by the ultrasonic pulse-echo method [18,19], but there have been fewer studies on epoxy
composites. In 1994, Nelson et al. [20] used two angle beam ultrasonic transducers to propagate
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shear waves into the glass-reinforced epoxy-mica laminated insulation of the stator bars of large
generators 3 mm in thickness. Delamination could be detected by the signal amplitude. In 1999,
Wisheart et al. [21] used an ultrasonic C-scan method to detect transverse cracks with a length of 6
mm and delamination in pultruded glass polyester laminated composites due to low-velocity impact
damage. Aymerich et al. [22] used an ultrasonic C-scan method to detect the impact damage of
polyether-etherketone (PEEK) laminates with a thickness of 2.2 mm. The method, which uses the
oblique and vertical incidence of longitudinal waves, was able to detect cracks that were perpendicular
to the surface and delamination. In 2000, Mouritz et al. [23] used the ultrasonic pulse-echo method with
a low frequency, based on gain change, to detect the delamination and cracks caused by fatigue damage
in glass fiber-reinforced laminated composites between 7 and 38 mm thick. In 2003, Hao et al. [24–26]
used a low-frequency probe to detect concentrated defects such as air voids, cracks, and delamination
in the glass-reinforced epoxy-mica laminated insulation of the stator bar of a main insulation that was
5.5 mm in thickness by the ultrasonic pulse-echo method. The glass-reinforced epoxy-mica composite
insulation of the stator bars of large generators is a glass-reinforced half-lapped laminated structure.
The ultrasonic attenuation is large, the detectable thickness is thin, and the sensitivity is low.

It has also been reported that non-laminated insulation could be detected by the ultrasonic wave
technique. In 1994, Auckland et al. [27] detected delamination and cracks in bushing materials and
air voids with diameters of 0.5 and 1 mm, a depth of 15 mm in an XLPE(cross-linked polyethylene)
cable by the ultrasonic pulse-echo method. The authors were able to point out the potential for
detecting voids, cracks and delamination in various insulation systems with ultrasonic waves. In 2003,
Armentrout et al. [28] placed AE sensors at each end of a glass fiber-reinforced polymer (GRP) composite
rod to detect cracks caused in the stress corrosion process, and they obtained the location of these
cracks. In 2005, Liang et al. [29] developed a special angle beam transducer to detect cracks between
0.2 and 1.2 mm deep that were perpendicular to the axis of a composite insulator fiber-reinforced
plastics (FRP) rod by using ultrasonic critical refracted longitudinal waves. The depth of a crack was
analyzed by the amplitude of reflected waves. In 2009, Xie et al. [30] detected debonding bubbles of
0.5 mm in diameter between a composite insulator sheath and a core by an ultrasonic radio frequency
method based on the waveform amplitude by. Additionally, ultrasonic phased array technology [19]
was used to detect air voids and drill holes of 2 mm in diameter in a silicone rubber plate of 8 mm in
thickness and a composite insulators sheath. In [31], an ultrasonic phased array probe was coupled
with a composite insulator sheath by a silicone rubber water capsule. Bubbles of 1 mm in diameter and
2.5 mm in depth in the 4 mm thick sheath were detected, as well as bubbles of 2 mm in diameter in the
core. Bushing, cable and composite insulators are not laminated insulation, but the materials are soft,
and the ultrasonic attenuation is large.

The epoxy composite material of basin insulators is composed of epoxy resin and a filler, which is
hard and possibly has less ultrasonic attenuation. In 2015, Shen et al. [32,33] detected internal air gaps
and cracks in epoxy composites with a thickness of 30 mm by ultrasonic waves. This method was
able to distinguish air gaps between 2 and 1 mm in diameter and cracks with different orientations
by analyzing the spectrum of bottom reflected waves. Additionally, the low frequency, ultrasonic
pulse-echo method [34] was used to detect bubbles 5 mm in depth and 2 mm in diameter in the
insulation pull rod, with a cylindrical structure, of a circuit breaker. Additionally, a polystyrene
focusing probe was developed. In 2017, Zhu et al. [35] used Lamb waves to detect micro-cracks 3 mm
in length and 1 mm in depth as well as micro-attachments on a basin insulator surface. However, this
method was not suitable to detect internal bubbles and cracks.

Existing methods cannot satisfy the needs of a quality assessment, a sampling inspection, a routine
test, and a type test. There is an urgent need for the detection technology of internal defects in basin
insulators. In this paper, an ultrasonic pulse-echo method was proposed to detect internal defects in an
epoxy composite specimen similar to basin insulators. An ultrasonic pulse-echo system was set up.
Then, reflected waveforms at voids with different diameters and cracks with different orientations were
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compared. The sensitivity and effective depth for a transducer were analyzed, and the effectiveness of
detecting internal defects in basin insulators was investigated.

2. Ultrasonic Pulse-Echo Method

2.1. Ultrasound Testing System

The ultrasonic pulse-echo system in this paper consisted of an ultrasonic generator, a transducer,
an oscilloscope and a computer, as shown in Figure 1. Water was used as the coupling between the
transducer and the specimen.
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Figure 1. Schematic diagram of detecting defects in epoxy composite specimens by the ultrasonic
pulse-echo method.

2.1.1. Ultrasonic Generator

The ultrasonic generator was an analog type CTS-23 model, and 0.5–20 MHz is an effective range.
The CTS-23 model has three kinds of rectification modes, including positive, negative and bidirectional.
Original waveforms were processed by the circuit. In order to obtain the original waveform with the
full defect information, the ultrasonic generator was improved by directly connecting the oscilloscope
with the circuit before the detection mode [25]. The attenuation was 27.5 dB for detecting voids,
and 32 and 38 dB for detecting the cracks in epoxy composite specimens with thicknesses of 50 and
30 mm, respectively. The frequency bandwidth of the ultrasonic generator was selected in the range of
1–6 MHz.

2.1.2. Transducer

A single beam transducer was used. The main parameters of transducers include the size of the
crystal plate, the frequency, the pulse width and the resolution. The size of the crystal plate determines
the acoustic energy emitted by transducers. The larger the size is, the higher the energy is. Low
frequency transducers have a strong penetration ability, but their pulse width is large, their wavelength
is long, and their sensitivity is low [33,36].

There is a near field area in transducers. Acoustic pressure is partly strengthened and partly
weakened in a near field so that the test result has a deviation [36]. According to the ultrasonic
propagation velocity or wavelength in an epoxy composite specimen, the length N of the near field
area is calculated by the following equation:

N =
D2

4λ
(1)

where D is the diameter of a transducer and λ is the wavelength [37]. A range of 1–3 N has a higher
sensitivity because it belongs to the non-diffusion zone of acoustic waves.
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In this paper, the type of the ultrasonic straight beam transducer was 1P20 (frequency: f = 1 MHz;
diameter: φ = 20 mm; and λ = 3 mm). The near field area was 33 mm, and the sound velocity was
3005.60 m/s.

2.2. Specimen

Epoxy composite specimens were prepared. The material and process were similar to those of
252 kV GIS basin insulators (the thickness was about 40 mm): To begin with, epoxy resin and alumina
filler (Al2O3) were mixed with a certain proportion. Then, the curing agent was added. Next, vacuum
degassing was conducted. Furthermore, the liquid mixture was poured into a preheated casting mold.
Finally, a two-stage solidification process was conducted [38]. The density was 2.23 g/cm3, and the
acoustic impedance was 0.67 × 106 g/cm2

·s.
The epoxy composite specimens with voids had cylindrical shapes (diameter: φ = 100 mm) with

thicknesses (d0) of 55 and 30 mm, recorded as A1 and A2, respectively. Artificial drill holes in the
bottom of specimens mimicked voids. For ultrasonic propagation, the solid epoxy–void interface at
the top of artificial voids in specimens was equivalent to that of voids in epoxy material. The diameter
(φ) and depth (d) of artificial voids are shown in Table 1, and the distribution is shown in Figure 2a.

Table 1. Diameter and depth of artificial voids in epoxy composite specimens.

Specimens φ1 mm
d/mm

φ2 mm
d/mm

φ3 mm
d/mm

A1
- 40 40

45 45 45
50 50 50

A2
15 15 -
20 20 -
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Figure 2. Epoxy composite specimens with artificial voids or cracks. (a) Voids; (b) cracks.

The epoxy composite specimens with cracks had cuboidal shapes, with sizes of 75 × 65 × 50 mm3

and 75 × 65 × 30 mm3, recorded as B1 and B2, respectively. Cracks were made by drilling holes on the
side of the specimen located 40 (B1) and 15 mm (B2) away from the upper surface. The cracks were
located in the material and could not be observed on the surface of the material. This was a latent
defect before the development of external, obvious cracks on insulators. The cracks were characterized
by length L (maximum size), height H, and width D. The length and width affected the ultrasonic
test results in this paper. For ultrasonic propagation, the epoxy–air interface at the half surface of an
artificial hole vertical to ultrasonic propagation was equivalent to that at the largest surface of a long
strip of the crack in specimens, as shown in Figure 3. The mimicked cracks included transverse cracks,
oblique cracks of a 45-degree angle, and vertical cracks, which all were 10 mm in length, 2 mm or 1 mm
in width, as shown in Figure 2b. The depth of the center point of oblique cracks was consistent with
that of the centerline of the transverse cracks and the top of the vertical cracks.
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1 
 

 
Figure 3. Diagrams of the detecting interface of an artificial hole and a long strip of a crack by the
ultrasonic beam. (a) Artificial hole; (b) long strip of crack.

2.3. Detection Principle

Ultrasonic reflected waves carry material information such as material structure, homogeneity,
internal defect, partial discharge, and deterioration [24].

The ultrasonic pulse-echo method was used to detect the artificial defects of epoxy composite
specimens in this paper. A straight beam transducer was placed vertically on the specimen surface. Then,
the piezoelectric crystal plate was stimulated by the ultrasonic generator to produce ultrasonic waves.
When ultrasonic waves reach a tested specimen, they reflect and transmit at the transducer–specimen
interface. The reflected waves on the specimen surface (F) are able to return to the piezoelectric crystal
plate along the original path, and the transmitted waves can continue to propagate along the straight
line in specimens. If ultrasonic waves encounter small defects such as voids in the propagation process,
they reflect at the specimen–void interface. However, the ultrasonic waves that do not encounter the
specimen–void interface propagate to the specimen’s bottom and reflect at the specimen–air interface.
In this condition, both the defect reflected waves (D) and the bottom reflected waves (B) are received,
as shown in Figure 4. If the transducers diameter is small, the ultrasonic beam is small, and the defect
is large, then the defect reflected wave can be received.
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The sound velocity V in the specimen is calculated according to the following equation [33,39]:

V =
2d0

t1 − t0
(2)

where d0 is the specimen thickness, t0 is the peak time of the surface reflected waves, and t1 is the peak
time of the bottom reflected waves.

The depth d of defects is calculated using the following equation.

d =
V(t2 − t0)

2
(3)
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where t2 is the peak time of the defect reflected waves. Thus, Equation (4) may be substituted for
Equation (3).

d =
d0(t2 − t0)

t1 − t0
(4)

This paper defines d% as the measurement deviation of the depth of defects:

d% =
|d− d0|

d0
× 100% (5)

The ultrasonic pulse-echo method was used to conduct the experiments of detecting voids
and cracks.

3. Results and Discussion

3.1. Void Detection

In this paper, detecting φ3 mm voids was carried out to investigate the effectiveness of detection,
and detecting φ2 mm and φ1mm voids was carried out to investigate the sensitivity of detection.

3.1.1. Voids of φ3 mm

The 1P20 transducer was used to detect φ3 mm voids in the A1 specimen. The reflected ultrasonic
waveforms at voids with different depths d are shown in Figure 5.
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Figure 5 shows that the 1P20 transducer could detect φ3 mm voids with a depth d of 50 mm.
According to Equations (4) and (5), the depth of defects and measurement deviation could be calculated,
as shown in Table 2. This shows that the deviation d% was less than 0.75%. With the increase in
defect depth, the amplitude Ad of defect reflected wave (D) gradually decreased. This was because
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the farther the ultrasonic propagation distance was, the higher the attenuation was and the less the
reflected acoustic energy was.

Table 2. The depth d of defects and the amplitude Ad of defect reflected waves at φ3 mm voids in the
A1 specimen (d0 = 55 mm).

Actual d/mm t0/us t1/us t2/us Calculated d/mm d% Ad/V

40 3.13 39.88 29.66 39.70 0.75 0.75
45 3.13 39.88 33.07 44.81 0.42 0.52
50 3.08 39.93 36.47 49.84 0.32 0.48

3.1.2. Sensitivity of Detection

The 1P20 transducer was used to detect voids (d = 50 mm) with diameters of 3, 2, and 1 mm,
respectively, in the A1 specimen. The reflected waveforms are shown in Figure 6.

Energies 2019, 12, x FOR PEER REVIEW 8 of 16 

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

relatively great, but the φ1 mm voids were difficult to be detected. This was because the larger the 
diameter of a void was, the larger the encountered reflecting interface was in the ultrasonic 
propagation. Then, the energy of the reflected wave and the amplitude were greater. Table 3 shows 
that the deviation d% was less than 0.32%. 

 
Figure 6. Reflected ultrasonic waveforms at voids with different diameters in the A1 specimen (d0 = 
55 mm). 

Table 3. The depth d of defects and the amplitude Ad of defect reflected waves at voids with a depth 
of 50 mm and different diameters in the A1 specimen (d0 = 55 mm). 

φ/mm t0/us t1/us t2/us 
Calculated 
d/mm d% Ad/V 

3 3.08 39.93 36.47 49.84 0.32 0.48 
2 3.17 39.88 36.47 49.89 0.22 0.16 

3.1.3. Depth of Detection 

The 1P20 transducer was used to detect φ2 mm voids in the A2specimen. The reflected 
waveforms are shown in Figure 7. 

Figure 7 illustrates that the 1P20 transducer could detect φ2 mm voids with a depth d of 15 mm 
in the near field (N = 33 mm). The deviation d% was less than 1.40%, as shown in Table 4. This shows 
that defects in the near field of the 1P20 transducer could still be detected with high accuracy.  

Figure 8 illustrates that the defect reflected waves could not be observed. This was because the 
epoxy composite specimen was thick and the sound attenuation at the frequency was large, so the φ1 
mm voids could not be successfully detected. It was necessary to investigate the special ultrasonic 
composite transducer or increase the frequency. 

Figure 6. Reflected ultrasonic waveforms at voids with different diameters in the A1 specimen
(d0 = 55 mm).

Figure 6 illustrates that the propagation time of the defect reflected waves in the same depth
was the same. The 1P20 transducer could detect φ2 mm voids, and the amplitude Ad of φ3 mm
voids was relatively great, but the φ1 mm voids were difficult to be detected. This was because the
larger the diameter of a void was, the larger the encountered reflecting interface was in the ultrasonic
propagation. Then, the energy of the reflected wave and the amplitude were greater. Table 3 shows
that the deviation d% was less than 0.32%.
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Table 3. The depth d of defects and the amplitude Ad of defect reflected waves at voids with a depth of
50 mm and different diameters in the A1 specimen (d0 = 55 mm).

φ/mm t0/us t1/us t2/us Calculated d/mm d% Ad/V

3 3.08 39.93 36.47 49.84 0.32 0.48
2 3.17 39.88 36.47 49.89 0.22 0.16

3.1.3. Depth of Detection

The 1P20 transducer was used to detect φ2 mm voids in the A2specimen. The reflected waveforms
are shown in Figure 7.Energies 2019, 12, x FOR PEER REVIEW 9 of 16 
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Figure 7. Reflected ultrasonic waveforms at φ2 mm voids with different depths d in the A2 specimen
(d0 = 30 mm).

Figure 7 illustrates that the 1P20 transducer could detect φ2 mm voids with a depth d of 15 mm in
the near field (N = 33 mm). The deviation d% was less than 1.40%, as shown in Table 4. This shows
that defects in the near field of the 1P20 transducer could still be detected with high accuracy.

Table 4. The depth d of defects and the amplitude Ad of defect reflected waves at φ2 mm voids in the
A2 specimen (d0 = 30 mm).

Actual d/mm t0/us t1/us t2/us Calculated d/mm d% Ad/V

15 3.08 22.81 12.81 14.79 1.40 0.44

20 3.08 22.76 16.14 19.91 0.45 0.32

Figure 8 illustrates that the defect reflected waves could not be observed. This was because the
epoxy composite specimen was thick and the sound attenuation at the frequency was large, so the
φ1 mm voids could not be successfully detected. It was necessary to investigate the special ultrasonic
composite transducer or increase the frequency.
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3.2. Crack Detection

In this paper, an orientation test of a φ2 mm crack was carried out to investigate the effect of crack
orientations on ultrasonic detection, and a φ1 mm crack was detected to investigate the sensitivity and
depth of detection.

3.2.1. Crack Orientations

The 1P20 transducer was used to detect transverse cracks, oblique cracks of 45 degrees, and
vertical cracks with a depth of 40 mm in the B1specimen. The reflected waveforms at the φ2 mm cracks
are shown in Figure 9. The depth d of cracks and the amplitude Ad of the defect reflected waves are
shown in Table 5.

As can be seen from Figure 9, for cracks of the same width, the transverse crack had the greatest
amplitude of the defect reflected wave, followed by the vertical crack, and, finally, the oblique crack.
This is because the transverse crack had the largest reflecting interface, followed by the vertical
(equivalent to voids) when ultrasound propagated in the specimen. However, the interface of oblique
cracks was 45 degrees from the direction of ultrasonic propagation, and most of the reflected waves
could not return along the original path. Thus, the transducer could only receive a small number of
reflected waves near the edge of the transducer. Additionally, the reflected waves of oblique cracks
appeared earlier than that of the transverse and vertical cracks. This was because that the oblique part
above the center of oblique cracks was closer to the upper surface, and the ultrasonic wave reflected
the transducer earlier.
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For the location of cracks, the calculated result of Table 5 took the width of artificial cracks itself
into account. For transverse and vertical cracks, the deviation d% was less than 1.13%. However, the
oblique crack was affected by the inclined part, and the calculated depth was determined from the first
arrival point of ultrasonic waves.
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Table 5. The depth d of defects and the amplitude Ad of defect reflected waves at φ2 mm cracks with a
depth of 40 mm and different orientations in the B1 specimen (d0 = 50 mm).

φ2 mm t0/us t1/us t2/us Calculated d/mm d% Ad/V

Transverse 2.94 35.73 28.22 39.55 1.13 0.84
Oblique 2.94 35.73 27.57 37.56 6.10 0.24
Vertical 2.94 35.73 29.15 39.97 0.08 0.32

3.2.2. Sensitivity of Detection

The 1P20 transducer was used to detect φ1 mm cracks with a depth d of 40 mm in the B1 specimen.
The reflected waveforms are shown in Figure 10.

Figure 10 shows that the defect reflected waves of transverse cracks could only be observed.
The depth of transverse crack calculated by the Equation (4) was 39.63 mm with a deviation of 0.93%.
Because the widths of cracks were small and the specimen was thick, the reflected waves of the oblique
cracks and vertical cracks could not be observed.
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3.2.3. Depth of Detection

The 1P20 transducer was used to detect φ2 mm cracks with a depth d of 15 mm in the B2 specimen.
The reflected waveforms are shown in Figure 11. The depth d of cracks and the amplitude Ad of defect
reflected waves are shown in Table 6.

Table 6. The depth d and the amplitude Ad of defect reflected waves at φ2 mm cracks with a depth of
15 mm and different orientations in the B2 specimen (d0 = 30 mm).

φ2 mm t0/us t1/us t2/us Calculated d/mm d% Ad/V

Transverse 2.89 22.53 11.99 14.90 0.67 0.80
Oblique 2.89 22.57 11.19 12.65 15.67 0.24
Vertical 2.89 22.43 12.59 14.89 0.73 0.28

Figure 11 illustrates the defect reflected waves of φ2 mm cracks with different orientations, and a
depth d of 15 mm could be observed. For transverse and vertical cracks, the deviation d% was less
than 0.73%.

Additionally,φ1 mm cracks with a depth d of 15 mm were detected in the B2 specimen. The reflected
waveforms are shown in Figure 12, which illustrates that the defect reflected waves of transverse
cracks could only be observed. The depth of the transverse crack calculated by the Equation (4) was
14.89 mm, with a deviation of 0.73%.

It can be concluded that the effective depth range for cracks was 15–40 mm, and a φ1 mm crack
could be detected by the 1P20 transducer.
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Figure 12. Reflected ultrasonic waveforms at φ1 mm cracks (d = 15 mm) with a different orientation in
the B2 specimen (d0 = 30 mm).
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4. Partial Discharge Measurements and Ultrasonic Detection of Voids

To show the correlation between used defects and the possible PD (partial discharge) initiation
after energizing the specimen, the PD measurements were conducted.

Firstly, the PD inception voltage was measured for a void with a diameter of 2 mm in the specimen
A2 by applying high voltage, shown in Figure 13. Then the PD inception voltage was 2.3 kV. Besides,
the void with a diameter of 2 mm could be detected by the ultrasonic pulse-echo method.
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(a) partial discharge pattern; (b) classification map.

Secondly, the PD inception voltage was measured for a void with a diameter of 1 mm in the
specimen A2 by applying high voltage, shown in Figure 14. Then the PD inception voltage was 2.5 kV,
which was 8.7% higher than the void with a diameter of 2 mm. Besides, the void with a diameter of
1 mm could not be detected by the ultrasonic pulse-echo method.
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5. Conclusions 

In this paper, some voids with different diameters or cracks with different diameters and 
orientations were artificially made in epoxy composite specimens similar to 252 kV GIS basin 
insulators. An ultrasonic pulse-echo system was set up to detect voids and cracks in specimens. The 
ultrasonic reflected wave was analyzed in the time domain. The depth of the defects was calculated 
by the propagation time of reflected waves. 

The results showed that the 1P20 transducer could detect voids and cracks in epoxy composite 
specimens. The smallest defects that could be detected were voids, vertical cracks, oblique cracks of 
φ2 mm, and transverse cracks of φ1 mm. For the φ2 mm cracks, the amplitude of the transverse crack 
was the greatest, followed by the vertical crack, and, finally, the oblique crack. A depth of 50 mm was 
detected in epoxy composites by the 1P20 transducer, and the deviation was less than 1.40%. 
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Figure 14. The partial discharge pattern and classification map of a void with a diameter of 1 mm.
(a) partial discharge pattern; (b) classification map.

The above results illustrate that the difference of the PD inception voltages is very small for the
voids with diameters of 1 mm and 2 mm, and the characteristics of partial discharge patterns are
consistent. From the PD measurement, it is difficult to distinguish voids with diameters of 1mm and
2mm, but the paper can distinguish them by the ultrasonic pulse-echo method.
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5. Conclusions

In this paper, some voids with different diameters or cracks with different diameters and
orientations were artificially made in epoxy composite specimens similar to 252 kV GIS basin insulators.
An ultrasonic pulse-echo system was set up to detect voids and cracks in specimens. The ultrasonic
reflected wave was analyzed in the time domain. The depth of the defects was calculated by the
propagation time of reflected waves.

The results showed that the 1P20 transducer could detect voids and cracks in epoxy composite
specimens. The smallest defects that could be detected were voids, vertical cracks, oblique cracks of
φ2 mm, and transverse cracks of φ1 mm. For the φ2 mm cracks, the amplitude of the transverse crack
was the greatest, followed by the vertical crack, and, finally, the oblique crack. A depth of 50 mm was
detected in epoxy composites by the 1P20 transducer, and the deviation was less than 1.40%.
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