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Abstract: In the transmission expansion planning (TEP) problem, it is challenging to consider a fault
current level constraint due to the time-consuming update process of the bus impedance matrix,
which is required to calculate the fault currents during the search for the optimal solution. In the
existing studies, either a nonlinear update equation or its linearized version is used to calculate the
updated bus impedance matrix. In the former case, there is a problem in that the mathematical
formulation is derived in the form of mixed-integer nonlinear programming. In the latter case, there is
a problem in that an error due to the linearization may exist and the change of fault currents in other
buses that are not connected to the new transmission lines cannot be detected. In this paper, we use
a method to obtain the exact updated bus impedance matrix directly from the inversion of the bus
admittance matrix. We propose a novel method based on the inverse matrix modification lemma
(IMML) and a valid inequality is proposed to find a better solution to the TEP problem with fault
current level constraint. The proposed method is applied to the IEEE two-area reliability test system
with 96 buses to verify the performance and effectiveness of the proposed method and we compare
the results with the existing methods. Simulation results show that the existing TEP method based
on impedance matrix modification method violates the fault current level constraint in some buses,
while the proposed method satisfies the constraint in all buses in a reasonable computation time.

Keywords: Transmission Expansion Planning (TEP); Fault Current Level Constraint; Inverse Matrix
Modification Lemma; Valid Inequality

1. Introduction

Because electricity is difficult to store economically, and it can only be delivered through
transmission lines, transmission networks must be expanded in proportion to the increase in electricity
demand. Even though the expansion of a transmission network provides positive effects, such as
reduction of congestion, an increase in system reliability, and a reduction of transmission loss, a side
effect of fault current increase (especially near large metropolitan areas) occurs due to the decrease in
the impedance of the overall system [1].

Most of the widely used methods solve this problem by splitting buses, installing additional
equipment such as a superconducting current limiter, or upgrading the circuit breaker with a higher
breaking capacity. However, one of the more fundamental solutions to solve this problem is to consider
the fault current level during transmission expansion planning (TEP), which is the main topic of this paper.

In general, the capacity of a circuit breaker is chosen to be greater than the three-phase
line-to-ground fault current, which is calculated as the pre-fault voltage divided by the Thévenin
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equivalent impedance. In power system optimization problems with short time horizons, such as
the optimal power flow or security constraint unit commitment, it can be assumed that the network
configuration is fixed, and the fault current can be considered as linear constraint or upper bound on
the bus voltage magnitude [2–4]. However, in a problem with a relatively long time horizon, it becomes
mathematically challenging to consider the fault current in the optimization problem, because the bus
impedance matrix is continuously changing.

Research on the TEP problem that considers fault current has been published only recently,
and there are two reasons why the fault current has not been studied in the TEP problem in the past.
The first is that the commercially available circuit breaker has a sufficient breaking capability margin,
compared to the fault current possible in the system, and the second is that the computational burden
has been too large to account for the fault current in the TEP problem. There is limited research on the
fault current in the TEP problem [5–8]. The most important feature of these studies is summarizing
how to reduce the calculation burden due to updating the system matrix (the bus impedance matrix),
which is essential for calculation of the fault current.

For example, in order to overcome this problem, previous research used a metaheuristic algorithm
such as the genetic algorithm (GA), removed infeasible cases by applying the Benders cut, or simplified
the problem by linear approximation. However, the GA algorithm has a problem in that it cannot
reproduce the same results due to the inherent randomness of the algorithm, not to mention its slow
convergence [5]. Additionally, methods based on Benders decomposition must solve the problem
repeatedly until infeasible cases do not occur, and hence, the number of iterations required to find the
optimal solution increases exponentially as the number of candidates for the new transmission line
increases [6]. In the linear approximation method, even though the method can find the solution in a
relatively short period of time, there is a disadvantage in that the calculation result of the fault current
may differ significantly from the actual value due to the model error brought about by the linearization
process [7,8]. As a result, most of the existing methods have a problem in that the calculation time is
too slow or the accuracy is too limited to be applied to an actual large-scale power system. It should
be noted that our study is confined to the balanced fault such as three-phase line-to-ground fault.
For power systems where the unbalanced faults are dominant, such as distribution systems, special
methods are employed to calculate power flow and fault current, as described in [9,10].

Therefore, the main purpose of this paper is to propose a more exact and efficient method to solve
the TEP problem with a fault current level constraint based on the inverse matrix modification lemma
(IMML) and a valid inequality. The proposed method consists of the following two steps.

The first is to efficiently calculate the diagonal terms of the bus impedance matrix, which is
the Thévenin equivalent impedance of the system [11], and this bus impedance matrix should be
recalculated repeatedly during the optimization process. In the existing research [7], a linearized and
simplified version of the nonlinear impedance update equation is used to formulate the resulting
optimization problem into mixed integer linear programming (MILP) form. The authors of [7]
concluded that the normalized root mean square (RMS) error of about 2–3% due to linearization is a
minor problem from a practical standpoint. However, in some power systems, such as those in South
Korea, where the margins between the fault current and the circuit breaking capability are very narrow,
more exact calculation of the fault current is required. Another problem with the method used in [7] is
that it cannot guarantee the accuracy of the fault current calculation results at other buses to which the
new transmission lines are not connected directly.

In this paper, in order to avoid these problems, the updated bus impedance matrix is calculated
from the inversion of the bus admittance matrix. As will be explained in the following sections,
this method does not require the nonlinear update equation for calculating the bus impedance matrix,
and therefore, the overall optimization problem can be formulated as a MILP optimization problem
without linearization. Additionally, the fault currents at the other buses to which the added transmission
line is not directly connected can also be calculated without error.
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The disadvantage of this method is obviously that the inverse of the bus admittance matrix must
be calculated repeatedly in the search for the optimal solution to the TEP problem. In order to mitigate
the computational burden of computing the inverse of the bus admittance matrix at every step to find
the optimal solution to the TEP problem, we apply the inverse matrix modification lemma (IMML)
and the valid inequality.

Due to the nature of the TEP problem, only a part of the transmission network is slightly changed
during the search for the optimal solution. Therefore, it has a structure that is well suited to applying the
well-known IMML, which can help to calculate the inverse of the bus admittance matrix efficiently [12].
A linear update equation for the diagonal terms of the bus impedance matrix will be explained in
detail in the later sections.

Even though the time to calculate the updated impedance can be reduced greatly by using the
IMML, the overall computation time to find the optimal solution to the TEP problem still becomes
intractable as the number of candidates for new transmission lines increase. Thus, in this paper, we have
devised a new method based on a valid inequality to reduce the feasible area of the problem. The valid
inequalities are generated every search step during the optimization and added as additional inequality
constraints to branch-and-cut (B&C) algorithm to reduce the feasible search region. As shown in
the simulation section, the combination of the IMML and the proposed valid inequality can find
the optimal solution to the TEP problem with consideration of the fault current very accurately in a
reasonable calculation time.

The rest of this paper is organized as follows: Section 2 explains the MILP formulation of the
TEP problem with the fault current level constraint. The method used for the solution in this study,
based on the B&C algorithm, and the suggested valid inequality method are explained in Section 3.
The proposed method is applied to IEEE Reliability Test System with 96 buses (RTS-96), which is
frequently used in studies for the TEP problem. The simulation results and the concluding remarks are
summarized in Sections 4 and 5, respectively. Nomenclature describes of all parameters and variables
used in this paper.

2. Mathematical Formulation

2.1. Objective Function

The objective function used in this paper has a form similar to that used in the general TEP problem,
which is composed of generator operation cost, transmission line construction cost, and salvage value
of the transmission lines, as follows:

MIN J =
∑
t∈T

∑
s∈S

∑
g∈G

fg(Pgt,s,g)×tds

(1+dr)t +
∑
t∈T

∑
(i, j)∈`i, j

ICi, j×(xlt,i−xlt−1,i)
(1+dr)t−1

−
∑
t∈T

∑
(i, j)∈`i, j

ICi, j×(xlt,i−xlt−1,i)
(1+dr)T ×

(li f ei, j−T+t−1)
li f ei, j

(1)

where fg(·) is the linearized generation cost function given as follows:

fg
(
Pgt,s,g

)
=

bg · Pgt,s,g + cg i f xgt,s,g = 1

0 i f xgt,s,g = 0
(2)

which can be further simplified into the following equation:

fg
(
Pgt,s,g

)
= bg · Pgt,s,g + cg · xgt,s,g (3)
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2.2. Fault Current Constraints

2.2.1. Conventional Method for the Bus Impedance Update

Generally, the three-phase line-to-ground fault current can be calculated by the following equation:

Vpre
f

Zth f
= I f (4)

where Vpre
f and Zth f are the pre-fault voltage and Thévenin equivalent impedance at bus f , respectively.

Since Thévenin equivalent impedance is the same as the corresponding diagonal element of the bus
impedance matrix Z if the pre-failure voltage is assumed to be 1.0 (pu), the three-phase line-to-ground
fault current constraint in the TEP problem can be expressed as follows [13]:∣∣∣∣Znew

t, f , f

∣∣∣∣ ≥ 1
I f ,max

f or ∀ f ∈ N f ,∀t ∈ T (5)

where Znew
t,i, j is the (i,j)th element of bus impedance matrix Znew

t in year t.
In the existing study, the following update equation is used to calculate each element of the bus

impedance matrix after the transmission lines are added [7,8]:

1
Znew

i,i
=

1
CFA

(
1

Zold
i,i

+
∑

i, j∈Nl

1
Znew

i, j
CFB × xlt,i) (6)

Znew
i,i ≥

1
Imax
i

(7)

where CFA and CFB are the coefficients for linearization, which can be calculated using the
following equations:

CFA =
1−CF1

1−CF2
, CFB = 1−

Zold
j, j

Znew
i, j

(8)

CF1 =
(Zold

i, j )
2

Zold
i,i Zold

j, j + Zold
i,i Znew

i, j

, CF2 =
2Zold

i, j

Zold
i,i + Zold

j, j + Znew
i, j

(9)

In order to improve the computational speed in the process of applying the above equations,
the existing studies [7,8] assume that the off-diagonal elements of the bus impedance matrix are

negligibly smaller than the diagonal elements (
∣∣∣∣Zold

i, j

∣∣∣∣ � ∣∣∣∣Zold
i,i

∣∣∣∣), and the diagonal elements of the
bus impedance matrix before the update are significantly smaller than the impedance of the new

transmission lines that will be connected to the buses (
∣∣∣∣Zold

i,i

∣∣∣∣� ∣∣∣∣Znew
i, j

∣∣∣∣). Hence, the values of CFA and
CFB in Equation (8) are all assumed to be 1. This method has an advantage in that the computational
burden for calculating the fault currents can be largely reduced, however, there is a problem in that
it is impossible to consider the changes in the fault currents occurring on buses to which the new
transmission lines are directly connected. Additionally, as the number of new transmission lines
increases, the calculation error is cumulative.

2.2.2. Derivation of the Bus Impedance Update Equation Based on the IMML

In this paper, we adopt a method to directly calculate the bus impedance matrix by inversion of
the bus admittance matrix of the new system with the added transmission line, as follows:

Znew
t = (Ynew

t )−1 (10)
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It is obvious that the calculation time will significantly increase due to the curse of dimensionality
if the system becomes larger. Therefore, it is essential to calculate the inverse matrix more effectively
to incorporate the fault current constraint (or Equation (5)). In order to find the optimal solution to
the TEP problem, a new transmission network configuration for the next search step is constructed
by adding one new transmission line to the network configured in the previous search step. The bus
admittance matrix of the next search step will have almost the same value, and only small number of
elements in the admittance matrix is changed from the bus admittance matrix of the previous step.
Therefore, the following inverse matrix modification lemma can be applied in a very straightforward
manner to acquire the updated bus impedance matrix.

The so-called Woodbury equation of the IMML can be described as the following generic
equation [12]:

(A + UCV)−1 = A−1
−A−1U(C−1 + VA−1U)

−1
VA−1 (11)

If ∆Y, the variation of the admittance matrix Y, can be decomposed into the product of three
matrices, or M · δy ·MT, the new admittance matrix, Ynew, can be expressed as follows:

Ynew = Yold + ∆Y = Yold + M · δy ·MT (12)

where δy is the variation of matrix Y (m ×m), M is the connection matrix (n ×m), n is the number of
total buses and m is the number of modified buses. Here, time index t is omitted for simplicity.

By applying the Woodbury equation of the IMML to Equation (12), a new impedance matrix, Znew,
can be obtained as follows:

Znew = (Yold + MδyMT)
−1

= Zold
−ZoldMcMTZold (13)

c = (δy−1 + z)
−1

= δy(I + z× δy)−1 (14)

z = MTZoldM (15)

where Zold is the impedance matrix of the previous optimization step. In order to eliminate the
unnecessary inverse operation, Equation (14) is replaced with the following equation:

δy = c(I + z× δy) (16)

Here, we apply an extra assumption that only one new transmission line can be added to the
existing bus in order to derive a more compact formulation for Equation (16). In case that more than
one transmission line should be added to a bus, the above assumption is still valid since we can insert
a dummy bus between the new transmission line and the existing bus with small reactance between
the buses. Therefore, most of the elements in matrix Y are not changed except for the corresponding
elements of the pair of the buses to which the new transmission line candidate is connected. Thus, δy
can be expressed as the following equation:

δy =



δy1,1 δy1,2

δy2,1 δy2,2
· · ·

0 0
0 0

· · ·
0 0
0 0

...
. . .

... · · ·
...

0 0
0 0

· · ·
δyi,i δyi, j
δy j,i δy j, j

· · ·
0 0
0 0

...
. . .

...
. . .

...
0 0
0 0

· · ·
0 0
0 0

· · ·
0 0
0 0


[m × m]

(17)
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=

[
δyA,A δyA,B
δyB,A δyB,B

]
[m × m]

=

[
δyA,A 0

0 δyB,B

]
[m × m]

(18)

where δyA,A and δyB,B are [(m − 2) × (m − 2)] and [2 × 2] matrices, respectively. Furthermore,
the following equations can be obtained by substituting Equation (18) into Equation (16) with
appropriate partitioning:

 δyA,A 0

0 δyB,B


[m × m]

=

 cA,A cA,B

cB,A cB,B


[m × m]

(

 I 0

0 I


[m × m]

+

 zA,A zA,B

zB,A zB,B


[m × m]

 δyA,A 0

0 δyB,B


[m × m]

) (19)

or
cA,A(I + zA,AδyA,A) + cA,BzB,AδyA,A = δyA,A (20)

cB,A(I + zA,AδyA,A) + cB,BzB,AδyA,A = 0 (21)

cA,B(I + zB,BδyB,B) + cA,AzA,BδyB,B = 0 (22)

cB,B(I + zB,BδyB,B) + cB,AzA,BδyB,B = δyB,B (23)

Without loss of generality, by appropriate indexing and simple matrix manipulation, we can
define subscript A as the set of buses where the transmission line is constructed, and subscript B as
the set of buses where the transmission line is not constructed, which means that all elements of δyB,B

in Equation (19) will be zero. Then the following equations can be easily derived from Equation (20)
through Equation (23):

cA,A(I + zA,AδyA,A) = δyA,A (24)

cB,A(I + zA,AδyA,A) = δyB,A (25)

cA,B = cB,B = 0 (26)

It should be noted that both Equation (24) and Equation (25) should be regarded as nonlinear,
because they contain terms in the production of two variables: c and δy. In this paper, we apply the
following algorithm, which has the same effect as the above equations, so that the resulting optimization
problem becomes a MILP formulation.

If xl j = 1, then:

cre
i, j +

∑
k∈Nl

(
cre

i,k × zδyre
k, j − cim

i,k × zδyim
k, j

)
= δyre

i, j f or ∀i, j ∈ Nl (27)

cim
i, j +

∑
k∈Nl

(
cre

i,k × zδyim
k, j + cim

i,k × zδyre
k, j

)
= δyim

i, j f or ∀i, j ∈ Nl, (28)

And if xlj = 0, then:
cre

i, j = 0, cim
i, j = 0 f or ∀i, j ∈ Nl (29)

In the above equations, zδyre and zδyim denote the real and imaginary parts of the product of
matrix z and matrix δy, respectively. All logic expressions in the above are implemented using the
indicator constraint option of the CPLEX solver incorporated in the General Algebraic Modeling
System (GAMS) [14]. Once all the elements of c are calculated using Equations (27)−(29), they can
be entered into Equation (12), and the equation to calculate the diagonal element of the new bus
impedance matrix (or the Thévenin equivalent impedance) is derived as follows:

Znew
f , f = Zold

f , f −
∑
i∈Nl

Zold
f ,i

∑
j∈Nl

(ci, j ×Zold
j, f )

∀ f ∈ N f (30)
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Generally, the reactance is more dominant than the resistance of the transmission line, thus, it can

be assumed that im
{
Znew

f , f

}
� re

{
Znew

f , f

}
without significant loss of generality. Hence, the constraint

given by Equation (5) can be rewritten as follows:

im
{
Znew

f , f

}
≥

1
Imax

f
∀ f ∈ N f (31)

2.3. Other Constraints

The following constraints are incorporated into the model to account for the technical limitations
of the power system and its components.

2.3.1. Power Flow Equation

The following typical DC power flow equations are included in the model [13]:

Pt,s,i j = −Bi j ×
(
θt,s,i − θt,s, j

)
f or ∀t ∈ T,∀s ∈ S,∀i, j ∈ N (32)nPt,s,i j = −nBi j ×

(
θt,s,i − θt,s, j

)
i f xlt,i = 1

nPt,s,i j = 0 i f xlt,i = 0
f or ∀t ∈ T,∀s ∈ S,∀i, j ∈ Nl (33)

Equation (32) is the DC power flow equation for the existing transmission lines, and Equation (33)
is for the candidates to be newly constructed. For the latter, in the search process, constructing (xlt,i = 1)
and not constructing (xlt,i = 0) are expressed separately.

2.3.2. Node Balance Equation

The demand and supply condition at each bus is represented as the following equality constraint:∑
g∈Gi

Pgt,s,g − Pdt,s,i −
∑

j∈N, j,i

Pt,s,i j −
∑

j∈Nl, j,i

nPt,s,i j = 0 f or ∀t ∈ T,∀s ∈ S,∀i ∈ N (34)

2.3.3. Limit on Generator Output

All the generators should satisfy the following inequality constraints for the limits on the active
power output: Pmin

g ≤ Pt,s,g ≤ Pmax
g i f xgt,s,g = 1

Pt,s,g = 0 i f xgt,s,g = 0
f or ∀t ∈ T,∀s ∈ S,∀g ∈ G (35)

In general, in the TEP problem, the on/off status of generator is not considered due to the
computational burden. In this paper, for slight improvement of the accuracy of the generation
cost, the on/off status of generator is included in the model. However, if the overall computation
time is crucial during the simulation, Equation (35) can be simplified to 0 ≤ Pt,s,g ≤ Pmax

g without
significant problem.

2.3.4. Transmission Limit

The following inequality constraints should be satisfied to limit the apparent power flow through
the transmission lines:

−Pmax
ij ≤ Pt,s,i j ≤ Pmax

ij f or ∀t ∈ T,∀s ∈ S,∀i, j ∈ N (36)

−nPmax
ij ≤ Pt,s,i j ≤ nPmax

ij f or ∀t ∈ T,∀s ∈ S,∀i, j ∈ Nl (37)
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2.3.5. Bus Voltage Angel Limit

The following inequality constraint is included to limit the bus voltage angles:

θmin
i ≤ θt,s,i ≤ θ

max
i f or ∀t ∈ T,∀s ∈ S,∀i ∈ N (38)

2.3.6. New Transmission Line Constraint

In this study, we assume that both existing and newly constructed transmission lines will be
maintained until the end of the planning period once they are constructed. The following constraints
are included in the model for this purpose:

xlt,i ≥ xlt−1,i f or ∀i ∈ Nl,∀t ∈ T (39)

xli = xl j f or ∀(i, j) ∈ `i, j (40)

3. Solution Methods

The TEP problem with the fault current constraint formulated in the previous section is a typical
MILP optimization problem. One of the most commonly used methods to find the optimal solution
of the MILP problem is the branch-and-cut algorithm. In general, the B&C algorithm is known to be
able to obtain the optimal solution for a relatively small-scale MILP problem, but as explained in the
simulation section, the curse of dimensionality still occurs in the TEP problem when considering the
proposed fault current constraint. As a result, when the scale of the system increases, the optimal
solution cannot be searched for within a reasonable period of time.

In this section, we propose a valid inequality method that can help efficiently find the optimal
solution to a given TEP problem. The valid inequality method is one of the ways to improve the
search speed by removing the search space from the feasible region where there is no possibility of
the solution in a given optimization problem. For example, valid inequalities are effectively used to
improve the performance of the B&C algorithm to solve MILP problems such as the traveling salesman
problem [15], unit commitment [16], and the oil pipeline design problem [17]. Since most of the valid
inequalities are very problem-specific in nature, the valid inequalities used in the previous studies
cannot be applied to the TEP problem. Hence, this study proposes a new valid inequality that is well
suited to the proposed TEP problem, and it shows through simulation results that the proposed valid
inequality works efficiently. Next, we briefly describe the B&C algorithm and then explain the valid
inequality suggested in this study.

3.1. Branch and Cut(B&C) Algorithm

The B&C algorithm is a combination of the branch-and-bound (B&B) algorithm and the cutting
plane method. Figure 1 shows a flow diagram of the B&C algorithm used in this study [18].
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Figure 1. Flow chart of the branch-and-cut algorithm [18].

3.2. Valid Inequalities

As mentioned above, it is assumed in this paper that the existing transmission lines are not
decommissioned during the planning period. We believe that this assumption is reasonable because
the existing transmission lines are rarely decommissioned even in an actual situation, and in most
cases, the aged lines are maintained through reinforcement works.

The proposed model includes two binary variables, one related to transmission line construction
(xl), and the other to generator operation status (xg). If a combinatorial set of xl does not satisfy the fault
current constraint, a feasible solution does not exist, whatever values are assigned to xg. Additionally,
in general, as more transmission lines are built, the fault current at each bus tends to increase.

Having said that, we can assert that at least one of the new transmission lines included in the
expansion plan should be removed from the plan if a given combination of xl does not satisfy the
fault current constraint. Therefore, the following valid inequality constraint can be added to the
mathematical model if the fault current constraint or Equation (5) is not satisfied:∑

{i|round(x̂lT,i)=1}

(1− xlT,i) ≥ 1, ∀i ∈ Nl (41)

where round() is the round-off operator. The valid inequality is added as a new constraint to the cutting
plane. In this study, the above valid inequality is implemented using the branch-and-cut-and-heuristic
(BCH) of GAMS [14].

4. Simulation Results

In order to verify the performance of the proposed method, several simulations were performed on
the IEEE RTS-96 system, which is frequently used for the TEP problem [19]. The studied power system
is depicted in Figure 2. Additionally, Figure 3 shows the load duration curve used in the study, where
the durations of load blocks are 1752 hours for a 100% load, 5256 hours at 80%, and 1752 hours at 40%.
The growth rate of annual electricity demand and the discount rate are arbitrarily set at 10% and 7%,
respectively. The base power and the upper limit of the fault current in each bus are set to 100 MVA and 10
kA, respectively. Other technical parameters used in the simulations are listed separately in the Appendix A.
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Figure 2. IEEE two-area RTS-96 system (solid: existing; dashed: candidates).

Figure 3. Load duration curve.

The proposed model was implemented using the CPLEX solver, which is one of the most frequently
used MILP solvers available with the General Algebraic Modeling System (GAMS) [20]. In short,
the mathematical formulation of the proposed method is modeled using GAMS to find the optimal
solution to the TEP problem and the result from the GAMS model is entered into the PSS/e ASCC
Psoftware package [21] to calculate the exact fault currents. For comparison, the existing method based
on the linearized impedance update equation [7] is also simulated. The simulation study consists of
the following three cases:

Case 1: TEP without fault current constraint
Case 2: TEP with both the fault current constraint and the valid inequality (proposed method)
Case 3: TEP with the fault current constraint based on the linearized impedance update equation

(existing method) [7]
Tables 1–3 show the optimization results for the three cases. Figure 4 shows the fault current

at each bus calculated by the PSS/e ASCC software package [21] using the transmission expansion
plans acquired from the results of the three cases. In the figure, the Base case is the fault current
before the transmission expansion planning starts and is included in the figure to show that the fault
current increases monotonically when transmission lines are added to the system. Table 4 shows the
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calculation results for the fault current for each year on the bus with a fault current exceeding the
upper limit (10 kA).

Table 1. Transmission Expansion Planning Result of Case 1.

Branch (From Bus-to Bus) Line Year 1 Year 2 Year 3 Year 4 Year 5

107-203 1 #
107-203 2 #
107-108 1 #
113-215 1 #
122-218 1 #
203-209 1 #
207-208 1 #
215-216 1 #

Table 2. TEP Result of Case 2.

Branch (From Bus-to Bus) Line Year 1 Year 2 Year 3 Year 4 Year 5

102-201 1 #
107-203 1 #
107-203 2 #
107-108 1 #
107-108 2 #
112-224 1 #
211-224 1 #

Table 3. TEP Result of Case 3.

Branch (From Bus-to Bus) Line Year 1 Year 2 Year 3 Year 4 Year 5

102-201 1 #
106-204 1 #
106-204 2 #
107-203 1 #
112-224 2 #
207-208 1 #
211-224 1 #

Figure 4. Fault current analysis using PSS/e ASCC.
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Table 4. Fault current of buses (violated buses only, unit: A).

Bus Number Case Base Year 1 Year 2 Year 3 Year 4 Year 5

113
Case 1 8779 11,116 11,157 11,157 11,160 11,175
Case 2 8779 9430 9430 9433 9433 9474
Case 3 8779 9385 9407 9407 9407 9522

203
Case 1 7254 8467 8556 8556 9145 10,231
Case 2 7254 8957 8957 9533 9533 9622
Case 3 7254 8688 8719 8719 8719 8995

209
Case 1 9111 9372 9385 9385 9477 10,575
Case 2 9111 9656 9656 9752 9752 9833
Case 3 9111 9795 9850 9850 9850 10,356

215
Case 1 5200 11,049 11,050 11,050 11,087 11,543
Case 2 5200 6529 6529 6545 6545 6549
Case 3 5200 5960 5961 5961 5961 6540

216
Case 1 7670 11,151 11,152 11,152 11,180 11,772
Case 2 7670 7859 7859 7868 7868 7875
Case 3 7670 7767 7773 7773 7773 7887

218
Case 1 8182 8753 8753 8753 8762 10,586
Case 2 8182 8369 8369 8376 8376 8379
Case 3 8182 8369 8372 8372 8372 8382

In Figure 4, the result of Case 1 yields fault currents that exceed 10 kA in the buses of 113, 203, 209,
215, 216, and 218 (blue and red circles). In view of the fault current, the biggest problem of Case 1 is
that some of the new transmission lines are constructed on the bus 215, 216, and 218, which have the
largest increase in fault currents. It is an obvious result because the fault current level constraint is not
considered in the optimization model in Case 1.

On the other hand, any of the fault currents of Case 2 does not exceed the limit of the failure level
and the new transmission lines are constructed on the buses 112, 211, and 224 with relatively low
increase in fault current.

In Case 3, it can be observed that the fault current at bus 209 exceeds the upper limit as shown in
Figure 4 (red circle) and Table 4, and the cause of this problem is due to the linearization of the bus
impedance update equation explained in Section 2.2.1. This result can be seen to be due to a rather
extreme setting, but we believe that there is always the possibility of this problem occurring in a real
system considering the recent circumstances of the power system where the margin between the fault
current level and the circuit breakers’ breaking capacity decreases gradually. One thing that should be
noted in the result of Case 3 is that the fault current violation happened at bus 209, which is not connected
to any of the new transmission lines as shown in Table 3. The reason for this problem is that when the
impedance matrix is updated in Case 3 using Equations (6)–(9), the change of the impedance values
between other buses that are not connected to the new transmission lines are ignored in order to reduce
the calculation time. This problem does not occur in the proposed method (Case 2) because fault current
is calculated using exact impedance matrices that reflect the change in the impedance of all buses.

The objective value and the calculation time for each case are shown in Table 5. As shown in
the table, Case 2 (the proposed method) takes longer to find the optimal solution than other cases,
and the objective function (construction, operation costs, and salvage values) shows that the proposed
method is slightly improved compared to Case 3, but the differences are not significant considering the
circumstances of the TEP problem. Therefore, the main advantage of the proposed method is that the
TEP problem considering the fault current constraint can be solved more precisely by formulating it in
MILP form without linearization.

Table 5. Objective values and computation times.

Case Objective Value (Million $) Computation Time (Seconds)

Case 1 2053 34
Case 2 2100 267
Case 3 2129 44
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One last analysis of the proposed method is the impact of the valid inequality on the time to
convergence at the optimal solution. Figure 5 shows the results of comparing convergence times with
and without using the valid inequality. As shown in the figure, the duality gap converges at 0 in about
267 seconds, but it takes longer than 1000 minutes when the valid inequality is not used. The results
of the transmission expansion plan in both cases are exactly the same, and therefore, the effect of the
valid inequality is clear.

Figure 5. Impact of the valid inequality on convergence time.

5. Concluding Remarks

In this paper, we propose a new method to solve the TEP problem with more exact consideration of
fault current level constraint. In the existing TEP studies, approximation errors occur due to the linearization
of the impedance update equation, which is formulated as a nonlinear equation to calculate the fault current
of a system. In this paper, we adopt a method of eliminating the approximation error by obtaining the
updated impedance matrix directly from the inversion of the admittance matrix using the IMML.

This study also proposes a novel valid inequality method to reduce the computation time to
find the optimal solution to the TEP problem with fault current level constraint. The concept of valid
inequality is a way of reducing the overall computation time by adding an inequality constraint at
every computation step that removes the infeasible region of the optimization problem from the search
space. In this paper, the valid inequality is constructed using the characteristic that the fault current in
the system generally increases due to the increase of the parallel circuit when new transmission lines
are added. As shown in the simulation results, this valid inequality proves to be capable of reducing
the overall computation time significantly.

The contribution of this study can be summarized as follows. First, the TEP problem considering
the fault current constraint is formulated as a MILP optimization problem without linearization.
Second, the convergence of the MILP optimization problem is greatly improved by reducing the
feasible area through the valid inequality.

In addition to the TEP problem considering the fault current, the proposed method can be applied
to studies on the economical evaluation problems of the newly discussed technologies in solving the
fault current problem, such as the optimization of bus separation, the superconducting fault current
limiter, and the usage of medium voltage direct current.
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Nomenclature

Indices

t: Index of years
s: Index of electricity load blocks
i, j, k: Index of buses
f : Sub-index of buses applying fault current constraint
g: Index of generators

Sets and Function

T: Set of all planning years
N: Set of all buses
Nl: Set of buses connected to new line candidates
N f : Set of buses to which fault current constraints are applied
G: Set of all generators
Gi: Set of generators connected to bus i
`i, j: Bus pair of new line candidates between bus i and j
S: Set of all electricity load blocks
fg: Fuel cost of generator g

Variables and Time-varying Parameters

Ynew
t : Bus admittance matrix in year t

Znew
t : Bus impedance matrix in year t

Pgt,s,g: Active power output of generator g of load block s in year t
Pt,s,i j: Active power flow of existing line from bus i to j of load block s in year t
nPt,s,i j: Active power flow of new line from bus i to j of load block s in year t
xgt,s,g: Binary variable for on/off status of generator g at bus i of load block s in year t
xlt,i: Binary variable for construction status of new transmission line at bus i in year t
θt,s,i: Phase angle of bus i of load block s in year t
x̂lt,i: Solution to the linear relaxation problem of B&C algorithm at bus i in year t

Fixed Parameters

Imax
i : Maximum fault current at bus i

Yold
i, j : Bus admittance matrix between bus i and j in base year

Zold
i, j : Bus impedance matrix between bus i and j in base year

Znew
i, j : Impedance of new line candidate between bus i and j

ICi, j: Construction cost of new line candidate between i and j
li f ei, j: Life span of new line candidate between i and j
tds: Time duration of load block s
dr: Discount rate
bg, cg: Coefficients of the cost function of generator g
Pdt,s,i: Active power demand at bus i of load block s in year t
Pmax

g , Pmin
g : Maximum/Minimum active power output of generator g

Pmax
ij : Maximum active power transmission limit of existing line between bus i and j

nPmax
ij ,nPmin

ij : Maximum/Minimum active power transmission limit of new line between bus i and j
Bi j: Susceptance of transmission line between bus i and j
nBi j: Susceptance of new line candidate between bus i and j
θmax

i , θmin
i : Maximum/Minimum voltage angle at bus i
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Appendix A Parameters

The following tables show the parameters of the system used in the simulations.

Table A1. Transmission line data.

Branch ID R (p.u.) X (p.u.) Limit
(MW) Branch ID R (p.u.) X (p.u.) Limit

(MW)

101-102 1 0.003 0.014 175 201-202 1 0.003 0.014 175
101-103 1 0.055 0.211 175 201-203 1 0.055 0.211 175
101-105 1 0.022 0.085 175 201-205 1 0.022 0.085 175
102-104 1 0.033 0.127 175 202-204 1 0.033 0.127 175
102-106 1 0.050 0.192 175 202-206 1 0.050 0.192 175
103-109 1 0.031 0.119 175 203-209 1 0.031 0.119 175
104-109 1 0.027 0.104 175 204-209 1 0.027 0.104 175
105-110 1 0.023 0.088 175 205-210 1 0.023 0.088 175
106-110 1 0.014 0.061 175 206-210 1 0.014 0.061 175
107-108 1 0.016 0.061 175 207-208 1 0.016 0.061 175
108-109 1 0.043 0.165 175 208-209 1 0.043 0.165 175
108-110 1 0.043 0.165 175 208-210 1 0.043 0.165 175
111-113 1 0.006 0.048 500 211-213 1 0.006 0.048 500
111-114 1 0.005 0.042 500 211-214 1 0.005 0.042 500
112-113 1 0.006 0.048 500 212-213 1 0.006 0.048 500
112-123 1 0.012 0.097 500 212-223 1 0.012 0.097 500
113-123 1 0.011 0.087 500 213-223 1 0.011 0.087 500
114-116 1 0.005 0.059 500 214-216 1 0.005 0.059 500
115-121 1 0.006 0.049 500 215-221 1 0.006 0.049 500
115-124 1 0.007 0.052 500 215-224 1 0.007 0.052 500
116-117 1 0.003 0.026 500 216-217 1 0.003 0.026 500
116-119 1 0.003 0.023 500 216-219 1 0.003 0.023 500
117-118 1 0.002 0.014 500 217-218 1 0.002 0.014 500
117-122 1 0.014 0.105 500 217-222 1 0.014 0.105 500
118-121 1 0.003 0.026 500 218-221 1 0.003 0.026 500
119-120 1 0.005 0.040 500 219-220 1 0.005 0.040 500
120-123 1 0.003 0.022 500 220-223 1 0.003 0.022 500
107-203 1 0.042 0.161 175

Table A2. Transformer data.

Branch R (p.u.) X (p.u.) Limit
(MW) Tr R (p.u.) X (p.u.) Limit

(MW)

103-124 0.002 0.09 400 203-224 0.002 0.09 400
109-111 0.002 0.09 400 209-211 0.002 0.09 400
109-112 0.002 0.09 400 209-212 0.002 0.09 400
110-111 0.002 0.09 400 210-211 0.002 0.09 400
110-112 0.002 0.09 400 210-212 0.002 0.09 400
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Table A3. New line data.

Branch R (p.u.) X (p.u.) Limit (MW) Investment Cost
(Million $) Life (year)

102-201 0.090 0.346 175 90,000,000 30
106-204 0.072 0.276 175 72,000,000 30
107-203 0.042 0.161 175 42,000,000 30
107-108 0.016 0.061 175 16,000,000 30
112-224 0.011 0.089 500 120,000,000 30
113-215 0.010 0.075 500 78,000,000 30
113-217 0.042 0.161 175 42,000,000 30
115-116 0.002 0.017 500 18,000,000 30
115-121 0.006 0.049 500 51,000,000 30
116-117 0.003 0.026 500 27,000,000 30
118-121 0.003 0.026 500 27,000,000 30
119-120 0.005 0.040 500 41,250,000 30
120-123 0.003 0.022 500 22,500,000 30
121-122 0.009 0.068 500 70,500,000 30
122-218 0.009 0.068 500 76,500,000 30
123-217 0.010 0.074 500 76,500,000 30
203-209 0.031 0.119 175 31,000,000 30
207-208 0.016 0.061 175 16,000,000 30
215-216 0.002 0.017 500 18,000,000 30
215-221 0.006 0.049 500 51,000,000 30
218-221 0.003 0.026 500 27,000,000 30
219-220 0.005 0.040 500 41,250,000 30
220-223 0.003 0.022 500 22,500,000 30
221-222 0.009 0.068 500 70,500,000 30
211-224 0.006 0.046 500 49,500,000 30

Table A4. Generator data.

Bus
ID

Pmax
(MW)

Pmin
(MW)

Bg
($/MWh)

Cg
($/h)

Xd”
(p.u)

Bus
ID

Pmax
(MW)

Pmin
(MW)

Bg
($/MWh)

Cg
($/h)

Xd”
(p.u)

101 192 154 52 1220 0.19 201 192 154 42 976 0.19
102 192 154 52 1220 0.19 202 192 154 42 976 0.19
107 300 70 78 13,152 0.13 207 300 70 62 10,521 0.13
113 591 352 4 281 0.06 213 591 352 3 225 0.06
115 215 152 71 9116 0.17 215 215 152 56 7293 0.17
116 155 44 113 7810 0.24 216 155 44 91 6278 0.24
118 400 244 20 3848 0.12 218 400 244 17 3078 0.12
121 400 244 24 3452 0.12 221 400 244 19 2762 0.12
122 300 122 129 2778 0.12 222 300 122 103 2222 0.12
123 660 562 5 947 0.06 223 660 562 4 758 0.06

Table A5. Peak load data (MW).

Bus
ID kV Peak

Load
Bus
ID kV Peak

Load
Bus
ID kV Peak

Load
Bus
ID kV Peak

Load

101 138 92 111 230 225 201 138 46 211 230 113
102 138 82 112 230 167 202 138 41 212 230 84
103 138 153 113 230 225 203 138 77 213 230 113
104 138 63 114 230 165 204 138 31 214 230 82
105 138 60 115 230 269 205 138 30 215 230 135
106 138 116 116 230 85 206 138 58 216 230 43
107 138 106 118 230 283 207 138 53 218 230 142
108 138 145 119 230 154 208 138 73 219 230 77
109 138 149 120 230 109 209 138 74 220 230 54
110 138 166 210 138 83
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