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Abstract: This paper solves the allocation planning problem of integrating large scale renewable
energy hybrid distributed generations and capacitor banks into the distribution systems.
Extraordinarily, the integration of renewable energy hybrid distributed generations such as solar
photovoltaic, wind, and biomass takes into consideration the impact assessment of variable
generations from PV and wind on the distribution networks’ long term dynamic voltage and
small-signal stabilities. Unlike other renewable distributed generations, the variability of power from
solar PV and wind generations causes small-signal instabilities if they are sub-optimally allocated
in the distribution network. Hence, the variables related to small-signal stability are included and
constrained in the model, unlike what is obtainable in the current works on the planning of optimal
allocation of renewable distributed generations. Thus, the model is motivated to maximize the
penetration of renewable powers by minimizing the net present value of total cost, which includes
investment, maintenance, energy, and emission costs. Consequently, the optimization problem is
formulated as a stochastic mixed integer linear program, which ensures limited convergence to
optimality. Numerical results of the proposed model demonstrate a significant reduction in electricity
and emission costs, enhancement of system dynamic voltage and small-signal stabilities, as well as
improvement in welfare costs and environmental goodness.

Keywords: renewable energy; renewable resource intermittencies; distributed generations; net present
value of total cost; mixed integer linear programming; distribution network; dynamic small-signal
stability; dynamic voltage stability

1. Introduction

Distributed generations (DGs) are modular power generating systems that are placed in the
distribution systems proximate to consumption centers in order to satisfy immediate power needs,
defer investment on transmission and distribution upgrade and expansion, reduce production and
welfare costs, reduce losses, diversify energy resources, improve system reliability, power quality, and
network stabilities, and many other power system benefits accrue from it [1,2]. The technologies
adopted in DG integrations may be renewable based (solar photovoltaic (PV), wind, biomass,
fuel cells, etc.), or non-renewable based (internal combustion engines, etc.), or a hybrid of both.
As renewable energy resources (RES) hybrid, DG provides a sustainable option due to its infinitude
quantities, complementarity, environmental goodness, technological advancement, and economic
profitability. However, inappropriate type, suboptimal sizing, and improper location of renewable
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energy hybrid distributed generations (REHDGs) such as PV and wind cause small-signal oscillations
in the distribution systems (DSs). This is due to the variability of output power generated and injected
from these REHDG, which totally depends on intermittent solar radiation, temperature, and wind
speed. Several research works have agreed that the variability of power generated from intermittent
renewable resources relative to load or vice versa results in power system oscillations [3–8]. That is,
power imbalance between the total generations from the REHDGs, other plants and transmission feeder
supply, and power demand aggregate at a time results in small-signal instabilities in the distribution
system [9,10]. At large scale integration levels, the small-signal instabilities due to the variability
of REHDGs power can have significant effects on the distribution networks (DNs) [5,7,10]. All the
aforementioned concerns make the formulation and optimization of REHDGs’ optimal allocation
problems a task to solve with simple mathematical models. To obtain a realistic model, it is very
important to represent the network as a dynamic model, use multiple periods for the planning horizon,
and include all the pivotal constraints. Therefore, the planning and design of the optimal allocation
of renewable energy hybrid DGs (REHDGs) requires a serious consideration of the type of network
configurations, types of DG technologies, their intermittency modeling, and the number, capacities,
and locations of the units. This is to achieve minimum total costs while the dynamic small-signal
stability requirements of the network are simultaneously met and appropriately assessed.

There have been several diverse objectives continuously employed by many researchers on
the optimal allocation of DGs in DSs. Some of these objectives are minimization of system losses
and enhancement of voltage profile, minimization of line loss, minimization of investment and
operation costs, minimization of total penalties for system loss compensations, minimization of
renewable DG penetration, maximization of DG capacity, maximization of system reliability, and
so on. Minimization of the NPV of the total cost as an objective function is very common in the
planning of optimal allocation of REHDGs. Analytical based methods were proposed in [11–13] for the
planning and operation of the optimal locations and sizes of DGs in DSs. Numerical based methods
whose algorithms find numerical solutions for different DG allocation problems were employed
in [14–20]. Linear programming (LP) [14,15], mixed integer non-linear programming (MINLP) [16,17],
quadratic programming (QP) [18,19], and optimal power flow (OPF) [20] are some of the common
numerical methods applied in solving DGs’ allocation problem. Intelligent search (IS) based methods
are differently employed to solve the optimal sizing and placement of DGs problems. IS methods
utilize artificial intelligence (AI) algorithms like the genetic algorithm (GA) [21,22], particle swarm
optimization (PSO) [23,24], simulated annealing (SA) [25–27], harmony search (HS) [28,29], big bang
crunch (BBC) [30,31], the fireworks algorithm (FA) [32,33], and the water drop algorithm (WDA) [34,35].

However, some current works use mixed integer linear programming (MILP) [36–39] for the
mathematical formulation of the allocation model due to its ability to detail the physics and mechanics
of the problems and find global optimal solutions with less computational requirement. In Munoz
Delgado et al., MILP was used in the expansion planning of DS to minimize the NPV of total cost
of investment, maintenance, production, power losses, and unserved power [36]. A multi-stage and
stochastic mathematical model, formulated as a mixed integer linear programming (MILP) problem,
was employed in [37] to find the optimal time, sizes, and placement of renewable DGs, compensators,
and energy storage systems with a view toward minimizing the NPV of the total cost. In [38],
a chance constrained stochastic MILP model was formulated for determining optimal decisions in
DGs’ investments with operational uncertainties modeling. The model was further optimized with
a variant of the evolutionary method, the vertical sequencing protocol, to minimize the total cost of
investment and operation. The authors in [39] proposed MILP to optimize DG capacity hosting of a
radial distribution network through the reconfiguration of existing tie and smart switches with the
objective to maximize total DG capacity deployed into the network at a minimized cost. All the works
discussed here evaluated static voltage stability, and few modeled the uncertainties of renewable
resources, but were unable to assess the effects of the variability of renewable powers injected on



Energies 2019, 12, 4777 3 of 31

the networks’ dynamic voltage and small-signal stabilities. Similarly, the global optimality of their
solutions was not reported.

Despite several research studies in the areas of optimal sizing and placement of distributed
generation problems, most of these works considered only the optimal location and sizing of a single
DG unit, and those that were multiple DGs were mostly conventional sources. Most of the works
did not evaluate the network stability, and those that did only evaluated static voltage stability, but
not even a dynamic one. They did not evaluate long term dynamic small-signal stability, which is
the prerequisite for a power system to be in operation in the first instance. Further improvements
introduced in this study include the modeling of uncertainties in REHDGs’ allocation expansion
planning model to account for the renewable resources’ intermittency, the usage of time varying load
demands in a dynamic distribution network, and the use of dynamic model of the planning horizon to
achieve optimal long term planning where capacity is added as and when needed. The planning of the
optimal sizing, timing, and placement of renewable DG units to attain minimum cost and enhance the
small-signal stability level during integration in the distribution network is the strength of this paper.
Hence, its contributions are as follows:

• To the authors’ knowledge, no literature has ever presented an assessment of long time dynamic
small-signal stability in the planning optimization of REHDGs’ allocation in distribution networks.

• Unlike previous studies, this work incorporates the variables necessary for the network stability
and includes pivotal constraints that are necessary in REHDGs’ optimization for enhancing the
long time dynamic small-signal stability of distribution networks.

• In this study, dynamic planning is employed for the planning horizon, as opposed to the static
model usually applied in most research works. The planning horizon is split into various time
periods, which are comprised of a specific number of years and sub-years.

• Unlike most existing research works, this work models the uncertainty of intermittent RES and
implements time varying loads in a dynamic model of the distribution network.

In this paper, a mixed integer linear programming algorithm is proposed as done in [37], to find
the optimal time, sizes, and locations of multiple REHDGs in the distribution network systems (DNS).
The typical syntax of a mixed integer linear programming formulation is presented as follows:

Minimize Fm(u, v) = fm(u, v) (1)

Subject to:

Ri(u, v) ≤ b; i = 1, 2, . . . , p (2)

Sj(u, v) = beq; j = 1, 2, . . . , m (3)

umin ≤ u ≤ umax (4)

where Fm(u, v) is the objective function, u and vare the vectors of continuous and discrete variables,
respectively, and Expressions (2) and (3) are the inequality and equality constraints, respectively.
Consequently, an allocation optimization model that determines the optimal sizes, time, and locations
of renewable power units (solar PV, wind, and sugar-cane biomass) and capacitor banks (CB)
and constrains variables that are responsible for network stability is developed. The optimal integration
of these technologies is to essentially meet the objectives of maximizing the RES power generated
and injected into the DNS and enhancing the small-signal stability (SSS) of the distribution systems.
The resulting optimization model is formulated as a mixed integer linear mathematical program.
In addition, the principle of fast decoupled power flow is applied in the linearization of traditional
non-linear AC network model.
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The remainder of the paper is arranged as follows: The mathematical modeling of renewable
resources and load is presented in Section 2. The output power of PV modules and wind turbines
that can be harnessed during the planning time is calculated in Section 3. Section 4 formulates the
optimization model for solving the RES allocation planning problem. Section 5 theorizes about the
power network model, renewable generators dynamic models, and the eigenvalue analysis approach
necessary for evaluating the SSS of the proposed model. The discussion and analysis of the results
from the case studies used for the validation of the proposed model are presented in Section 6. Finally,
the main conclusions of this paper are drawn in Section 7.

2. Modeling of Renewable Energy Resources and Load

This section presents the mathematical formulation of models for renewable energy resources
and power demands (load). The annual data for solar irradiance and ambient temperature and wind
speed used for the estimation of solar PV and wind generators are the measurements collected in
the KwaZulu-Natal region of South Africa through the South Africa National Energy Development
Institute (SANEDI) and Wind Atlas of South Africa (WASA), respectively. These resources are evenly
distributed over a range of distance in this region. The site under study was equally chosen because of
the large scale cultivation of sugar-cane, whose waste is an economic quantity for large scale generation
of electricity [40].

2.1. Processing of Climatic Data

Five years of climatic data of these renewable resources collected from the studied region were
processed using the beta and Weibull probability distribution function for estimating hourly solar
irradiance and wind speed, respectively. The respective years were grouped into seasons: summer,
autumn, winter, and spring. A month was taken to be thirty (30) days, of which each seasonal segment
had 450 solar irradiance and wind speed data points, i.e., 5 years × 3 months a season × 30 days
a month. From the seasonal data, the shaping (a and k) and scaling (b and c) parameters of the
beta and Weibull distribution functions were respectively generated for each seasonal segment using
MATLAB function “dfittool”. This was done to redistribute the raw irradiance and wind speed data
to follow the beta and Weibull distributions, respectively. Thereafter, one year was selected as the
study period and split into seasons, of which each season was described by a day in that season
segment. The scaling and shaping parameters mentioned were then applied to generate the frequency
distribution of irradiance and wind speed data of a typical day for each season, respectively. Thus,
the beta and Weibull distribution functions of each hour were generated using (5) and (6), respectively.
For clarity, the typical day of a season was the day whose 24 hourly values gave the lowest standard
deviation as corresponded to the 24 hourly average values of such a season. The typical day was
further divided into 24 h segments, which referred to particular hourly periods of the whole season.
That is, a whole year had 96 h periods for 24 h a day per season.

2.1.1. Modeling of Solar Irradiance

The solar irradiance data usually had two modes of distribution functions for the same hour of a
typical day of each season. The beta PDF parameters obtained from the seasonal segments were used
to obtain a typical day’s hourly behavior of solar irradiance data as in the equation below:

fB(I) =


Γ(a+b)

Γ(a)Γ(b) ∗ Ia−1 ∗ (1− I)b−1; 0 ≤ I ≤ 1, a ≥ 0, b ≥ 0

0; otherwise
(5)
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where:

fB(I) = the beta distribution function of I
I = solar irradiance
a = the scaling parameter of the beta distribution function
b = the shaping parameter of the beta distribution function
Γ = the Gamma function

2.1.2. Modeling of Wind Speed

The wind speed of the site under study followed a Weibull probability distribution, and its
behavior was modeled with the Weibull PDF fW(v) as in (6). This model was acceptable based on the
good results obtained from the Anderson and Darling (AD) goodness of fit test.

fW(v) =
k
λ

( v
λ

)k−1
exp(−

v
λ )

k
(6)

where:

k = the shaping parameter of the Weibull distribution function
λ = the scaling parameter of the Weibull distribution function
v = wind speed in m/s

2.2. Modeling of Sugar-Cane Biomass

The annual electricity output Eanl delivered by the biomass power generation system with the
rated electricity generator depended on the capacity utilization factor, CUF, as given below:

Eanl = Pbio × 8760× CUF (7)

Then, the hourly electricity output of sugar-cane waste/shaft was modeled with this equation:

Ebio,h = Pbio,h × ηd f g (8)

where:

Ebio,h = the output energy of the biomass/electricity generator per hour
Pbio,h = the rated power of the biomass/electricity generator per hour
ηd f g = the efficiency of the biomass/electricity generator

2.3. Modeling of Load Demand

The load profiles used in this study were computed by down-scaling the actual annual load
profile of South Africa [41] to the IEEE-14 bus and -118 bus systems and implemented as case studies.
They presented the hourly load demand level for all the planning years.

3. Calculation of PV Module and Wind Turbine Output Power

3.1. Calculation of PV Generator Output Power

The PV module output power corresponding to each state depended on the solar irradiance and
temperature of the site, as well as the module characteristics. After generating beta PDF for a specific
24 h period of a typical day, the output power of a PV module during various states was estimated
from the PV module characteristics’ power performance curve for the hourly time segment using (9).
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Note that the average value of the solar irradiance of a specific state (Iap) was used to extract the
state output power from the module power curve.

Tcp = TA + Iap(
NOTpv − 20

0.8
)

Ip = Iap[Isc + Kc(Tcp − 25)]

Vp = Voc − Kv ∗ Tcp

FF =
Vmppt ∗ Imppt

Voc ∗ Isc

Ppv,h(Iap) = N ∗ FF ∗Vp ∗ Ip (9)

where Tcp is the temperature of the PV cells (◦C) at state p; TA is the ambient temperature of the
site (◦C); Kc is the current temperature coefficient (A/◦C); Kv is the voltage temperature coefficient
(V/◦C); NOTpv is the nominal operating temperature of PV cell (◦C); Isc is the short circuit current
(A); Voc is the open circuit voltage (V); Ppv,h(Iap) is the output power of the PV module at state p; Iap

is the average solar irradiance of state p; FF is the fill factor (-); Imppt is the current at the maximum
power point (A); Vmppt is the voltage at the maximum power point (V); and Prs is the solar panel rated
power (MW).

Availability factor Ppv,h(Iap)/Prs (parameter AFpp,h) is the output power of all PV modules at
the ith bus. The parameter AFpp,h was computed using the hourly irradiance data of each state.
The calculation of the AFpp,h parameter was global, as the parameter was time dependent and affected
all the PV modules equally.

The number (np,i) of rated PV generators (Prs) per bus is one of the decision variables for the
problem. Multiplying the number of PV generators (np,i) and the rated PV generator (Prs) with the
parameter AFpp,h in the power balance equation gave the actual power output of the solar based
DG units.

3.2. Calculation of Wind Generator Output Power

The wind turbine output power corresponding to each state depended on the wind speed of the
site under study. After generating the Weibull PDF for a specific 24 h period of a typical day, the output
power of the wind turbine during various states was determined from the wind turbine power curve
using (10). The average value of the wind speed Vaw of a specific state was used to extract that state
output power.

Pw,h(WSaw) =


0; 0 ≤ Vaw ≤ Vci

Prw. Vaw−Vci
Vrw−Vci

; Vci ≤ Vaw ≤ Vrw

Prw; Vrw ≤ Vaw ≤ Vco

0; Vco ≤ Vaw

(10)

where Vci, Vrw, and Vco are the wind turbine cut-in, rated, and cut-off speeds, respectively. Pw,h(WSaw)

is the wind turbine output power at state w. Vaw is the average wind speed of state w, and Prw is the
wind turbine rated power (MW).

Availability factor Pw,h(WSaw)/Prw (parameter AFww,h) is the wind turbines’ output power
at the ith bus. The parameter AFww,h was computed using the hourly wind speed data of each
state. This calculation was global, as the parameter was time dependent and affected all the wind
turbines equally.

The number (nw,i) of rated wind turbines (Prw) per bus is one of the decision variables for the
problem. Multiplying the number of wind turbines (nw,i) and the rated wind turbines (Prw) with the
parameter AFww,h in the power balance equation gave the actual power output of the wind based
DG units.
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4. Mathematical Formulation of the Planning Problem

This section presents the proposed multi-stage optimization model that finds the optimal sizes,
number, time, and locations of REHDGs, simultaneously focusing on solar PV, wind, and biomass
(sugar-cane waste) DGs and capacitor banks. The major objective of the proposed model was to
improve the small-signal stability and maximize the REHDG power generated and absorbed into DNS
at a minimized cost. The model was formulated as a stochastic mixed integer linear programming
(MILP) optimization problem in a MATLAB environment whose syntax is presented in Section 1.
Furthermore, a linearized alternating current (AC) network model based on the fast decoupled power
flow (FDPF) was used in the formulation of the problem in order to capture the characteristics of the
network system effectively.

4.1. The Objective Function

The objective of this planning formulation was to maximize renewable power integration
into the DNS from the distribution system operator’s (DSO) perspective by optimally allocating
solar PV, wind, and biomass DGs and capacitor banks and constraining the optimization variables
related to small-signal stability to within the required level at the least cost. The objective function
of the formulated MILP planning stage optimization problem was to minimize NPV of the total
cost (11), subject to the linear constraints stated in Section 4.2.

Minimize,

CNPV
T = ∑

t∈Ωt

(1 + d)−t

d
CI

t + ∑
t∈Ωt

(1 + d)−t(CM
t + CE

t + CX
t ) + ∑

t∈Ωt

(1 + d)−T

d
(CM

T + CE
T + CX

T ) (11)

The first term in (11), the cost term CI
t , is the total investment cost amortized in annual installments

throughout the lifespan of the installed components, considering there is reinvestment in an identical
piece of component after the component’s lifespan expiration, as done in [36,37]. This cost valuation
was done using the principle of an infinite or perpetual planning horizon [42]. In this study, the overall
investment cost was taken as the summation of investment costs on existing and new DGs and capacitor
banks, as given in (12).

The capital recovery factor d(1+d)LT

(1+d)LT−1 was used to weight all the investment costs to return interest
on capital invested for all the components. The capital recovery factors for the components were

computed as RFg = d(1+d)LTg

(1+d)LTg−1
∀g ∈ DG; and RFcb = d(1+d)LTcb

(1+d)LTcb−1
∀cb ∈ cb, where LT is the life time

of each component (generators and capacitor banks) and d is the interest rate on investment. The
formulations of investment variables (x−,i,t − x−,i,t−1) included in (12) enforced that the addition of
the investment cost of a component in the summation was done just one time. This implies that such
component(s) can only be put to utilization at the beginning of a planning year and not midway into
the planning year, even if it is bought mid-year.

CI
t = RFg ∑

g∈ΩDG
∑

i∈Ωi

ICg,i(xg,i,t − xg,i,t−1) + RFcb ∑
cb∈Ωcb

∑
i∈Ωi

ICcb,i(xcb,i,t − xcb,i,t−1) (12)

The second term in (11) corresponds to the operation and welfare costs throughout the time stages.
This term consists of three cost terms vis-à-vis: total maintenance cost (CM

t ), total energy cost (CE
t ),

and total emission cost (CX
t ). Equation (13) models the maintenance cost, CM

t , which is the sum of the
respective maintenance costs of existing and new DGs (MCE

g and MCN
g ) and capacitor banks (MCE

cb
and MCN

cb) at each planning stage under the principle of a perpetual planning horizon. The cost term
CE

t denotes the total energy cost in the system based also on a perpetual planning horizon. CE
t is the

sum of the costs of power generated by the existing and new DGs and the purchase from the utility
for each stage as modeled in (14). The costs of power generated by the existing and new DGs are the
multiplication of the cost of unit energy produced (i.e., expected cost of operation) and the amount
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of power produced. The cost term CX
t sums up the emission costs associated with existing and new

DGs and the power from the utility feeders, as characterized in (15). The emission cost is the expected
costs of emissions based on the power produced from the existing and new DGs and purchased from
the utility, respectively. Here, the cost function of emission was assumed to be linear for the sake of
simplicity. The cost function, in reality, was highly non-linear and non-convex [43].

CM
t = ∑

g∈ΩDG
∑

i∈Ωi

MCE
g ∗ ug,i,t + ∑

g∈ΩDG
∑

i∈Ωi

MCN
g ∗ xg,i,t

+ ∑
cb∈Ωcb

∑
i∈Ωi

MCE
cb ∗ ucb,i,t + ∑

cb∈Ωcb
∑

i∈Ωi

MCN
cb ∗ xcb,i,t (13)

CE
t = ∑

s∈Ωs
∑

h∈Ωh
∑

g∈ΩDG
∑

i∈Ωi

(OCE
g,i,s,h,tP

E
g,i,s,h,t + OCN

g,i,s,h,tP
N
g,i,s,h,t) ∗ 90

+ ∑
s∈Ωs

∑
h∈Ωh

∑
ς∈Ως

EPSS
ς,s,h,tP

SS
ς,s,h,t ∗ 90 (14)

CX
t = ∑

s∈Ωs
∑

h∈Ωh
∑

g∈ΩDG
∑

i∈Ωi

γCO2e
s,t ERE

g PE
g,i,s,h,t ∗ 90 + ∑

s∈Ωs
∑

h∈Ωh
∑

g∈ΩDG
∑

i∈Ωi

γCO2e
s,t ERN

g PN
g,i,s,h,t ∗ 90

+ ∑
s∈Ωs

∑
h∈Ωh

∑
ς∈Ως

γCO2e
s,t ERSS

ς,s,h,tP
SS
ς,s,h,t ∗ 90 (15)

where γCO2e
s,t , ERg, and OCg,i,s,h,t are the penalty for emissions ($/tCO2e), emission rate (tCO2e/MWh),

and operation costs ($) for the respective components.
The third term in (11) presents the net present value of the costs incurred for production

(maintenance and energy costs) and emissions (welfare) after the last planning stage. This cost
is also referred to as the end effect, accounting for the residue values of the invested components.
It should be noted that this term is also estimated based on the principle of a perpetual planning
horizon and depends on the operation and emission costs of the last time stage.

4.2. The Constraints

Constraints were applied on the REHDGs allocation problem to exert restrictions on the
optimization of the objective function(s) with respect to the decision variables. The constraints used in
the optimal REHDG allocation problem formulations were as below:

1. Complex power flow: The network AC power flow commonly known as Kirchhoff’s law of
voltage is highly non-linear and non-convex. The equations representing it are given below.

Pk = V2
i Gk −ViVj(GKcosθk + Bksinθk) (16)

Qk = V2
i Bk + ViVj(Gksinθk − BKcosθk) (17)

The principle of the fast decoupled power flow (FDPF) model, postulated in [44], was applied
to linearize (16) and (17) to yield (18) and (19). The expression for voltage magnitude at bus i is
given as in (20).

Pk = [Bij ∗ θi] (18)

Qk = [Bij ∗Vi] (19)

Vi = Vi + ∆Vi (20)

where ∆Vmin
i ≤ ∆Vi ≤ ∆Vmax

i
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2. Voltage magnitude and angle constraints: The voltage magnitude and angle must be constrained
to maintain the voltage and small-signal stabilities of the system.

Vmin ≤ V ≤ Vmax (21)

θmin ≤ θ ≤ θmax (22)

3. Power flow limits: On any line k, the power flow must be within the specified limits for that line
as in (23) and (24).

0 ≤| Pk |≤ Pmax
k (23)

Qmin
k ≤| Qk |≤ Qmax

k (24)

4. Active and reactive power limits of power from transmission feeders: The power supply from
the feeder should have minimum and maximum limits for technical reasons. Inequalities (25)
and (26) enforce the limits.

PSSmin
ς,s,h,t ≤ PSS

ς,s,h,t ≤ PSSmax
ς,s,h,t (25)

QSSmin
ς,s,h,t ≤ QSS

ς,s,h,t ≤ QSSmax
ς,s,h,t (26)

where PSSmax
ς,s,h,t = (1− ε) ∗∑i∈Ωi PDi and QSSmax

ς,s,h,t = (1− ε) ∗∑i∈Ωi QDi.
5. Active and reactive power limits of REHDGs: The output of a unit generator should not exceed

its capacity multiplied by the generation binary variables. This ensures that the power generation
variable of a generator is zero when it is either unused or un-invested. The capacity at a given
year y and state s is considered to be constrained between maximum and minimum values.
The active and reactive capacity limits of exiting REHDGs are given in (27) and (28), respectively.
Equations (29) and (30) give the corresponding limits for the new REHDGs.

PEmin
g,i ug,i,t ≤ PE

g,i,(t) ≤ PEmax
g,i ug,i,t (27)

QEmin
g,i ug,i,t ≤ QE

g,i,t ≤ QEmax
g,i ug,i,t (28)

PNmin
g,i xg,i,t ≤ PN

g,i,t ≤ PNmax
g,i xg,i,t (29)

QNmin
g,i xg,i,t ≤ QN

g,i,t ≤ QNmax
g,i xg,i,(t) (30)

6. Reactive power limits of the capacitor bank: The reactive power supply from capacitor banks
should be bounded. Inequalities (31) and (32) limit the reactive power generated to between zero
and maximum capacity.

0 ≤ QE
cb,i,s,h,t ≤ QEmax

cb ∗ ucb,i,t (31)

0 ≤ QN
cb,i,s,h,t ≤ QNmax

cb ∗ xcb,i,t (32)

7. REHDGs and capacitor banks’ penetration limits in the DNS: The total penetration limits in the
system are determined by the government policy on the average penetration of the renewable
DG units and reactive compensators.

∑
g∈ΩDG

AFg,h,t ∗ PE
g,i,s,h,t + ∑

g∈ΩDG

AFg,h,t ∗ PN
g,i,s,h,t ≤ ε ∗ ∑

i∈Ωi

PDi,s,h,t; ∀ ∈ 2 : Ni (33)

∑
cb∈Ωcb

QE
cb,i,s,h,t + ∑

cb∈Ωcb

QN
cb,i,s,h,t ≤ ε ∑

i∈Ωi

QDi,s,h,t; ∀ ∈ 2 : Ni (34)

where ε is the maximum penetration limit as a percentage of the load profile and AFg,h,t is the
capacity utilization factor of the generators.



Energies 2019, 12, 4777 10 of 31

8. Active and reactive power balance (Kirchhoff current law): When the distribution network
expansion planning includes new renewable generations with supply from the utility substation,
then the new network is modeled as (35) and (36). At each node, power balance must be observed.
This is achieved with the constraints:

PSS
ς,s,h,t + ∑

g∈ΩDG

(PE
g,i,s,h,t + PN

g,i,s,h,t) + ∑
in,k∈Ωi

Pk,s,h,t − ∑
out,k∈Ωi

Pk,s,h,t = PDi,s,h,t + PLk,s,h,t (35)

QSS
ς,s,h,t + ∑

g∈ΩDG

(QE
g,i,s,h,t + QN

g,i,s,h,t) + ∑
cb∈Ωcb

(QE
cb,i,s,h,t + QN

cb,i,s,h,t)

+ ∑
in,k∈Ωi

Qk,s,h,t − ∑
out,k∈Ωi

Qk,s,h,t = QDi,s,h,t + QLk,s,h,t (36)

5. Small-Signal Stability

The small-signal stability (SSS) of a power system is its capability to maintain or regain
synchronism during small disturbances. Small-signal instabilities occur in power systems basically
as a result of oscillations from the synchronous generators’ rotor angle speed, the intermittent nature
of renewable generators’ power, and/or the market demand (sudden changes in load demand) that
shifts the power system operating point into an overstretched state [45,46]. The dynamic small-signal
oscillations due to the variability of REHDGs’ (solar PV, wind, and biomass) output power became
important issues in the present setup of DNS. The SSS issue in today’s DN is mostly of poor damping of
the system oscillations when variable renewable generations are injected into the network. SSS analysis
gives important details on the intrinsic dynamic characteristics of DNSs. Therefore, the dynamic
network model incorporating the suitable time-varying load model is a subject of priority any time the
dynamic stability of the power network is being evaluated.

5.1. Power System Network Model

There are two network models that are commonly used in studying and analyzing power system
dynamics and network power flows: the static and dynamic models. Each of these network models
has specific areas of implementation, which depends on the kind of problem being considered.
Studies related to small-signal stability are dynamic power studies that employ the dynamic model of
the power network. Thus, the dynamic network model is described by some non-linear differential
algebraic equations (DAEs), whose semi-explicit form is (37). Some of the assumptions made to
simplify the mathematics of the network without loss of generality are that: there are no losses and
bulk energy storage in the network, so that the total power injected equals the total load demand.

ẋ = f (x, y, z1)

0 = g(x, y, z2) (37)

where x and y are the vectors of state and algebraic variables, respectively, and z1 and z2 are control
inputs and exogenous parameters like load demand.

5.1.1. Dynamic Models of Power Generators

This section develops dynamic models of conventional or synchronous generator (SG) and
renewable energy distributed generators (REDGs) such as PV, wind, and biomass generators.
These generators are referred to as the components of the network. The first dynamics of physics is
assumed in each of these models. In the allocation of DGs, many REDGs can be installed on a bus,
while a single SG represents the supply from the transmission feeders and normally assigned to Bus 1
of the distribution network. The aggregation of individual REDGs allocated to a bus can be referred to
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as a solar PV farm, wind farm, and biomass farm (system). Different aggregated units are allowed to be
connected to a single bus. There may be some unit-less buses where no load or generator is connected.
Therefore, a general form of dynamic model incorporating differential algebraic equations (DAEs) of
various components of a distribution system can be written as in (38). The network component (r) may
be an SG, PV farm, wind farm, or biomass system.

ẋr = fr(xr, yr, z1r; γr)

Pr + jQr = gr (xr, yr, z2r; γr) (38)

where γr is the rth component model parameter that depends on the operating point, which is zero for
the initial operating point. The details of the functions in (38) are presented subsequently. A simplified
dynamic model called the classical model of these generators (SG and REDGs) is considered in the
analysis of this work. The simulation results from several works [47,48] proved that both full and
simplified models of these renewable generators provide relatively the same result in the analysis
of network small-signal stability; hence the justification for the use of the simplified models of the
generators. The state space descriptions of the SG and REDGS models complying with the expression
in (38) are presented in the subsequent subsections.

5.1.2. Dynamic Model of the Synchronous Generator

A synchronous generator is comprised of an exciter system, a prime-mover, and a synchronous
machine. The exciter causes magnetization of the rotor when currents are induced in the exciter
winding. The turbine converts the kinetic energy of a moving fluid to mechanical power, which rotates
the rotor to generate amagnetic field. A synchronous machine transforms mechanical to electrical
power, which is injected into the network. There are various models of SG that are being used in power
system analysis. However, the classical model or the constant voltage behind the transient reactance
(X′d) is adopted in this paper. This model is comprised of differential equations (DEs) of the motion of
the generator known as electro-mechanical swing dynamics (39) and (40) and the network algebraic
equations called electro-magnetic dynamics in (41)–(57). The mechanical power Pm was assumed to be
constant for the sake of simplicity. A simplified model of SG in state space is presented as differential
algebraic equations (DEAs) below:

For generator buses i = 1, . . . , m:

α̇i = ωi −ωs (39)

2Hi
ωs

ω̇i = Pmi −
m+n

∑
j=1

E′sg,iVi

X′di
sin(αi − θi)− Di(ωi −ωs) (40)

where the input Pmi is the mechanical power applied to the ith generator; E′sg,i > 0 is the constant
voltage magnitude behind the transient reactance of the generator; Vi is the voltage magnitude; θi is
the voltage angle at bus i; Mi =

2Hi
ωs

> 0 is the inertia; Di > 0 is the damping coefficient; X′di > 0 is the
transient reactance; αi > 0 is the rotor angle; and ωi is angular frequency of the ith generator.

The network algebraic equations’ part of DAE including power flow due to the SGs’ injections
into the buses is given as:

For generator buses i = 1, . . . , m,

Pi = nsg

m+n

∑
j=1

ViVj
[
Bi,jsin(θi − θj) + Gi,jcos(θi − θj)

]
−

E′sg,iVi

X′di
sin(αi − θi) (41)
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Qi = nsg

m+n

∑
j=1

ViVj
[
Gi,jsin(θi − θj)− Bi,jcos(θi − θj)

]
−

V2
i

X′di
+

E′sg,iVi

X′di
cos(αi − θi) (42)

where Gi,j ≥ 0 is the conductance and Bi,j ≥ 0 the susceptance. The terms
E′sg,iVi

X′di
sin(αi − θi) and

(Vi)
2

X′di
−

E′sg,iVi

X′di
cos(αi − θi) represent the active and reactive power generated by the SG and absorbed

into the network.

5.1.3. Dynamic Model of the Photovoltaic Generator

A PV generator of a solar farm is comprised of a semiconductor device, a DC/DC converter
(buck and boost), a DC link, and a solid state synchronous DC/AC three phase voltage source inverter
(VSI), which is similar to a synchronous machine excluding the revolving components. A PV array
is comprised of a parallel connection of nll circuits with each containing a number (ns) of PV cells
connected in series. A buck and boost converter ensures that the PV cell operates around the maximum
power point (MPP) to maximize the output power of the cell. A DC link is a component with a capacitor
(and sometimes with inductance) and used to filter ripples that result from the rectification stage.
The DC/AC VSI is used for converting DC output voltage into AC output voltage and regulating
active and reactive power flowing in the system. The PV generator supplies balanced sinusoidal
voltages at fundamental frequency with several switching elements under various controllers. The I-V
curve of the PV cell and switching functions are non-linear; thereby, it becomes excessively complex to
model the system fully to evaluate its stability. Consequently, a linear function approximation, based
on energy conversion principles and ideal switching device assumptions, was used. Hence, the PV
generator was modeled using the DAEs in a simplified constant voltage behind the transient reactance
model as follows [47–49].

For generator buses i = 1, . . . , m,

˙Ipvi =
1

αLpv
ln
(

IL − Ipv

Is

)
− 1

Lpv
Vpvi (43)

2CdcVdc
ω

˙Vpvi = Vdc Ipvi − E′pvi Iq − E′pvi Id − DswlVdc (44)

where E′pv = npvVpveq and Dswl is the conductance due to switching losses of DC/AC inverters.
The network algebraic equations’ part of DAE including power flow due to the PV generators’

injections into the buses is given as:
For generator buses i = 1, . . . , m,

Pi = npv

m+n

∑
j=1

ViVj
[
Bi,jsin(θi − θj) + Gi,jcos(θi − θj)

]
−

E′pviVi

X′di
sin(θpv − θi) (45)

Qi = npv

m+n

∑
j=1

ViVj
[
Gi,jsin(θi − θj)− Bi,jcos(θi − θj)

]
−

V2
i

X′di
+

E′pviVi

X′di
cos(θpv − θi) (46)

where Vpv and Ipv are the dynamic state variables of the PV generator; V and θ are the algebraic
variables that satisfy the power balance equation of the network; npv is number of PV generators in

the farm. The terms
E′pviVi

X′di
sin(αi − θi) and (Vi)

2

X′di
−

E′pviVi

X′di
cos(αi − θi) represent the power generated or

absorbed by the PV generators into or from the network.
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5.1.4. Dynamic Model of the Wind Generator

A typical wind farm consists of a wind turbine (variable speed) with a doubly fed induction
generator (DFIG) and a set of inverters in back-to-back (B-to-B) configuration. A wind turbine
transforms the kinetic energy of wind into mechanical power, Pm, (47) available for use by the DFIG.

Pm =
1
2

ρACp(λ, θp)V3
w (47)

where ρ is the air density (kg/m2); A is the wind turbine swept area (m2); Cp is the performance
coefficient that depends on the blade tip speed ratio (λ) and pitch angle (θp); and V3

m is wind speed
in m/s. A DFIG converts the turbine mechanical power into electrical power. A three phase DFIG is
comprised of a rotor and stator in which the rotor is connected to a B-to-B inverter configuration to
regulate rotor winding voltage and the stator is connected to the turbine bus to send converted electric
power to the grid. The back-to-back inverter is used to regulate generator rotor voltages and reactive
power flow between the stator and inverter. The inverter configuration is comprised of two inverters
vis-à-vis the rotor side (RSI) and grid side (GSI) inverters. Therefore, the dynamic model of DFIG is
split into mechanical and electrical parts. The DAEs that describe the dynamic behavior of the DFIG
simplified model in state space representation are as follows:

For generator buses i = 1, . . . , m,

Tp

Kp
θ̇p = φ(ωm −ωre f )− θp (48)

2Hm

ωs
ω̇m = Pmi − E′wi Iq − E′wi Id − Di(ωm −ωs) (49)

where E′wi is the equivalent voltage magnitude behind the transient reactance of DFIG; θp is the
pitch angle.

The network algebraic equations’ part of DAE including power flow due to the DFIGs injections
into the buses is given as:

For generator buses i = 1, . . . , m,

Pi = nw

m+n

∑
j=1

ViVj
[
Bi,jsin(θi − θj) + Gi,jcos(θi − θj)

]
−

E′wiVi

X′di
sin(θs − θi) (50)

Qi = nw

m+n

∑
j=1

ViVj
[
Gi,jsin(θi − θj)− Bi,jcos(θi − θj)

]
−

V2
i

X′di
+

E′wiVi

X′di
cos(θs − θi) (51)

where nw is number of wind generators in the farm. The terms E′wiVi
X′di

sin(αi − θi) and (Vi)
2

X′di
−

E′wiVi
X′di

cos(αi − θi) represent the power generated or absorbed by the DFIGs into the network.

5.1.5. Dynamic Model of the Gas-Turbine Generator

A biomass system is comprised of a gas turbine and a synchronous generator with their control
systems. A gas turbine converts combusted hot flue gas into rotatory energy, which is transmitted
to the electric generator. The synchronous generator converts the rotatory mechanical energy into
electrical energy, which is transmitted to the grid. The DAEs that describe a simplified dynamic model
of a biomass turbo-generator in state space representation consist of the power angle equation of
the rotor and synchronous speeds, the equation of motion of the turbo-generator, and the network
equation as below:
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For generator buses i = 1, . . . , m:

σ̇i = ωi −ωs (52)

2Hi
ωs

ω̇i = Pm − 3/2(E′tg Iq + E′tg Id) (53)

where Pm =
(

Ete + Emag − Ecmp − E f ta

)
∗ t, Pe = Egnd ∗ t = 3/2(E′tg Iq + E′tg Id) and E′tg is the biomass

generator’ voltage behind the transient reactance.
The network algebraic equations’ part of DAE including power flow due to the biomass

turbo-generators injections into the buses is given as:
For generator buses i = 1, . . . , m:

Pi = nb

m+n

∑
j=1

ViVj
[
Bi,jsin(θi − θj) + Gi,jcos(θi − θj)

]
−

3E′tgiVi

2X′di
sin(αti − θi) (54)

Qi = nb

m+n

∑
j=1

ViVj
[
Gi,jsin(θi − θj)− Bi,jcos(θi − θj)

]
−

3V2
i

2X′di
+

3E′tgiVi

2X′di
cos(αti − θi) (55)

where nb is number of biomass generators in the system. The terms
3E′tg,iVi

2X′di
sin(αti − θi) and (3Vi)

2

2X′di
−

3E′tgiVi

2X′di
cos(αti − θi) represent the power (active and reactive) generated by the biomass generators

and absorbed into the network.
The active and reactive power flow in the load buses (i = 1, . . . , m + n) due to all the network

generators is given as:

Pi = nr

m+n

∑
j=1

ViVj
[
Bi,jsin(θi − θj) + Gi,jcos(θi − θj)

]
(56)

Qi = nr

m+n

∑
j=1

ViVj
[
Gi,jsin(θi − θj)− Bi,jcos(θi − θj)

]
(57)

5.2. Linearized Network Model

The linearization of a set of non-linear DAEs is the first step in the evaluation of a power system’s
small-signal stability. It can be accomplished either by performing a power flow analysis or solving
the system in (39)–(57) using a numerical method [50]. The linearized compact semi-explicit DAE
equation is thereby given as:

Eẋ = Ax + Bu (58)

where A and B are the coefficient matrices of system states and control variables, respectively.
Some of the SSS analysis approaches being employed by researchers and utilities are the

Fourier transform based Prony and eigenvalue analysis [47]. However, the eigenvalue analysis
approach is superior and more common in terms of giving more detailed information and having less
computational demand.

The generalized eigenvalues of matrices E and A can now be used for the evaluation of the
small-signal stability of the linearized dynamic network.

That is:
det(λE− A) = 0 (59)
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5.3. Eigenvalue Analysis Approach

The eigenvalue is used to analyze and evaluate the small-signal stability of a power system. The
computation of all the state matrix’s (Matrix A) eigenvalues is a definite way of determining the
oscillation performance of a power system operating point. If all the eigenvalues of Matrix A have
negative real parts in the S-plane, then the system is said to be completely stable [45,50]. In a stable
condition, the oscillation(s) that occurs in state variables owing to small perturbations or imbalances of
the system operating point will die out gradually after some time. However, the system is unstable
if at least one of the Matrix A’ eigenvalues has a positive real part [45,51]. This condition shows that
the oscillations that occur in the system increase gradually or remain the same in magnitude over a
period of time. Consequently, some stability margin must be observed to limit oscillation occurrence
by ensuring that the eigenvalues of the state Matrix A do lie within, but not too close to, the imaginary
axis of an S-plane.

6. Case Studies

This section presents and discusses the results of two different case studies to validate the
proposed model. A 14 bus system was first studied over a three year planning horizon to test the
developed model. Furthermore, a larger network of a 118 bus system and a ten year planning horizon
were subsequently used to validate the scalability of the proposed model. United States dollars ($)
represent the currency used in the optimization of this study.

The following data and assumptions were common to both case studies:

• The planning horizon was split into yearly decision stages, where 7.0% was considered as the
interest rate.

• For the sake of simplicity, 2% of investment costs was considered for the maintenance costs of the
corresponding components.

• The slack bus (Bus 1) was considered as the substation node whose voltage magnitude and angle
were taken to be 1.0 pu and 0◦, respectively.

• The voltage upper and lower bounds for other buses were 1.5 pu and 0.95 pu, respectively.
• The yearly demand growth projection of 5% was considered throughout the planning horizon.
• Five piecewise linear segments were considered because this matches accuracy with

computational burden.
• Using the capacity utilization factor, solar, wind, and biomass DG of 2.4 MW, 2.3 MW, and

2.5 MW installed capacities, respectively, were considered to be deployed as the potential DG
candidates. Furthermore, the investment costs of the respective DG units were $2.9 M, $3.44 M,
and $4.13 M [52], respectively.

• For the sake of simplicity, the variable power resources (solar and wind) were assumed to be
available in every bus based on the fact that the distribution networks covered a small geographical
region and that these resources were equally distributed throughout the region. The dispatchable
power resource, sugar-cane biomass, was equally available with the widespread cultivation in
this study area (KwaZulu-Natal).

• The REHDGs’ penetration limit, ε, of 30% was considered, which was well above the target level
for South Africa’s 2030 renewable projections [53].

• The capacitor bank with 0.1 MVAr of installed capacity was considered to be the minimum
deployable reactive compensator in the system. The unit investment cost for the capacitor bank
was $25/kVAr.

• The emission rate of power supplied from the coal fired utility was taken as 0.4 tCO2e/MWh.
• The emission cost for the first stage was taken as $25/tCO2e and $20/tCO2e additions for the

subsequent years up until the last planning stage.
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• The price of electricity supplied by the substation (utility) was taken to be $0.11/kWh for
South Africa.

• The cost of power produced by solar, wind, and biomass DGs was $0.085/kWh, $0.056/kWh, and
$0.062/kWh [52], respectively.

• The power factor, pf, of renewable DGs was set to 0.95 lagging, meaning that the DGs was Type II
and always absorbed reactive power.

The optimizations, in this study, were implemented on an Acer Veriton with two Intel Core (TM)
i5 650 processors at 3.20 GHz and 8 GB of RAM using MATLAB R2019a. An optimality gap of 0.1%
was considered as the stopping criterion.

6.1. Numerical Results I: IEEE-14 Bus System

The single line diagram and network data of the IEEE-14 bus system can be found in many
sources, for example [54]. This system had 9 load buses, 5 substation buses, and 20 branches. The time
varying load demand (hourly load demand) of the test system as scaled with the actual South African
load profile [41] was used in this study.

6.1.1. Results of the Optimal REHDGs’ Allocation Problem

Intermittent renewable generations such as PV and wind based DGs usually operate with fixed
lagging power factors [37], meaning such DGs always absorb reactive power from the network. Hence,
the power factor of PV and wind DGs in this study was set to 0.95 lagging. However, recently, there
have been photovoltaic and wind generator systems emerging that provide reactive power support.
Yet, the optimization of renewable energy DGs’ integration into DNS presented here was lacking
reactive power support from these generations, and the optimization results are discussed below.

Based on the stopping criterion considered, the computation time required to obtain optimal
solutions was 18 s. The optimal solutions for REHDGs (solar PV, wind, and biomass) and the capacitor
banks are depicted in Tables 1 and 2, respectively. In the first stage, a larger percentage of the
investments was made. This was due to the higher NPV of costs for maintenance, energy, and emission
at Stage 1 (T1) than in the successive stages. This showed that investing more into REHDGs in the first
stage was economically viable since the costs were reduced gradually over the planning horizon.

Table 1. Optimal investment solution of renewable energy hybrid distributed generations (REHDGs)
for distribution system planning.

Type Bus
Stages

Type Bus
Stages

T1 T2 T3 T1 T2 T3
xg,i,t xg,i,t

Biomass 2 3 3 3 Biomass 9 2 3 3
Solar 3 17 25 35 Biomass 10 2 2 2
Wind 3 74 94 115 Biomass 12 1 1 1

Biomass 3 6 6 6 Biomass 13 2 2 2
Biomass 4 5 6 6 Biomass 14 1 1 2

Table 2. Optimal investment solution of capacitor banks for distribution system planning.

Bus
Stages

Bus
Stages

T1 T2 T3 T1 T2 T3
xcb,i,t xcb,i,t

2 6 6 9 9 30 30 30
3 9 11 14 13 5 6 6
6 13 23 33 14 2 2 5
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Table 1 shows that more wind DG units were installed than solar PV units despite being given
equal parameters of integration. This was because wind generators had a higher capacity utilization
factor than photovoltaic generators. Furthermore, the power from biomass (sugar-cane) generation
provided supportive services such as spinning reserves to make up the inadequate supply from
the intermittent DGs. Biomass power was a fast-response generation that could be maintained
constant at any requested amount and time, without uncertainties and within the operating limits [55].
Biomass power presents a viable alternative to power storage devices since an efficient and economical
electrical storage system is still being searched. The total capacities of REHDGs power (MW) installed
in the three planning stages are shown in Figure 1. The totals of 265.2 MW, 71 MW, and 74.8 MW of
renewable power were installed in the network for the first, second, and third stages, respectively.

From Table 2, it can be deduced that the optimal locations of capacitor banks were mainly
on the most loaded buses and the buses close to the end of the network. This is a normal power
system operation where capacitor banks are used to compensate for the reactive power deficit in the
system, thus helping to enhance network voltage stability by keeping the voltage within the limits.
Figure 2 shows the total capacity of the capacitor banks invested in and installed throughout the
planning horizon to be 9.7 MVAr, while 6.5 MVAr, 1.3 MVAr, and 1.9 MVAr were installed at each
planning stage, respectively. The results from Tables 1 and 2 and captured in Figure 3 demonstrate the
complementarity of intermittent renewable generations and biomass generation. Consequent upon
these results, the hybrid renewable generators were optimally allocated close to one another and
achieved a high optimality gap of 0.1%. The inclusion of reactive compensators greatly increased the
capacity of renewable DG units that were integrated into the system by helping to maintain active
and reactive power balance when reactive power consuming generators were installed. Ordinarily,
the optimal capacity of REHDG units that could have been integrated would have been around
130 MW.

Figure 1. Optimal locations and sizes of PV, wind, and biomass DG power installed throughout the
planning horizon.
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Figure 2. Optimal capacities of reactive compensators installed throughout the planning horizon.

For this particular study, the total load demand of the South African load profile scaled IEEE-14
bus system was 223.1 MWh with 5% yearly demand growth projections throughout the planning
horizon. Adding the 84 MW PV farms, 264.5 MW wind farms, and 62.5 MW biomass systems reduced
the electricity production from coal fired plants by 30%, amounting to the total NPV investment costs of
$20 B, $5.36 B, and $5.64 B for the three planning stages, respectively. This brought the total investment
costs to $31 B. The NPV costs of maintenance, energy, and emission throughout the planning horizon
were correspondingly equal to $620 M, $163.63 M, and $2.4 B, respectively. The overall total NPV cost
for the whole planning stages was $39.74 B. With the integration of 411 MW of REHDGs’ power, a total
sum of $30.71 M would be saved if the whole power to satisfy the load demand had come only from
coal fired conventional generations.

6.1.2. Assessment of Small-Signal Stability

Another important aspect of this REHDGs’ allocation optimization analysis is the assessment
of the impact of their integration on the long term dynamic voltage and small-signal stabilities of
distribution networks. Figures 3–5 show samples of the voltage profiles and eigenvalue plots of the
network without renewable DGs (base case), as well as with solar PV DGs, wind DGs, biomass DGs,
and all the REHDG units during every operational period throughout the planning horizon.
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Figure 3. Voltage profile of the IEEE-14 bus system (base case).

Figure 4. Eigenvalues plot of IEEE-14 bus system (base case).
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Figure 5. Eigenvalue plot of the IEEE-14 bus system with REDGs.

Considerable improvements in voltage profile are seen in Figure 3. This figure indicates dynamic
voltage profiles at any selected bus (Bus 1 in this case) during the operational periods of DNS without
and with renewable generations, respectively. From Figure 3 (base case), it can be seen that the voltage
levels were very close to the minimum permissible limits. Meanwhile, the voltages (color green)
during REHDGs’ integration were largely close to the 1.0 pu value with an average deviation of 0.13%.
This allowed significant operational margins for the permissible voltage magnitude limits. Invariably,
the substantial improvements in voltage profiles were due to the effect of the combined integration of
renewable DGs and capacitor banks.

Figure 4 shows typical eigenvalue plot results for the base case system. It is observed that the
system’s margin of oscillatory stability was very low. The system’s three state variables were: rotor
angle (α), rotor speed (ws), and transient voltage (E′). The eigenvalues of the base case system lied
away from the origin to the left half of the S-plane, except the quadrature transient internal voltage
eigenvalues of Generators 1, 2, and 3 that were very near oscillatory instability. The oscillatory
frequency and damping ratio were 3.17 Hz and 0.0377, respectively. From Figure 5, it is shown that all
the eigenvalues of the component generators were situated away to the left half of the S-plane during
the integration of all the renewable DGs. Figure 5 displays the eigenvalue plot of the whole network
with the integration of REHDGs. Furthermore, Table 3 tabulates the eigenvalue analysis results of
the critical modes of the base case system, with solar PV, wind, and biomass DGs, all REHDG units
combined. The damping ratio of the critical mode improved from 0.0377 to 0.8568.

Table 3. IEEE-14 bus system: Comparison of critical modes with their oscillatory frequencies and
damping ratio.

Oscillatory Modes Damping Ratio (%) Oscillatory Frequencies (Hz)

Base Case −1.52± 20.26i 3.77 3.17
With REHDGs −24.93± 15.00i 85.68 2.39
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It can be observed from Figure 3 (base case) that the network was voltage stable prior to the
integration of REHDGs. Meanwhile, Figure 4 shows that SSS-wise, the system was marginally
stable. The optimization results also indicate that as the voltage angle limits increased up until a
maximum allowable value, the capacity of the renewable generators installed increased, indicating
increased renewable power injections into the network. That means more power flowed in the network,
and the network was more robust and could consume (contain) the effect of power variations (any
small disturbances) from the intermittent renewable generations. This agrees with the power system
property that the changes in active power flow were dependent on changes in voltage angles, but not
on voltage magnitude, while changes in reactive power were governed by voltage magnitude changes.
It is also deduced that setting limits or constraints on the voltage angle helped in constraining and
enhancing the small-signal stability of the distribution system.

6.2. Numerical Results II: IEEE-118 Bus System

The proposed MILP model was applied to IEEE-118 bus test system whose network data and
single line diagram were described in [56]. The system had 91 load buses, 54 substation buses, and 186
branches. The time varying load demand (hourly load demand) of the test system as scaled with the
actual South African load profile [41] was used in this study.

6.2.1. Results of the Optimal REHDGs’ Allocation Problem

As mentioned earlier, the optimization of renewable energy DGs’ integration into DNS presented
in this case study was lacking reactive power support from these generations, and the optimization
results for the IEEE-118 test system are discussed below.

Based on the stopping criterion considered, the computation time required to obtain optimal
solutions on the IEEE-118 system was 179 s. Tables 4 and 5 present the optimal solutions for REHDGs
and the capacitor banks for a ten year planning stage, respectively. As also observed in Section 6.1.1,
the larger percentage of the investment was made in the first year. This shows that more REHDG
investments in the first stage were more economical than in the subsequent stages, because the costs
were reducing gradually throughout the planning stages.

Table 4 indicates that more of the wind DG units were installed than solar PV units despite
being given equal parameters of integration. This is because wind generators had a higher capacity
utilization factor than photovoltaic generators. Biomass generation was allowed to contribute 47.6% of
renewable penetrations to make up the inadequate supply from the intermittent DGs. The biomass
power generators were distributed throughout the length of the network to take economic advantage
of the widespread sugar-cane plantations by reducing the cost accruable due to the transportation of
biomass fuel. The total capacities of REHDG power (MW) installed throughout the planning stages are
shown in Figure 6. The totals of 1117.7 MW, 64 MW, 66.4 MW, 68.9 MW, 71.2 MW, 73.6 MW, 76 MW,
76 MW, 80.9 MW, and 83.3 MW of renewable power were installed in the network for the ten year
planning, respectively.

Similar to the observation in Section 6.1.1, it can be deduced from Table 5 that the optimal
locations of capacitor banks were mainly on the most loaded buses and the buses close to the end of the
network; thus helping to enhance network voltage stability by keeping the voltage within the limits.
Figure 7 shows the total capacity of capacitor banks invested in and installed throughout the planning
horizon to be 442.7 MVAr, while 285.7 MVAr, 14.1 MVAr, 15 MVAr, 15.7 MVAr, 16.4 MVAr, 17.2 MVAr,
18.3 MVAr, 19.1 MVAr, 20.1 MVAr, and 21.1 MVAr were installed at each planning stage, respectively.
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Table 4. Optimal investment solution of REHDGs for distribution system planning.

Type
Stages

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
xg,i,t

Biomass 1 7 7 7 7 7 7 7 7 7 7
Biomass 3 2 2 2 2 2 2 2 2 3 3
Biomass 4 3 4 4 4 4 4 4 4 4 4
Biomass 6 5 5 5 5 5 5 5 5 5 5
Biomass 7 2 2 2 2 2 2 2 2 2 2
Biomass 10 2 2 2 2 2 2 2 2 2 2
Biomass 11 6 6 6 6 6 6 6 6 6 6
Biomass 13 3 3 3 4 4 4 4 4 4 4
Biomass 14 2 2 2 2 2 2 2 2 2 2
Biomass 15 7 7 7 7 7 7 7 7 7 7
Biomass 16 4 4 4 4 4 4 4 4 4 4
Biomass 18 5 6 6 7 7 7 7 7 7 7
Biomass 20 2 2 2 2 2 2 2 2 2 2
Biomass 22 1 1 1 1 1 1 1 1 1 1
Biomass 23 1 1 1 1 1 1 1 1 1 1
Biomass 25 2 2 2 2 2 2 2 2 2 2
Biomass 27 6 6 6 6 6 6 6 6 6 6
Biomass 29 2 2 2 2 2 3 3 3 3 3
Biomass 31 3 3 3 3 3 3 3 3 3 3
Biomass 32 2 2 3 5 5 5 5 5 5 5
Biomass 33 3 3 3 3 3 3 3 3 3 3
Biomass 34 4 4 4 4 4 5 5 5 5 5
Biomass 35 2 2 2 2 2 2 2 2 3 3
Biomass 36 3 3 3 3 3 3 3 3 3 3
Biomass 39 4 4 4 4 4 4 4 4 4 4
Biomass 40 5 5 5 6 6 6 6 6 6 6
Biomass 41 2 2 2 2 2 3 3 3 3 3
Biomass 42 7 7 7 7 7 7 7 7 7 7
Biomass 43 1 1 1 1 1 1 1 1 1 1
Biomass 45 3 3 4 4 4 4 4 4 4 4
Biomass 46 2 2 2 2 2 2 2 2 2 3
Biomass 47 4 4 4 4 4 4 4 4 4 4
Biomass 48 1 1 1 1 1 1 1 1 1 1
Biomass 49 5 6 7 7 7 7 7 7 8 8
Biomass 50 2 2 2 2 2 2 2 2 2 2
Biomass 52 3 3 3 3 3 3 3 3 3 3
Biomass 53 2 2 2 2 2 2 2 2 2 2
Biomass 54 7 7 7 7 7 7 7 7 7 7
Biomass 55 4 4 4 4 4 4 4 4 4 4
Biomass 56 8 8 8 8 8 8 8 8 8 9
Biomass 58 2 2 2 2 2 3 3 3 3 3

Solar 59 64 71 78 86 94 103 113 123 123 123
Wind 59 117 131 131 131 131 131 131 131 131 131

Biomass 59 8 8 8 8 8 9 9 9 9 9
Biomass 60 7 7 7 7 7 7 7 7 7 7
Biomass 62 5 5 5 5 5 5 5 5 5 5
Biomass 63 4 4 4 4 4 4 4 4 4 4
Biomass 67 3 3 3 3 3 3 3 4 4 4
Biomass 70 5 5 6 6 6 7 7 7 7 8
Biomass 72 1 1 1 1 1 1 1 1 1 1
Biomass 73 2 2 2 2 2 2 2 2 2 2
Biomass 74 4 5 5 5 5 5 5 5 5 6
Biomass 76 4 4 4 4 4 4 6 6 6 7
Biomass 77 6 6 7 7 7 7 7 7 7 7
Biomass 79 2 2 2 2 2 2 2 2 2 2
Biomass 80 8 8 8 8 8 8 9 9 9 9
Biomass 85 3 3 3 3 3 3 3 3 3 3
Biomass 86 2 2 2 2 2 2 2 2 2 2
Biomass 88 3 3 3 3 3 3 3 4 4 5
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Table 4. Cont.

Type
Stages

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
xg,i,t

Biomass 89 3 3 3 3 3 3 3 3 3 3
Solar 90 11 23
Wind 90 14 28 44 62 81 102 118 128

Biomass 90 8 8 8 8 8 8 9 9 9 9
Biomass 91 2 2 2 2 2 2 2 2 2 2
Biomass 93 6 6 6 6 6 6 7 7 7 7
Biomass 95 2 2 2 2 2 2 2 4 5 5
Biomass 96 4 4 4 4 6 6 6 6 6 6
Biomass 98 4 4 4 4 5 5 5 5 6 6
Biomass 99 4 5 5 5 6 6 6 6 6 6
Biomass 101 3 3 3 3 4 4 4 4 4 4
Biomass 103 1 1 1 1 1 1 1 3 4 5
Biomass 105 3 4 4 4 4 4 4 4 4 4
Biomass 107 4 4 4 5 5 5 5 5 5 5
Biomass 109 1 1 1 1 2 2 2 2 2 2
Biomass 111 2 2 2 2 2 2 2 2 2 2
Biomass 112 5 5 5 5 5 5 5 6 6 6
Biomass 113 1 1 1 1 1 1 1 1 1 1
Biomass 115 2 2 2 2 2 2 2 2 3 3
Biomass 116 8 8 8 8 8 8 9 9 9 9
Biomass 117 3 3 3 3 3 3 3 3 3 3
Biomass 118 4 4 5 5 5 5 5 5 5 5

Table 5. Optimal investment solution of capacitor banks for distribution system planning.

Bus
Stages

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
xcb,i,t

15 3 3 3 3 3 3 3 3 3 3
19 24 25 26 27 28 29 31 33 35 38
31 9 9 10 11 12 13 14 15 15 16
34 76 80 84 88 92 97 102 107 112 118
43 7 7 7 7 7 7 7 7 8 8
44 176 185 194 204 214 225 236 248 260 273
45 195 205 215 226 237 249 262 275 289 304
46 170 179 188 197 207 217 228 239 251 264
48 275 289 304 319 335 352 370 389 409 430
59 48 50 53 56 59 62 65 68 71 75
74 219 230 242 254 267 280 294 309 325 341
76 10 10 11 12 13 14 14 15 16 16
79 398 418 439 461 484 508 533 560 588 617
82 386 405 425 446 468 491 516 542 569 597
83 197 207 217 228 239 251 264 277 291 306
87 9 9 10 11 12 13 14 15 16 16
94 2 2 2 2 2 2 2 2 2 2
95 22 23 24 25 26 27 27 28 30 32

103 3 3 3 3 3 3 3 3 3 3
104 2 2 2 2 2 2 2 2 2 2
105 400 420 441 463 486 510 536 563 591 620
106 2 2 2 2 2 2 2 2 2 2
107 98 103 108 113 119 125 131 138 145 152
109 5 5 5 5 5 5 5 5 5 5
110 119 125 131 138 145 152 160 168 176 185
112 2 2 2 2 2 2 2 2 2 2

Annual Total 2857 2998 3148 3305 3469 3641 3823 4015 4216 4427
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Figure 6. Optimal locations and sizes of PV, wind, and biomass DG power installed throughout the
planning horizon.

Figure 7. Optimal capacities of reactive compensators installed throughout the planning horizon.

In addition, the results from Tables 4 and 5 as captured in Figure 6 demonstrate the
complementarity of intermittent renewable generations and biomass generation. Furthermore,
the inclusion of reactive compensators greatly increased the capacity of renewable DG units that
were integrated into the system by helping to maintain active and reactive power balance when
reactive power consuming generators were installed. Without capacitor banks, the optimal capacity of
REHDG units that could have been integrated would have been around 600 MW.
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For this case study, the peak load demand was 4.1963 GWh with 5% yearly demand growth
projections throughout the planning horizon. The totals of 350.4 MW PV farms, 572.7 GW wind farms,
and 855 MW biomass systems totaling 1.7788 GW were added to reduce the electricity generation
from coal fired plants by 30%, amounting to the total NPV investment costs of $151.39 B, $7.57 B,
$7.95 B, $8.35 B, $8.76 B, $9.20 B, $9.66 B, $10.14 B, $10.65 B, and $11.18 B for the ten planning stages,
respectively. This brought the total investment costs to $234.85 B. The overall total NPV costs of
maintenance, energy, and emission throughout the planning horizon are correspondingly listed in
Table 6. The overall total NPV cost for the whole planning stages was $550.15 B. With the integration
of 1.7788 GW of REHDG power, a total sum of $8.05 B would be saved if the whole power to satisfy
the load demand had come only from coal fired conventional generations.

Table 6. IEEE-118 bus system: Optimized cost information for the ten year planning horizon (×109 $).

Cost Function Stages Overall
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

Investment 151.39 7.57 7.95 8.35 8.76 9.20 9.66 10.14 10.65 11.18 234.85
Maintenance 3.02 3.18 3.34 3.51 3.68 3.86 4.06 4.26 4.47 4.71 38.09

Energy 3.42 3.59 3.76 3.95 4.15 4.35 4.57 4.79 5.04 5.30 42.92
Emission 18.70 19.55 20.52 21.55 22.64 23.76 24.95 26.21 27.51 28.90 234.29

Annual Total 176.53 33.89 35.57 37.36 39.23 41.17 43.24 45.40 47.67 50.07
CNPV

T 550.15

6.2.2. Assessment of Small-Signal Stability

The assessment of the impact of REHDGs’ integration on the long term dynamic voltage and
small-signal stabilities of distribution network is presented in this section. Figures 8–10 show samples
of the voltage profiles and eigenvalue plots of the network without renewable DGs (base case), as well
as with solar PV DGs, wind DGs, biomass DGs, and all the REHDG units during every operational
period throughout the planning horizon.

Figure 8. Voltage profile of the IEEE-118 bus system (base case).

In the same vein, considerable improvement in voltage profile is noticed in Figure 8. The two
plots (base case and REHDG) in Figure 8 indicate dynamic voltage profiles at any selected bus (Bus 1 in
this case) during the operational periods of DNS without and with renewable generations, respectively.
From Figure 8 (base case), it can be seen that the voltage levels were very close to the minimum
permissible limits. Meanwhile, the voltages in Figure 8 (REHDG) were largely close to the 1.0 pu value
with an average deviation of 0.13%. This allowed significant operational margins for the permissible
voltage magnitude limits. Invariably, the substantial improvements in voltage profiles were due to the
effect of the combined integration of renewable DGs and capacitor banks.
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Figure 9. Eigenvalue plot of the IEEE-118 bus system (base case).

Figure 10. Eigenvalue plot of the IEEE-118 bus system with REDGs.

Figure 9 shows typical eigenvalue plot results for the base case system. It can be seen that the
system was critically damped with a small margin to oscillatory instability. The system’s three state
variables were: rotor angle (α), rotor speed (ws), and transient voltage (E′). The eigenvalues of the
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base case system lied away from the origin to the left half of the S-plane except the quadrature transient
internal voltage eigenvalues of six generators. The oscillatory frequency and damping ratio were
calculated to be 3.2738 Hz and 0.001, respectively. From Figure 10, it is shown that all the eigenvalues
of the component generators were situated away to the left half of S-plane during the integration of all
these renewable DGs. Figure 10 shows the eigenvalue plot of the whole network with the integration
of REHDGs. Furthermore, Table 7 tabulates the critical modes of the base case system, with solar PV,
wind, and biomass DGs and all the REHDGs units combined. The damping ratio of the critical mode
improved from 0.001 to 0.9894 for the overall network during the integration of REHDGs.

Table 7. IEEE-118 bus system: Comparison of critical modes with their damping ratio and
oscillatory frequencies.

Oscillatory Modes Damping Ratio (%) Oscillatory Frequencies (Hz)

Base Case −0.02± 20.57i 0.09 3.27
With REHDGs −28.92± 4.23i 98.94 0.67

It can be observed from Figure 8 (base case) that the network was voltage stable prior to the
integration of REHDGs. Meanwhile, Figure 9 shows that SSS-wise, the system was marginally
stable. The optimization results also indicated that as the voltage angle limits increased up until
a maximum allowable value, the capacity of renewable generators installed increased, indicating
increased renewable power injections into the network. That means more power flowed in the
network, and the network was more robust and could consume (contain) the effect of power variations
(any small disturbances) from the intermittent renewable generations. This agrees with the power
system property that the changes in active power flow were dependent on changes in voltage angles,
but not on voltage magnitude, while changes in reactive power were governed by voltage magnitude
changes. It is also deduced that setting limits or constraints on the voltage angle helped in constraining
and enhancing the small-signal stability of the distribution system.

7. Conclusions

This study presented a new multi-stage distribution expansion planning mathematical model
to integrate and allocate large scale hybrid renewable DGs such as solar PV, wind, and biomass
(sugar cane) and capacitor banks into distribution systems optimally. The scenario based probabilistic
modeling approaches, beta and Weibull distributions, were applied to model the random behavior
of solar irradiance and wind speed, respectively. Biomass DG was taken as a firm generation whose
capacity could be determined as and when needed. The proposed planning model decided the optimal
time of integration and the numbers, sizes and location of REHDGS and reactive compensators in the
distribution networks simultaneously. The main objective of this optimization work, to maximize the
REHDG power generated and absorbed into the distribution networks while the long term dynamic
voltage and small-signal stabilities are maintained at the required levels and a least possible NPV
of the total cost, was achieved. The model was formulated as a stochastic mixed integer linear
programming (MILP) problem, while the non-linear AC network was made linear with the principle
of fast decoupled power flow in order to characterize the network without the loss of generality,
maintain accuracy, and reduce the computational complexity. Two standard test distribution systems,
the IEEE-14 bus and IEEE-118 bus, were used to validate the proposed model successfully and
conduct the required assessment based on the objectives of this work. The results of both case studies
indicated that integrating biomass DGs and reactive compensators with variable renewable generations
(PV and wind DGs) significantly increased the amount of renewable power injected into the networks.
This eventually brought about a monumental decrease in the total cost compared to meeting the load
demands with the conventional generations. For the IEEE-14 bus system, 411 MW of renewable power
and 9.7 MVAr of reactive power were added to the system, while the IEEE-118 bus added 1.7788 GW
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REHDG power and 442.7 MVAr compensators to the network. In both case studies, the dynamic
voltage and small-signal stabilities were highly enhanced.

The planning model for REHDGs and capacitor banks’ integration proposed in this study
demonstrated a significant improvement to the system in terms of dynamic stability enhancement,
electricity and emission cost reductions, welfare, and environmental enhancement, and many other
benefits accrued from it.

The formulation model proposed in this work was, therefore, a major step towards developing
reliable and stable networks/grids that support the integration of large scale renewable generations.

Research in progress is focused on the application of intelligent search approaches for solving
REHDGs’ allocation problem, enhancing long term dynamic stability, and estimating the economic
“end effect” of the hybrid distributed generation components. Future work will be devoted to the
combined investigation of harmonic losses together with the long term dynamic stability of the
distribution network during the integration of large scale hybrid renewable DGs. Another future
research interest is the investigation of other distributed generation technologies in relation to system
power quality and dynamic stability.
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