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Abstract: Engine brake torque is a key feedback variable for the optimal torque split control of an 
engine–motor hybrid powertrain system. Due to the limitations in available sensors, however, 
engine torque is difficult to measure directly. For torque estimation, the unknown external load 
torque and the overlap of the expansion stroke between cylinders introduce a great disturbance to 
engine speed dynamics. This makes the conventional cycle average engine speed-based estimation 
approach unusable. In this article, an in-cycle crankshaft speed-based indicated torque estimation 
approach is proposed for a four-cylinder engine. First, a unique crankshaft angle window is selected 
for load torque estimation without the influence of combustion torque. Then, an in-cycle angle-
domain crankshaft speed dynamic model is developed for engine indicated torque estimation. To 
account for the effects of model inaccuracy and unknown external disturbances, a “total 
disturbance” term is introduced. The total disturbance is then estimated by an adaptive observer 
using the engine’s historical operating data. Finally, a real-time correction method for the friction 
torque is proposed in the fuel cut-off scenario. Combining the aforementioned torque estimators, 
the brake torque can be obtained. The proposed algorithm is implemented in an in-house developed 
multi-core engine control unit (ECU). Experimental validation results on an engine test bench show 
that the algorithm’s execution time is about 3.2 ms, and the estimation error of the brake torque is 
within 5%. Therefore, the proposed method is a promising way to accurately estimate engine torque 
in real-time. 

Keywords: engine torque estimation; GDI engines; extended state observer; online performance 
 

1. Introduction 

Engine–motor hybrid powertrain systems have been widely used in passenger vehicles [1] to 
meet increasingly strict emission legislation and improve fuel economy. Optimal torque split between 
the engine and torque is obviously essential to achieve the best overall efficiency for hybrid vehicles. 

Due to the fundamental nature of internal combustion engines (ICEs), the torque’s response is 
slower than the motor’s and is usually difficult to measure directly [2,3]. The degradation in engine 
torque control performance will, in turn, have an adverse effect on the overall fuel economy of the 
hybrid powertrain systems [4]. This drives the need for real-time estimation of the engine torque, 
especially in the application of hybrid electric vehicles (HEVs) [5]. 

Various solutions were available for engine torque control in the past. The most straightforward 
method to measure the engine torque is by in-cylinder pressure sensors or torque sensors. These 
solutions, however, increase the hardware cost and create an issue of durability. For instance, the 
cylinder’s pressure may suffer from its harsh thermal environment. These factors limit the application 
of this method in stock engines [6–9]. 
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An alternative cost-effective solution without the need for additional sensors is to use a 
crankshaft instantaneous speed sensor, based on the causality between the engine torque and engine 
speed variation [10,11]. Theoretically, any changes in the engine brake torque can be sensed from the 
fluctuation of the crankshaft’s instantaneous speed [12]. Three methodologies are commonly used in 
crankshaft speed-based torque estimation, consisting of black-box model-based estimation, 
frequency analysis-based mapping, and crankshaft dynamic model-based estimation [13]. The first 
solution is to use a black-box model (such as a neural network and nominal function) to describe the 
relationship between the engine torque and crankshaft instantaneous speed [14–18]. However, these 
methods need an amount of data to train the black-box model. Moreover, their model parameters 
vary with the operating conditions caused by the nonlinear nature of the engine speed dynamics. 
This makes a single model unsuitable for estimating engine torque under all operating conditions. 
To improve the estimation accuracy, a piece-wise linear model is a popular solution but comes at the 
cost of a heavy workload during calibration. 

Frequency analysis-based mapping [19] can be used to estimate the indicated torque. After the 
crankshaft’s instantaneous speed and indicated torque are processed by DFT (discrete Fourier 
transform), a significantly positive correlation can be observed between the two signals in the main 
harmonic order [20]. However, this requires complicated signal and computational processing and is 
unsuitable for online applications in the engine control unit (ECU). The third approach is to use 
crankshaft dynamic models, which can be expressed in the torque balance equation [21–25]. The 
crankshaft dynamics model can be divided into two categories: A rigid model and an elastic model 
[26]. The elastic crankshaft dynamics model has higher prediction accuracy and wider working 
conditions than the rigid model. However, the elastic model requires a large amount of calculation 
work, which limits its use in real-time applications [13]. 

In order to increase the adaptability and accuracy of the torque estimation algorithm, the intake 
process and combustion process are also considered in crankshaft speed modeling. Obviously, this 
makes the physical model too complicated to implement in an ECU without many model parameters 
for calibration [27]. Additionally, for the engine friction torque estimation, a look-up table approach 
is simple to implement and shows degraded estimation accuracy with the aging of the engine [28]. In 
addition, the unknown resistance torque from the gear box and the wheel makes the engine speed-
based engine torque estimation more challenging. To sum up, it is clear that the on-board torque 
estimation algorithm is challenging, due to the dilemma between the estimation’s accuracy and its 
feasibility in embedded system implementation [13]. 

Currently, the existing torque online estimation methods are primarily based on look-up tables 
calibrated offline. This is simple-to-straightforward to implement, but the estimation accuracy 
deteriorates as the engine ages. One contribution of the proposed algorithm is the ability to be 
adaptive to the aging of the engine. 

In this paper, an engine brake torque estimation approach is proposed for a four-cylinder engine, 
consisting of the load torque estimator, indicated torque estimator, and a friction torque observer. In 
fact, the brake torque estimation is valid for both four-cylinder and three-cylinder engines. For 
engines with a cylinder number equal or less than four, there exists a unique crankshaft angle 
window, where there is no overlap of the combustion processes. For engines with more than four 
cylinders, such kind of crankshaft window does not exist, which affects the estimation of total gas 
torque. First, the load torque estimator is designed for the unique crankshaft angle window. Then, an 
in-cycle angle-domain crankshaft speed dynamic model is developed for engine-indicated torque 
estimation with a deviation from the model of a real plant lumped as the total disturbance for 
estimation. Finally, a real-time correction method for the friction torque is proposed for use in a fuel 
cut-off scenario. The proposed algorithm is implemented in a multicore ECU to testify its accuracy, 
computational time, and central processing unit (CPU) loads. 

The rest of this article is organized as follows. In Section 2, the experiment setup is discussed 
briefly. Then, an engine torque observer algorithm is proposed in Section 3. The engine torque 
observer estimation results and embedded performance are discussed in Section 4. Finally, the 
conclusions of this study are shown in Section 5. 
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2. Experiment Setup 

The experiment was conducted on a Greatwall Motor EC02 GDI (Gasoline Direct Injection) 
engine test bench (as shown in Figure 1) with a Horiba DYNAS3 LI 250 electric dynamometer. The 
schematic diagram of the test bench is shown in Figure 2. The engine has a firing order of 1-3-4-2, and 
all four cylinders are equipped with in-cylinder pressure sensors for the indicated torque estimation 
(the baseline for observer validation). The detailed engine specifications are tabulated in Table 1. 

Table 1. Engine specifications. 

Variable Value 
Displacement (liter) 2.0 L 

Cylinders 4 
Compression ratio 9.6 

Bore (mm) 82.5 
Stroke (mm) 92 

Connecting rod (mm) 144 
Maximum torque (Nm)/speed (rpm) 385/1800 

Rated power (kW)/speed (rpm) 165/5500 
Intake mode Naturally aspired 

 

Figure 1. Experimental environment for the engine bench. 
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Figure 2. Schematic diagram of an engine experimental platform. ECU, engine control unit; IAT, 
intake air temperature; MAP, manifold absolute pressure. 

3. Engine Torque Observer Development 

In this section, the derivation of the proposed engine torque estimation algorithm is discussed 
in detail, including engine dynamic model identification, the indicated torque observer [29], and the 
brake torque observer. 

3.1. Engine Dynamic Model 

The instantaneous rotational speed of the crankshaft is affected by the torque enforced by the 
crankshaft following Newton’s law. In the crankshaft dynamics, a combination of the brake torque, 
the friction torque, the indicated torque, and the reciprocating inertia torque works on the crankshaft, 
causing engine instantaneous speed to fluctuate. There are two kinds of dynamic model in literature, 
the elastic model and the rigid-body model. The rigid-body model is simplified from the elastic 
model. Although the elastic model of the crankshaft has high accuracy, the calculation process needs 
to consume more computing resources. The rigid-body crankshaft dynamic model needs less 
computing resources, but it has a lower accuracy. This section proposes a rigid-body crankshaft 
model with a disturbance factor (1), which is used to compensate the error caused by dynamic model 
simplification process. 𝐽 Δ𝜉 𝜃 𝜃 𝑇 − 𝑇 − 𝑇 − 𝑇  (1)

where 𝐽 is the rotational inertia of the crankshaft, 𝜃 is the rotation angle of the crankshaft, Δ𝜉 𝜃  is 
the disturbance factor, 𝜃 is the angular acceleration of the crankshaft, 𝑇  is the indicated torque, 𝑇  is the reciprocating inertia torque, 𝑇  is the friction torque, and 𝑇  is the brake torque. 

As seen in Equation (1), the angular acceleration is the second-order derivative of the crankshaft 
rotation angle (𝜃), which is very noisy. So, a finite impulse response (FIR) filter is used to process the 
angular speed signal with a cut-off frequency of 300 Hz. A Kalman filter is used to calculate the 
angular acceleration. 

3.1.1. Reciprocating Torque 

The reciprocating torque is generated by the reciprocating part of the connecting rod system. 
The schematic diagram of the movement of the connecting rod system is as follows in Figure 3. 
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Figure 3. Crank and connecting rod mechanism. 𝑚 ,  is the reciprocating mass of the system, including the piston group and the reciprocating 
part of the connecting rod. 𝑙  is the length of the reciprocating part of crank connecting rod 
mechanism. 𝑚 ,  is the rotation mass of the system, including the crankshaft and the rotation part 
of the connecting rod mechanism, and 𝑙  is the length of the rotating part of the connecting rod. 𝑙  
denotes the length of the connecting rod. 𝑅 is radius of the crank. 𝜃 is the crankshaft rotation angle. 𝜑 denotes the connecting rod angle. 𝜈  is the velocity of the piston. 𝜈  is the linear velocity of the 
crank. 𝑑 denotes the piston pin offset, which is neglected in this research. 

According to the law of conservation of energy, the system’s kinetic energy consists of the kinetic 
energy of the reciprocating mass and the rotation mass, which can be expressed as Equation (2) [23]. 𝐽𝜃 = 𝑚 , 𝜈 + 𝑚 , 𝜈  (2)

The velocities of the reciprocating mass and the rotation mass can be expressed as: 

⎩⎪⎨
⎪⎧𝜈 = 𝑅𝜃[𝑠𝑖𝑛𝜃 + 𝜆 𝑠𝑖𝑛2𝜃2 1 − 𝜆 𝑠𝑖𝑛 𝜃]
𝜈 = 𝑅𝜃  (3)

where 𝜆 = (𝑅/𝑙 ) denotes the crank radius to connecting rod length ratio [23]. 
So, according to Equations (2) and (3), the moment of inertia of the system can be expressed as: 𝐽 = 𝑚 , 𝑅 [𝑠𝑖𝑛𝜃 + 𝜆 𝑠𝑖𝑛2𝜃2 1 − 𝜆 𝑠𝑖𝑛 𝜃] + 𝑚 , 𝑅  (4)

𝑇  denotes the reciprocating torque [23]. 𝑇 = 𝑚 , 𝑅 𝑓(𝜃)[𝑓(𝜃)𝜃 + 𝑔(𝜃)𝜃 ] (5)

where: 𝑓(𝜃) = 𝑠𝑖𝑛𝜃 + 𝜆 𝑠𝑖𝑛2𝜃2 1 − 𝜆 𝑠𝑖𝑛 𝜃 

𝑔(𝜃) = 𝑐𝑜𝑠𝜃 + 𝜆 𝑠𝑖𝑛2𝜃1 − 𝜆 𝑠𝑖𝑛 𝜃 + 𝜆 𝑠𝑖𝑛 (2𝜃)4 1 − 𝜆 𝑠𝑖𝑛 𝜃 . 
The total reciprocating torque can be written as: 

𝑇 = 𝑇( ) = 𝑚 , 𝑅 𝑓(𝜃 − 𝜙 )[𝑓(𝜃 − 𝜙 )𝜃 + 𝑔(𝜃 − 𝜙 )𝜃 ] (6)
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where: 𝜙 = 4𝜋𝑁 (𝑘 − 1). 𝑁 is the number of cylinders, in this case 𝑁 = 4. 𝜙  (𝑘 = 1, … ,𝑁) denotes the phase of the 𝑘th 
cylinder [13]. 

3.1.2. Indicated Torque Estimation 

Indicated torque is generated at two process, the compression process and the combustion 
process. The indicated torque during combustion process is difficult to estimate. However, the 
compression process can be considered as a polytropic process, the in-cylinder pressure can be 
estimated using the manifold absolute pressure (MAP) sensor and the intake air temperature (IAT) 
sensor, assuming that the in-cylinder pressure can be approximated by MAP at the timing of intake 
valve closing and corrected by volumetric efficiency. The MAP sensor and IAT sensor are already 
standard sensors equipped in stock engines. The estimated pressure then can be used to calculate the 
indicated torque during compression process, shown in Figure 4. 𝑃 𝑉 = 𝑐𝑜𝑛𝑠𝑡 (7)

where 𝑃  denotes the in-cylinder pressure; 𝑉  denotes the gas volume; and 𝜅 is the polytropic 
process factor, which is taken to be 1.3 in this research within the compression stoke [21]. 𝑉 = 𝑉 + (𝑅 + 𝑙 − 𝑅𝑐𝑜𝑠𝜃 − 𝑙 1 − 𝜆 𝑠𝑖𝑛 𝜃) . (8)

where 𝑉  is the combustion chamber volume, and 𝐵 is the cylinder diameter [22]. 
The total indicated torque is: 𝑇 = ∑ 𝑇( ) = 𝑅∑ [𝑃 ( )𝑓(𝜃 − 𝜙 )]. (9)

3.1.3. Load Torque Estimation 

For an internal combustion engine, the load torque (𝑇 ) involves two parts: The brake torque 
(𝑇 ) and the friction torque (𝑇 ). 𝑇  a slow-varying variable compared to the combustion 
process, so 𝑇  can be considered approximately as a constant in one cycle. In the crankshaft 
dynamic model, both 𝑇  and 𝑇  are unknown variables, which makes 𝑇  difficult to 
estimate. In Section 3.1.2, 𝑇  during the compression process can be estimated, which can be 
defined as gas torque (𝑇 ). For four-cylinder engines and engines with less than four cylinders, there 
is a unique crankshaft angle window, where the sum of the other three cylinders can be neglected 
[21]. Within this particular crankshaft angle window, the total indicated torque can be calculated 
from the cylinder in the compression phase. A 𝑇  estimator can be designed in this window, 
where there is no combustion, even for all cylinders. A bench test was done to locate this angle 
window, and experimental result shows that 50 crank angle before TDC to 20 crank angle before TDC 
is the unique angle window to estimate the total gas torque for all cylinders. Meanwhile, this angle 
window can be used to estimate 𝑇  and Δ𝜉(𝜃). 
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Figure 4. Comparison of the estimated and measured in-cylinder pressure during the compression 
stroke. 

In the unique crankshaft angle window from 50° before TDC to 20° before TDC, the only 
unknown variables are 𝑇  and Δ𝜉(𝜃). So the 𝑇  estimation issue can be regarded as a system 
parameter estimation issue. The least-squares method is a method for identifying system parameters. 
However, there are few sampling points in the unique window, and the least-squares method is 
challenging for online applications. So 𝑇  estimation algorithm using the recursive least-squares 
method is proposed, and the algorithm can process the sampling data in multiple cycles. The 
estimated load torque (𝑇 ) at the end of last cycle will be set as the initial load torque into the engine 
load torque estimator. 𝑇  and Δ𝜉(𝜃) are key variables for 𝑇  observer in the next section. 

The specific algorithm is shown in Figure 5. The manifold absolute pressure at intake valve close 
(IVC) 𝑃 _  is used to calculate 𝑇 . 

 

Figure 5. Schematic diagram of the load torque estimation method based on angular speed. 

During the unique crankshaft angle window, Equation (1) can be transformed as: 𝑇 = 𝐽 𝜃 + 𝑇 . (10)

where: 𝑇 = 𝑇 + 𝑇 , 𝑇 = 𝑇 − 𝑇 , 𝐽 = 𝐽 + Δ𝜉(𝜃) 

For the K times of successive sampling, Equation (10) can be: 𝑇 (1)⋮𝑇 (𝐾) = 𝜃(1) 1⋮ ⋮𝜃(𝐾) 1 𝐽𝑇 + 𝜍(1)⋮𝜍(𝐾) . (11)

Where 𝜍 is white noise with mean value 0. 
So Equation (11) can be described as: 𝑻 = 𝚽 𝚯 + 𝝇  (12)
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𝑻 = 𝑇 (1)⋮𝑇 (𝐾) , 𝚽 = 𝜃(1) 1⋮ ⋮𝜃(𝐾) 1 , 𝚯 = 𝐽𝑇 , 𝝇 = 𝜍(1)⋮𝜍(𝐾)  

According to the recursive least-squares method: 𝚯 = 𝑷 𝚽 𝑻  (13)𝑷 = (𝚽 𝚽 )  

For 𝐾 +1, when a new 𝜃(𝐾 + 1)  and 𝑇 (𝐾 + 1)  are calculated, we define 𝜳 =[𝜃(𝐾 + 1) 1], so: 𝑷 = (𝑷 + 𝜳 𝜳 ) . (14)

Then the 𝜣 can be estimated using recursive least-squares method: 𝑸 = 𝑷 𝜳 (1 + 𝜳 𝑷 𝜳 )𝑷 = 𝑷 − 𝑸 𝜳 𝑷𝜣 = 𝜣 + 𝑸 (𝑻 −𝜳 𝜣 )  (15)

The convergence of 𝜣 requires a certain amount of 𝑇  and 𝜃. Therefore, the recursive process 
is expanded to multiple cycles, that is, the initial value of the estimated parameter 𝜣, including 𝑇  
and Δ𝜉(𝜃), is the result of the last estimated value from the previous cycle. 

3.2. Indicated Torque Observer 

3.2.1. Engine Management Model 

This engine management model is a serious model to calculate the initial indicated torque 𝑇  , and the model is the base of the extended state observer (ESO) to estimate the indicated 
torque. The engine management model contains the thermal efficiency model, the crankshaft 
dynamic model, etc. [30]. 

The indicated work comes from the combustion process of the delivered fuel, and can be 
modeled as a function of fuel heating value, the delivered mass of the gasoline and the operation 
conditions [30]. The indicated work can be expressed as: 𝑊 = 𝑚 𝑞 𝐸  (16)

where 𝑊  is indicated work, 𝑚  is the delivered gasoline mass, 𝑞  is gasoline heating value. 𝐸  is thermal efficiency, which can be expressed as: 𝐸 = 1 − 1𝑟 · min (1, 𝜆) · 𝜂 (𝜃 ) · 𝜂 , (𝜃,𝑉 ) (17)

where 𝑟  denotes the compression ratio, 𝑉  is the engine displacement, 𝜃  is the position for the 
ignition timing, 𝜂  is the ignition efficiency, 𝜂 , (𝜃,𝑉 ) is the heat transfer efficiency between the 
real and the ideal cycles, 𝜆 denotes the air/fuel ratio, and min (1, 𝜆) describes that the fuel mass 
cannot fully utilized in the case of a rich mixture [30]. 

The engine dynamic model used in this section is already mentioned in Section 3.1 

3.2.2. Indicated Torque Observer Design 

Here, an indicate torque observation method is built using ESO. The indicated thermal efficiency 𝐸  is the key parameter to calculate the indicated torque. However, the 𝐸  is a state parameter of 
the combustion process, which is impossible to measure. So an ESO is built on the base of the engine 
management model, the uncertainty of the indicated thermal efficiency ∆𝐸  is proposed to 
compensate the total error of the engine management model. The indicated torque observer based on 
ESO is shown in Figure 6. 
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The intake air quantity (𝑄 ) used to calculate the initial indicated torque, along with the 𝑇  
estimated in Section 3.1.3, are processed by crankshaft dynamic model into engine rotation speed 𝜃. 
The engine speed simulated by the crankshaft dynamic model is compared with the engine speed 
measured. The error between the simulated engine speed and the measured engine speed is obtained 
by ESO-based indicated thermal efficiency observer to calculate the ∆𝐸 . Once the ∆𝐸  is 
calculated, the indicated torque 𝑇  can be calculated using ∆𝐸 , 𝑄 ,  and 𝜆.  The detailed 
solution consists of system modeling in Equation (18), the model-based ESO design as Equation (20), 
and the ESO parameter tuning as Equation (23). 

 
Figure 6. Schematic diagram of the basic structure of the indicated torque observer. 

The crankshaft dynamic model can be described as a first order linear system, as in Equation 
(18): 𝜃 = 4𝜑4𝜋𝜆[𝐽 + ∆𝜉(𝜃)] 𝐸 + ∆𝐸 𝑄 − 1𝐽 + ∆𝜉(𝜃)𝑇 − 1𝐽 + ∆𝜉(𝜃)𝑇 . (18)

The ESO can be described as: 𝑧 = 𝑨𝑥 + 𝑩𝑢 + 𝑳(𝑦 − 𝑦)𝑦 = 𝑪𝑧  (19)

where 𝑧 is the estimated value of 𝑥, and 𝑦 is the estimated value of 𝑦 [31]. So, Equation (18) can be 
described as: 

⎩⎨
⎧𝑧 = 𝑎 𝐸 + 𝑧 𝑄 − 1𝐽 + ∆𝜉(𝜃)𝑇 − 1𝐽 + ∆𝜉(𝜃)𝑇 + 𝛽 (𝑦 − 𝑦)𝑧 = 𝛽 (𝑦 − 𝑦)𝑦 = 𝑧  (20)

where: 𝑎 = 4𝜑4𝜋𝜆[𝐽 + ∆𝜉(𝜃)]. 
State matrix A, B, C, and gain matrix L can be described as: 𝑨 = 0 𝑎 𝑄0 0 ,𝑩 = 𝑎 𝐸0 ,𝑪 = [1 0],𝑳 = 𝛽𝛽  (21)

To make the indicated thermal efficiency observer in Equation (19) converge, the characteristic 
roots of the polynomial 𝑨 − 𝑳𝑪 should be located in the left half of the complex plane. |𝜆𝑰 − 𝑨| = 𝑠 + 𝛽 ∗ 𝑠 + 𝛽 ∗ 𝑎 ∗ 𝑄  (22)
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According to [31], the observer gains, 𝛽  and 𝛽 ,  can be solved by the pole configuration 
method, and the concept of the bandwidth was introduced. The observer gain factors 𝛽  and 𝛽  
represent the observation speed of the observer, which is the bandwidth. With larger bandwidth, the 
observer can acquire more information, but more system noise is also sampled by the observer. In 
Equation (23), 𝜔  must be a positive value to ensure the convergence of the observer. (𝑠 + 𝜔 ) = 𝑠 + 𝛽 ∗ 𝑠 + 𝛽 ∗ 𝑎 ∗ 𝑄  (23)

𝛽 = 2𝜔  ,𝛽 = 𝜔𝑎 ∗ 𝑄 . 
By adjusting the bandwidth parameter 𝜔  to adjust the system gains 𝛽  and 𝛽  , the observer 

can get a better observation result. So the complicated parameter adjustment problem of the system 
gains 𝛽  and 𝛽  can be simplified into one parameter 𝜔  problem, which can greatly reduce the 
workload of the indicated thermal efficiency observer parameter adjustment. 

3.3. A Self-Learning Observer for Brake Torque Estimation 

The 𝑇  of a GDI engine (the total torque of the brake torque and friction torque) was 
estimated. In order to calculate the brake torque (𝑇 ), the engine friction torque (𝑇 ) must be 
calculated first. An empirical engine friction model is established to change the look-up tables in 
traditional control algorithms. The engine friction model’s parameters could be identified during 
certain operation points of the engine, such as in idle and fuel cut-off operating conditions, which do 
not only save a large amount of calibration work, but can also update the friction torque, along with 
the engine operations. Finally, both 𝑇  and 𝑇  can be calculated from load torque (as in Section 
3.1.3. 

Engine friction torque includes the friction loss of accessories in mechanical systems, the friction 
loss of crankshaft bushings, piston liners and piston rings, the friction loss of valve trains, etc. A 
detailed engine friction torque model could better describe the relationship between 𝑇  and 
engine working characteristics, but this model would be too complicated and unsuitable for online 
applications. In traditional applications, a look-up table is used to describe friction torque. Thus, it 
requires a large amount of calibration work and is not easy to be corrected online. Therefore, a friction 
torque mean value model is proposed. 

According to [32], 𝑇  increases with an increase in engine speed. This relationship can be 
described as in Equation (24): 𝑇 = 𝐶 + 𝐶 𝜃 + 𝐶 𝜃  (24)

where 𝜃  is the engine’s average speed; and 𝐶 , 𝐶 , and 𝐶  are the model’s parameters. 𝑇  is also related to oil temperature. The reference friction torque is calculated as 𝑇  at the 
oil viscosity of 𝜇 ; then, regardless of the initial oil viscosity, after an initial period of transient 
behavior, the 𝑇  can be expressed with an oil viscosity of 𝜇 [33], as follows: 𝑇𝑇 = 𝜇𝜇 . (25)

where 𝑛 is the model’s parameter. 𝑛 generally is taken within the range of 0.29 to 0.35. 
In this study, the correction of the oil viscosity is simplified as follows: 𝑇 = 𝑇 · 𝑒 ·  (26)

where 𝑡  is the oil temperature of the engine, and the reference temperature is 0 °C. 
Base on the reference model at a temperature of 0 °C, an engine friction model is proposed as: 𝑇 = 𝐶 + 𝐶 𝜃 + 𝐶 𝜃 · 𝑒 · . (27)
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A friction torque look-up table requires a large amount of calibration work and cannot describe 
the aging issues as the engine operates. Thus, an engine friction model parameter self-learning 
algorithm is proposed (shown as Figure 7). The parameters are estimated based on engine idle and 
fuel cut-off operating conditions. Once the engine starts, it will retain idle speed operations. In this 
working condition, the engine’s average speed will remain stable as the temperature of the cooling 
water and oil start to rise. In this process, the temperature parameter 𝐶  can be identified. During 
engine stop operations, the engine stops supplying fuel so the crankshaft rotation speed decreases 
over a few seconds. During this process, the temperature of the cooling water and oil barely change, 
so the engine speed parameters 𝐶 , 𝐶 , and 𝐶  can be identified. 

 
Figure 7. Basic structure of online learning algorithms of friction torque. 

In engine idle speed working conditions, the crankshaft average speed remains stable and 
engine indicated torque is used to overcome friction loss. 𝑇  during idle speed operations is 
estimated in Section 3 using the engine management model and crankshaft instantaneous speed. 
Thus, the friction torque can be expressed as: 𝑇 = 𝑇 . (28) 

In fuel cut-off operating conditions, the crankshaft dynamic system is only affected by friction. 
Thus, the process can be described as: [𝐽 + 𝛥𝜉(𝜃)]𝜃 = −𝑇 . (29) 

During the idle and fuel cut-off operating conditions, the friction torque of the two working 
conditions can be estimated. However, this only covers a small part of the whole engine operation 
range. Once the parameters in the model are identified, the friction torque model can be expanded to 
cover a larger working range. While the friction torque model is a nonlinear model, it is very 
challenging to directly identify the speed parameter and oil temperature parameter at the same time 
in online applications. Therefore, it is necessary to combine the two working conditions—idle and 
fuel cut-off operating conditions—to identify the model parameters. 

In idle speed working conditions, the relation between friction torque and oil temperature can 
be rendered as: 𝑇𝑇 = 𝑒𝑒 = 𝑒 ( ) (30) 

or ∆ ln𝑇 = 𝐶 · ∆𝑡 . (31) 
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In fuel cut-off operating conditions, the oil temperature barely changes. The friction torque 
model can be described as: 0 = 𝐶 𝑇 − 𝑇 + 𝐶 𝑇 𝜃 − 𝑇 𝜃 + 𝐶 𝑇 𝜃 − 𝑇 𝜃 . (32) 

By combining the particularity of the specific operating conditions of the engine, the nonlinear 
coefficients in the model are temporarily eliminated, and the linearization of the model’s coefficients 
is realized. During this process, the structure and parameters of the model do not change, and the 
relationship between the friction torque described in the model and the speed and oil temperature is 
not affected, so the accuracy of the model is not affected. 

The parameters of the model are identified by the recursive least squares method. The 
description of the friction torque model can be abstracted into the following formula: 𝑦 =  𝜑 · 𝜃 (33) 

where 𝜑 is the mode input, 𝑦 is the model’s output, and 𝜃 stands for the parameters of the model. 
The parameters’ identification process using the recursive least squares method can be 

expressed as: 

⎩⎪⎨
⎪⎧𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)[𝑦(𝑘) − 𝜑 (𝑘)𝜃(𝑘 − 1)]𝐾(𝑘) = 𝑃(𝑘 − 1)𝜑(𝑘)1 + 𝜑 (𝑘)𝑃(𝑘 − 1)𝜑(𝑘)𝑃(𝑘) = [1 − 𝐾(𝑘)𝜑 (𝑘)]𝑃(𝑘 − 1)  (34) 

In engine idle speed working conditions, the system can be described as: 𝑦 = ∆ ln𝑇𝜑 = ∆𝑇𝜃 = 𝐶 , (35) 

and for fuel cut-off process as: 𝑦 = 0𝜑 = [𝑇 − 𝑇 ,𝑇 𝜃 − 𝑇 𝜃 ,𝑇 𝜃 − 𝑇 𝜃  ]𝜃 = [𝐶 ,𝐶 ,𝐶 ] . (36) 

After the friction model’s parameters are identified, a friction torque model can be acquired. On 
the basis of the identified friction torque, 𝑇  can then be calculated from the aforementioned 𝑇 . 

4. Experimental Validation 

4.1. Methodology 

The validation experiment for engine torque estimation was conducted on the test bench 
mentioned in Section 2. Then the 𝑇 , 𝑇 , 𝑇 , 𝑇  estimation validation results were discussed 
one-by-one. Additionally, the real-time performance of the engine torque observer in a multi-core 
ECU was also discussed. 

To validate the torque estimation algorithm, the torques were measured or calculated from the 
sensors equipped in test bench and the engine, as seen in Table 2. 

First, 𝑇  was validated at steady state at the brake mean effective pressure (BMEP) of 6 bar 
at 1400 rpm and a BMEP of 5 bar at 1600 rpm. 𝑇  was not straightforward to be measured 
accurately using the test bench, especially during transients, due to the existence of the rotational 
momentums of the engine and dynamometer. Additionally, the transient process was much slower 
for the load torque variation relative to the combustion process. Therefore, the load torque was 
validated only at steady state in this work. Then, to conduct the 𝑇  estimation validation, an 
engine motoring experiment was carried out. Recall that 𝑇  consists of two torques, 𝑇  and 𝑇 , 
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where 𝑇  is obtained from the engine motoring experiments and 𝑇  is measured directly by the 
dynamometer. 𝑇  is then obtained by summing up 𝑇  and 𝑇 . 

For the validation of the 𝑇 , an engine motoring experiment was conducted from 800 to 1800 
rpm under multiple oil temperature. In the motoring test, the 𝑇  could be approximately 
measured by the dynamometer, and for the 𝑇  validation, 𝑇  was directly recorded by the 
dynamometer. 

The validation of the indicated torque was carried out at both steady-state and transient 
conditions. This is because the dynamic of indicated torque during transients is complex, caused by 
the breathing and combustion process. As all four cylinders are equipped with in-cylinder pressure 
sensors, the 𝑇  for validation was calculated from the measured in-cylinder pressure 𝑃  and 
engine geometry using Equation (9). 

Finally, the real-time performance of the engine torque observer in a multi-core ECU, such as 
computational time and CPU loads, is discussed. 

Table 2. Validation data source for engine torque estimation. 

Engine torques Validation variable source 
Indicated torque 

(𝑇 ) 
Calculated based on 𝑃  and engine geometry as shown in Equation 

(9) 
Friction torque (𝑇 ) Obtained from the engine motoring experiment in the test bench 

Brake torque (𝑇 ) Measured by in the dynamometer 
Load torque (𝑇 ) Calculated from 𝑇  and 𝑇  (the sum of 𝑇  and 𝑇 ) 

4.2. Load Torque Estimation Results 

Figure 8a shows the load torque estimation results at the BMEP of 6 bar at 1400 rpm, the 
observation algorithm starts to approach the measured load torque in the first five cycles rapidly, 
and the load torque observer starts to converge within 40 cycles. After the observer converges, the 
estimated load torque still fluctuate within a small range of 3 Nm. The fluctuation is caused by the 
combustion cyclic variations. At a BMEP of 5 bar with the engine speed of 1600 rpm (Figure 8b), the 
observation algorithm starts to converge within 15 cycles. 
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Figure 8. Estimation results of the engine load observer at 1400 rpm, 6 bar (a) and 1600 rpm, 5 bar (b). 
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Figure 9. Estimation results of the disturbance factor at multiple operating points at 1200 rpm (a), 
1400 rpm (b), and 1600 rpm (c). 

Figure 9 is the estimation results of the disturbance factor (∆𝜉(𝜃)) of multiple operating points. 
It can be seen from the grey trend line that ∆𝜉(𝜃) increases with the increase of load at the same 
speed. This is because the larger load caused the elastic deformation of the crankshaft, which resulted 
in the change of ∆𝜉(𝜃). Under the same load, with the increase of engine speed, ∆𝜉(𝜃) also tends to 
increase. So the correlation analysis between ∆𝜉(𝜃) and engine operating variables was done. The 
correlation coefficient between ∆𝜉(𝜃)  and the engine speed is 0.72. The correlation coefficient 
between ∆𝜉(𝜃) and throttle opening (𝜃 ) is 0.85. ∆𝜉(𝜃) can compensate the error caused by the simplification of the crankshaft dynamic model. 
As ∆𝜉(𝜃) has a significant correlation with the engine speed (𝜃 ) and throttle opening (𝜃 ), a 
disturbance factor model was built. In the range of engine speed from 1000 rpm to 1600 rpm and 
BMEP from 3 bar to 6 bar, the trained disturbance factor model expression is: 𝛥𝜉 = −0.77 + (9.7 × 10 )𝜃 + 0.01 × 𝜃 − (3.3 × 10 )𝜃 − (7.4 × 10 )𝜃 × 𝜃  (37)

4.3. Indicated Torque Estimation Result 

4.3.1. Indicated Torque Estimation Under Transient State 

Figure 10a shows the indicated torque estimation results from a throttle opening of 7.2–10.8% at 
1000 rpm. It can be seen that at the moment when the throttle starts to change, the estimated indicated 
torque fluctuates. This is because the ESO-based indicated torque observer not only used the engine 
speed and manifold pressure as the state feedback, but also used the derivative term of the engine 
speed and manifold pressure as feedback. After the throttle opening changes, there are several cycle 
delays between the estimated indicated torque and the measured indicated torque. However, when 
the indicated torque observation is stable, the estimation error between the estimated value and the 
measured value is within 3%. 

Figure 10b shows the indicated torque estimation results from a throttle opening of 9–11.7% at 
1400 rpm. Moreover, the estimation error between the estimated value and the measured value is 
also within 3%. 
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Figure 10. Comparison of the measured and estimated indicated torque at transient states. 1000 rpm 
with 𝜃  of 7.2–10.8% (a); 1400 rpm with 𝜃  of 9–11.7% (b). 

4.3.2. Indicated Torque Estimation Under a Steady State 

Figure 11a shows the indicated torque estimation result at 3 bar to 6 bar at 1000 rpm. In steady 
state operations, the estimated indicated torque has a certain deviation from the measure value. At 3 
bar, the estimated indicated torque is about 1.83 Nm larger than the measured value, and the mean 
relative error is 3.7%. At 4 bar, 5 bar, and 6 bar, the mean relative error is 4.7%, 1.8%, and 3.6%, 
respectively. In summary, the mean relative error of the indicated torque estimation at the 3–6 bar 
operating point covered by 1000 rpm is within 5%. As the engine speed increases to 1400 rpm (Figure 
11b), the mean relative error of the indicated torque estimation is within 5%, from 3–6 bar. 
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Figure 11. Comparison of the measured and estimated indicated torque at 1000 rpm (a) and 1400 rpm 
(b). 
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Figure 12. Comparison of the estimated indicated torque and measured indicated torque. 

Figure 12 shows the indicated torque estimation result summary from 1000 to 1800 rpm; the 
average estimation accuracy under different loads could reach 96.1%. The estimation of the indicated 
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torque not only provides a basis for the optimal control of the engine ignition’s advance angle, but 
also lays a foundation for the friction torque model identification and brake torque estimation. 

4.4. Friction Torque Estimation Results 

4.4.1. Friction Model Parameter Identification Result 

A test bench experiment was carried out to estimate the oil temperature parameter 𝐶  at an 
engine speed of 1000 rpm in an idle state. For the engine speed parameters 𝐶 ,  𝐶 ,𝐶 , an engine fuel 
cut-off experiment was carried out at an oil temperature of 55 °C. The trend of gradual convergence 
is presented, and convergence was achieved by 40 fittings during the engine stop process, as shown 
in Figure 13. 
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Figure 13. Friction model parameter identification from fuel cut-off operating conditions. 

The final identified parameter values are shown in Table 3. 

Table 3. Engine brake torque estimation task table. 

Parameter Fit from observer Fit from motored test 𝐶  −23.86 −25.44 𝐶 , 2.45 × 10−3 3.29 × 10−3 𝐶 , −5.20 × 10−6 −5.45 × 10−6 𝐶  −4.67 × 10−3 −5.10 × 10−3 

4.4.2. Friction Torque Estimation Validation 

In order to verify the validity of the identification parameters and the accuracy of the friction 
torque mean model based on the identification parameters, an engine motoring experiment was 
carried out. The friction torque model obtained by the model parameter identification method can 
better describe the average value of the friction torque at different speeds and different oil 
temperatures. 
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Figure 14. Comparison of the estimated friction torque and measured friction torque. 

As shown in Figure 14, by comparing the friction torque model identified by learning with the 
friction torque value obtained in the engine motoring experiment, the maximum deviation is 1.55 Nm 
and the average deviation is 1.27 Nm at an engine oil temperature of 80 °C. When the oil temperature 
is 70 °C, the maximum deviation is 1.39 Nm and the average deviation is 1.17 Nm. At an oil 
temperature of 60 °C, the maximum deviation of the friction torque is 0.75 Nm and the average 
deviation is 0.53 Nm. At an oil temperature of 50 °C, the maximum deviation of the friction torque 
output from the output of the friction torque model is 0.58 Nm and the average deviation is 0.27 Nm. 
As the oil temperature increases, the deviation between the friction torque model and the friction 
torque obtained by the reverse drag test tends to increase. 
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Figure 15. Comparison of the estimated friction torque and measured friction torque. 

As shown in Figure 15, at different engine speeds, the friction torque model identified by 
learning was compared with the friction torque value obtained by the engine motoring experiment. 
At 800 rpm, the maximum deviation of the model compared with the reversed data is 1.48 Nm and 
the average deviation is 0.85 Nm. At 1000 rpm, the maximum deviation of the model is 1.41 Nm and 
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the average deviation is 0.95 Nm. At 1200 rpm, the maximum deviation is 1.34 Nm and the average 
deviation is 0.91 Nm. At a speed of 1400 rpm, the maximum deviation of the model compared with 
the reversed data is 1.33 Nm and the average deviation is 0.92 Nm. At a speed of 1600 rpm, the 
maximum deviation of the lower model compared to the inverted data is 0.88 Nm and the average 
deviation is 0.48 Nm. With an increase of the rotational speed, the friction torque average model is 
relatively stable compared to the friction torque obtained by the reverse drag test, showing a 
decreasing trend. 

4.5. Brake Torque Estimation Result 

On the basis of the identified friction torque, the engine brake torque (𝑇 ) is decoupled from the 
load torque (𝑇 ). A test bench experiment was done to validate the estimated brake torque 
compared to the reference brake torque measured by a dynamometer. 
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Figure 16. Estimation of the engine brake torque observer at 1000 rpm: 3 bar (a) and 4 bar (b). 

Figure 16a,b shows the results of an engine speed of 1000 rpm at 3 bar and 4 bar, respectively. 
Under a 3 bar load, 𝑇  starts to approach the measured value rapidly in the first five cycles, and the 
brake torque estimates over 30 cycles tend to be stable. However, due to the combustion cyclic 
variations, 𝑇  fluctuates. Between the 30th cycle and the 50th cycle, 𝑇  fluctuates within 4 Nm and 
has good stability. At a load of 4 bar, the brake torque observation algorithm starts to approach the 
measured brake torque in the first 10 cycles and finally approaches stability after calculating 17 cycles. 𝑇  fluctuates between the 17th and 50th cycles. 
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Figure 17. Estimation of the engine brake torque observer at 1400 rpm: 3 bar (a) and 4 bar (b). 

Figure 17a,b shows the results of an engine speed of 1400 rpm and a load of 3 and 4 bar. At the 
load of 3 bar, 𝑇  tends to converge after 13 cycles. The estimated value of the brake torque still 
fluctuates, and its fluctuation range is within 3 Nm. Under the 4 bar load, 𝑇  convergence process is 
slower and approaches the measured value after 30 cycles. The amplitude of the fluctuation is about 
4 Nm. 
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Figure 18. Estimation of the engine brake torque observer at 1600 rpm: 3 bar (a) and 4 bar (b). 

Figure 18a,b shows the observations of the engine speed at 1600 rpm at 3 bar and 5 bar, 
respectively. Under a load of 3 bar, the brake torque converges to the reference value after 20 cycles, 
and the amplitude of the fluctuation after stabilization is about 5 Nm. Under a 5 bar load, the 
approach value is almost reached after five cycles, but after 15 cycles, the observer tends to be stable, 
and the amplitude of the brake torque after stabilization is small (concentrated around 3 N); 
moreover, the observation accuracy is promising. 

Based on the above observations of steady-state conditions, the observation algorithm starts to 
converge rapidly during the first 10 cycles and basically stabilizes in the 20th to 30th cycles. The 
estimation accuracy of the steady-state test conditions increases to 95.8%. Even under steady-state 
conditions, there are still fluctuations in the observed brake torque because the brake torque is 
estimated based on the load torque estimation. Due to the cyclic variations of the engine combustion 
process, the cyclic fluctuation of the indicated torque further results in speed fluctuations, which in 
turn cause fluctuations in the estimations of the 𝑇  and 𝑇 . 

4.6. Real-Time Performance of the Brake Torque Observer in a Multi-Core ECU 

Considering the limited computational speed of the embedded platform, 𝑇  observation, the 𝑇  observation, 𝑇  self-learning, and 𝑇  calculation algorithm need to select methods suitable 
for operation on the embedded computing platform (specifications as Table 4). On the embedded 
computing platform, it is necessary to meet the characteristics of fast calculation speed, strong real-
time performance, and the accuracy of observation. 

Table 4. Embedded micro-controller specifications. 

Variable Value 
Platform Infineon AURIX TC275T-64F200W 

CPU processor frequency 200 MHz 
GTM processor frequency 100 MHz 

RAM 472 KB 
Flash ROM 4 MB 

Table 5. Engine brake torque estimation task table. 

Task index Task content Allocation 
Task_0 Crankshaft speed signal processing GTM processor 
Task_1 𝑇  estimation CPU 
Task_2 𝑇  estimation CPU 
Task_3 𝑇  self-learning and 𝑇  calculation CPU 
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As shown in Table 5, the torque observation algorithm can be divided into four tasks in the 
embedded platform. The first task is a model-based Kalman filter for engine velocity and acceleration 
processing. The second task is the load torque estimation algorithm. The third task is the model-based 
indicated torque estimation algorithm. The fourth task is the friction torque self-learning and brake 
torque calculation task. 

As shown in Figure 19, the velocity-related signal is processed utilizing a general timer module 
(GTM), which is isolated from the CPUs. The velocity processing results by GTM were shared in a 
public memory area that could be accessed by other CPUs, which could reduce the processing load 
of the CPU in the microcontrollers. The algorithm was converted to C code via Target-Link, compiled 
into executable files, and processed in an AURIX based ECU. 

 
Figure 19. The software and hardware collaborative processing framework for brake torque 
estimation. 

Third-party developing tools (shown as Figure 20) were used to measure the CPU load of the 
torque observation tasks. As shown in Table 6, task 0 has a CPU load of 0.55% because the main signal 
processing algorithms is implemented in the GTM processor. Task 1 has a CPU load of 16.04% and 
task 2’s CPU load is 29.87%, which are the tasks of the load torque estimation and indicated torque 
estimation algorithms. Task 3 mainly processes the friction torque and brake torque calculation. This 
algorithm works at certain operating points, and a few calculations are needed, so the algorithm has 
a CPU load of 1.33%. Moreover, the whole torque estimation algorithm costs 3.2 ms per cycle, which 
is promising for real-time applications. 



Energies 2019, 12, 4683 21 of 23 

 

 
Figure 20. Task_0, task_1, task_2, and task_3 CPU load when executing the algorithm. 

Table 6. Engine brake torque estimation task table. 

Task index Task content CPU load 
Task_0 Crankshaft speed signal processing 0.55% 
Task_1 𝑇  estimation 16.04% 
Task_2 𝑇  estimation 29.87% 
Task_3 𝑇  self-learning and 𝑇  calculation 1.33% 

5. Conclusions 

In this paper, an approach for the online estimation of engine brake torque was proposed, 
utilizing the standard crankshaft instantaneous speed signal of stock engines. The main 
accomplishments are summarized below. 

1) An in-cycle crank angle-based crankshaft dynamic model was established, where a crank 
angle interval is chosen by experiments to estimate the load torque without influence from the 
combustion torque. A disturbance factor was designed to compensate for the deviation of the model 
from the real engine. Results show that the error of the estimated load torque is within 3 Nm. 

2) An indicated torque observer algorithm is proposed. The observer is an ESO, and the 
indicated torque observer was validated for both the steady state and transient state in experiments. 
Results show that the estimation error is less than 4%. 

3) A self-learning friction torque estimator was developed, which allows one to estimate the 
engine brake torque with the aforementioned sub-estimators. For this estimator, the parameters of 
the friction torque model were identified online in idle and fuel cut-off operating conditions. 
Experimental validation of the results show that the brake torque observation error is less than 5%. 

4) The proposed algorithm was implemented in a multi-core ECU with a cycle-triggered 
runnable. Results show that the corresponding computational time is 3.2 ms with a CPU 
computational load of 47.41%. This algorithm is suitable for real-time control applications, such as 
the optimal torque split control of HEVs. 
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Nomenclature 

Symbols  𝐽 Moment of inertia Δ𝜉 Disturbance factor 𝑇  Indicated torque 𝑇  Reciprocating torque 𝑇  Friction torque 𝑇  Brake torque 𝑇  Gas torque 𝜃 Crankshaft angle 𝑚 ,  Mass of oscillating part of crank-rod mechanism and piston group 𝑚 ,  Mass of rotating part of crank-rod mechanism 𝑙  Length of oscillating part of connecting rod 𝑙  Length of rotating part of connecting rod 𝑃 Pressure 𝑉 Gas volume 𝜅 Polytrophic process factor 𝑄  Intake air mass 𝑡  Lubricating oil temperature 
Subscripts  𝑀𝐴𝑃 Manifold absolute pressure 𝐼𝐴𝑇 Intake air temperature 𝑇𝐻𝑅 Throttle 𝑒𝑛𝑔 Engine 𝑎𝑣𝑔 Average 𝑖𝑛𝑖 Initial 𝑓𝑓 Feed forward 𝑐𝑦𝑙 Cylinder 𝑘 Cylinder index 
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