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Abstract: An adaptive control scheme is proposed for a class of uncertain pure-feedback nonlinear
systems preceded by asymmetric hysteresis nonlinearity. The asymmetric property is described by the
modified Bouc-Wen model based on the proposed asymmetric factor. State variables in the controller
design are directly replaced with nonaffine functions to address the control problem caused by
nonaffine appearance. Moreover, the control method can handle systems with external disturbances
and guarantee the global stability of all the signals in the closed-loop system. The feasibility of the
control scheme is verified by a simulation example and experimental results.
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1. Introduction

Piezoelectric actuators have the advantages of high position resolution (nanometers or below),
maximum blocking force (around hundreds of N), high stiffness, wide bandwidth, and very short
response time and play a key role in precision manufacturing and measurement [1]. However, the major
disadvantage of piezoelectric materials involves their inherent hysteresis nonlinearities, which could
dramatically degrade system performances and may even cause instability [2]. The hysteresis behavior
of piezoelectric actuators tends to be asymmetric in practical applications [3,4]. Various hysteresis
models have been proposed to describe the characteristics of hysteresis, including the Preisach
model, Krasnosel’skii-Pokrovkii model, Prandtl-Ishlinskii model, the Duhem model, Backlash-like
model, Bouc-Wen model [5]. In these models, Preisach model, KP model and Duhem model are
generally unable to describe asymmetric hysteresis. In order to describe the asymmetric property,
the modified Backlash-like model is proposed [6]. However, the Prandt-Ishlinkii model [7–10] and
the Bouc-Wen model [11–13] are the most popular modified models used to address asymmetric
hysteresis nonlinearity. The asymmetric Prandt-Ishlinkii model is generally realized through the
modification of the generalized play operator with asymmetry [9]. However, the disadvantage of this
method is that it generally increases the complexity of the mathematical form of the operator and
the difficulty of parameter identification and controller design. The asymmetric Bouc-Wen model
is generally obtained through the transformation of an intermediate variable with an asymmetric
property [11,12]. However, this approach comes, at the expense of identification complexity as the
number of parameters increases. In fact, the above information shows that asymmetric hysteresis is far
more complex than general symmetric hysteresis.

Given that hysteresis is inevitable in actual systems, the control of nonlinear systems with
hysteresis has received considerable attention and numerous achievements have been attained in
recent years [14–23]. Hysteresis inverse methods have been proposed to mitigate the effect of hysteresis
in nonlinear systems [17,19,24–26]. Robust adaptive control and neural control have been directly
applied to compensate for hysteresis without the construction of an inverse model [27–30]. In these
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methods, the neural network is used to approximate the unknown nonlinear function. Thus, the neural
network is incorporated with controller for hysteresis compensation. However, most of these control
methods are valid only for strict-feedback systems[20,27,28,30–33]. These methods cannot be applied
directly to pure-feedback systems.

The cascade and nonaffine properties of pure-feedback systems complicate the determination
of explicit virtual controls and the actual control to stabilize these systems. The mean value
theorem [34–37] and Taylor series expansion [38,39] have been proposed to convert the nonaffine
systems into their equivalent affine form to address the controller design in pure-feedback systems.
Adaptive neural network control schemes and fuzzy control based on the mean-value theorem have
been proposed for a class of uncertain pure-feedback nonlinear systems [40–43]. However, the mean
value theorem method increases the complexity of the system and may cause the circular design
problem [35–37]. Fuzzy control has been developed for nonaffine systems through the use of the
Taylor series expansion method [44]. Nevertheless, this method may result in additional uncertainties
in the system. The foregoing design of pure-feedback systems without consideration for hysteresis
nonlinearity as a control input is extremely difficult. The control design will become highly challenging
when pure-feedback systems are preceded by asymmetric hysteresis. Thus, this research topic involves
theoretical difficulties and has practical importance.

In past decades, adaptive control has been applied in various complex nonlinear systems due
to its excellent performance [45,46]. Motivated by the above conditions, this work adopts a novel
backstepping adaptive control scheme for a class of pure-feedback nonlinear systems with asymmetric
hysteresis nonlinearity. The advantages of the proposed approach are presented below.

1. The proposed model is simple and may present asymmetry through the embedding of
an asymmetric factor in the classic Bouc-Wen model. Furthermore, the component of the
hysteresis output in the proposed asymmetric Bouc-Wen model has been proven to be bounded.
This characteristic is essential for the controller design.

2. The novel adaptive control scheme for pure-feedback systems is implemented through the use of
nonaffine functions to replace state variables in the backstepping design. This method overcomes
control problems caused by nonaffine appearance. Furthermore, it simplifies the control scheme
and ensures the global stability of all closed-loop signals. The feasibility and effectiveness of the
adopted control design are demonstrated through simulation and experimental works in dSPACE.

The rest of the paper is organized as follows. The problem formulation and preliminaries for the
uncertain pure-feedback system are presented in Section 2. We propose the adaptive backstepping
design procedure of the pure-feedback system in the presence of disturbances and provide the stability
analysis for the closed-loop system in Section 3. Section 4 demonstrates the performance of the
proposed control scheme through a simulation example and dSPACE experimental results. Finally,
conclusions are drawn in Section 5. The detailed proof of the fact that h is bounded is given in detail in
Appendix A.

2. Problem Formulation and Preliminaries

Consider a class of uncertain pure-feedback nonlinear systems with asymmetric hysteresis
characteristics described by the nth order differential equations of the form:

ẋi = θi fi(x̄i) + gi(x̄i, xi+1) + di, i = 1, 2, · · · , n− 1

ẋn = θn fn(x̄i) + bu(v) + dn, n ≥ 2

y = x1

(1)

where x̄i = [x1, x2, · · · , xi]
T ∈ Ri, i = 1, 2, · · · , n − 1 is the vector of states of the ith equations,

x̄n = [x1, x2, · · · , xn]T ∈ Rn; y = x1 ∈ R is the output, θi, i = 1, 2, · · · , n and b 6= 0 are unknown
constant parameters, and di, i = 1, 2, · · · , n are unknown bounded disturbance functions. fi(x̄i), fn(x̄n)



Energies 2019, 12, 4675 3 of 13

and gi(x̄i, xi+1) are known smooth functions, designated as fi, fn and gi respectively in the following
passage for simplicity.

Given the difficulties to control nonaffine systems, the systems considered in this paper are affine
in control u but nonaffine in state xi in the first n− 1 steps represented by the nonaffine functions gi.
u(v) donotes asymmetric hysteresis nonlinearity, which can be described in the form of the proposed
asymmetric Bouc-Wen model as follows:

u = dpv + h (2)

ḣ = v̇(Abw − |h|m(βsgn(v̇h) + γ)) + δv̇sgn(v) (3)

where, v and u are the input and output of hysteresis behavior, respectively, h is the component of
the hysteresis output, Abw > 0 and m ≥ 1 are the parameters that control the scale and sharpness of
the hysteresis loop, and β and γ are other shape features of the hysteresis loop of v̇ and h and satisfy
β + γ > 0, β− γ ≥ 0. v̇sgn(v) is introduced to present the asymmetric property, and δ < 0 is the
asymmetric factor and satisfy |δ| < |Abw|. Furthermore, h has been proven to be bounded in appendix,
which is essential for the controller design with guaranteed stability. And parameters dp, Abw, β, γ, m
can be obtained by particle swarm optimization and hybrid evolutionary algorithm [47,48].

Equation (3) can be used to model aymmetric hysteresis, as shown in Figure 1, with dp = 1.5,
Abw = 1, β = 2, γ = 1.8, m = 1, δ = −0.3 in our design, and the input signal is v(t) = sin (t).

Figure 1. Curve of classical Bouc-Wen with δ = 0 and asymmetric Bouc-Wen with δ = −0.3.

Remark 1. Figure 1 shows that large absolute value of δ may correspond to the pronounced asymmetry of
the hysteresis.

Through the application of (2), the original system can be rewritten as

ẋi = θi fi(x̄i) + gi(x̄i, xi+1) + di, i = 1, 2, · · · , n− 1

ẋn = θn fn(x̄i) + pv + d̄n, n ≥ 2

y = x1

(4)

where p = bdp and d̄n = bh + dn, and the hysteresis input v can be viewed as the new control input.
The control object is to design the adaptive controller v to ensure that all closed loop signals are

bounded, and the output y tracks a given reference signal yd under the following assumptions.
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Assumption 1: A positive constant ε exists such that ‖ ∂gi(x̄i ,xi+1)
∂xi+1

‖ ≥ ε > 0, i = 1, 2, · · · , n− 1.
Assumption 2: The unknown parameters b and dp satisfy p = bdp > 0.
Assumption 3: The desired trajectory yd and its nth order derivatives are known and bounded.
Assumption 4: All disturbances own their boundaries, that is, ‖di‖ ≤ χi ≤ v∗i ρi, ‖d̄n‖ ≤ χn ≤ v∗nρn.

Parameter values v∗i ≥ 0, v∗n > 0 and known smooth functions, ρi and ρn exist.

3. The Controller Design and Stability Analysis

The standard backstepping method selects state variables as the virtual control variable of
each subsystem, which can solve the control design of the strict-feedback systems effectively.
However, the main feature of pure-feedback nonlinear systems namely the system states or control
inputs always appear implicitly in the nonaffine functions, which often makes the explicit virtual
and actual control laws difficult to obtain. As a result, the standard backstepping is inapplicable
in pure-feedback systems. State variables are directly replaced with nonaffine functions at each
step to deal with pure-feedback systems as in (1). The above replacement is the major difference
compared with standard backstepping method. Thus, the transformation from pure-feedback systems
to strict-feedback systems could be avoided. Transformation methods, such as the mean value theorem
and Taylor series expansion, are not required. Therefore, the proposed method may avoid additional
uncertainty and the circular design problem.

The novel backstepping-based control procedure contains n recursive steps and involves the
following change of coordinates:

z1 = y− yd

zi = gi−1 − αi−1, i = 2, 3, · · · , n

where αi−1 is the virtual control law at the ith step.
An outline of the novel backstepping design procedure for system (1) is given below.
Step 1:
Given that z1 = x1 − yd and z2 = g1 − α1, the derivative of z1 is

ż1 = θ1 f1 + z2 + α1 + d1 − ẏd

The virtual control law α1 and the adaptive law for adjusting v1 are designed as

α1 = α̃1 − ϕ1

α̃1 = −k1z1 − θ̂1 f1 + ẏd

ϕ1 = v1ρ1 tanh(
z1ρ1

K1
)

v̇1 = ς1[z1ρ1 tanh(
z1ρ1

K1
)− σ1(v1 −v0

1)]

(5)

In α̃1, k1 is a positive constant, and θ̂1 is the estimate of θ1. In ϕ1, v1 and ρ1 satisfy Assumption 4,
and v̇1 is the adjusting law of v1.

Remark 2. Consider the existence of disturbances and asymmetric hysteresis behavior, and the design of the
virtual control law αi and the adaptive control law v̄ changes to αi = α̃i − ϕi and v̄ = ṽ− ϕn, respectively. α̃i
and ṽ are designed in accordance with the backstepping procedure, and the influence of uncertain disturbance
items di and d̄n is eliminated through the use of ϕi and ϕn.

Define the Lyapunov function V1 as

V1 =
1
2

z2
1 +

1
2

θ̃1Λ−1θ̃1 +
1

2ς1
χ2

1 (6)
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where θ̃1 = θ1 − θ̂1, Λ is a symmetric positive definite matrix, and χ1 = v1 − vM
1 and vM

1 =

max(v∗1 , v0
1).

Thus, the derivative of V1 can be obtained as follows

V̇1 =z1ż1 + θ̃1Λ−1 ˙̃θ1 +
1
ς1

χ1χ̇1

=z1(θ1 f1 + z2 + α1 + d1 − ẏd)− θ̃1Λ−1 ˙̂θ1 +
1
ς1

χ1(ς1[z1ρ1 tanh(
z1ρ1

K1
)− σ1(v1 −v0

1)])

=z1(θ1 f1 + z2 + α̃1 − ϕ1 + d1 − ẏd)− θ̃1Λ−1 ˙̂θ1 + χ1[z1ρ1 tanh(
z1ρ1

K1
)− σ1(v1 −v0

1)]

=z1(θ1 f1 + z2 − k1z1 − θ̂1 f1 − ϕ1 + d1)− θ̃1Λ−1 ˙̂θ1

+ (v1 −vM
1 )[z1ρ1 tanh(

z1ρ1

K1
)− σ1(v1 −v0

1)]

=z1(θ̃1 f1 + z2 − k1z1 −v1ρ1 tanh(
z1ρ1

K1
) + d1)− θ̃1Λ−1 ˙̂θ1

+ (v1 −vM
1 )[z1ρ1 tanh(

z1ρ1

K1
)]− χ1σ1(v1 −v0

1)

=− k1z2
1 + z1z2 + θ̃1Λ−1(τ1,1 − ˙̂θ1) + z1d1 − z1vM

1 ρ1 tanh(
z1ρ1

K1
)− χ1σ1(v1 −v0

1)

(7)

where τ1,1 = Λ f1z1, ˙̂θ1 = τ1,1 − Λσθ(θ̂1 − θ0
1) and σθ > 0 is a positive constant, and θ0

1 is a
design constant.

The subsequent recursive backstepping steps will be omitted, similar to that in Step 1. The final
controller design is summarized in Table 1.

Theorem 1. Consider the uncertain pure-feedback nonlinear systems (1) that satisfy Assumptions 1–4. All
the signals in the closed-loop system are globally bounded with the application of the controller (T-3) and the
adaptive laws (T-12)–(T-15).

Proof: We define the Lyapunov function Vn as

Vn = Vn−1 +
1
2

θ̃nΛ−1θ̃n +
1
2

z2
n +

p
2η

φ̃2 +
1

2ςn
χ2

n (8)

Note that 0 ≤ |µ| − µ tanh( µ
ε ) ≤ ξε holds for any ε > 0, and any µ ∈ R and ξ satisfy ξ = e−(ξ+1),

that is, ξ = 0.2785 [49].
From the (T-3)–(T-11) controllers and the (T-12)–(T-15) parameter estimates, the derivative of the

Lyapunov function satisfies

V̇n ≤−
n

∑
j=1

k jz2
j +

σθ

2

n

∑
j=1

θ̃2
j +

n

∑
j=1

σj

2
χ2

j +
1

2σθ

n

∑
j=1

(θ̂j − θ0
j )

2 +
n

∑
j=1

1
2σj

(v0
j −vj)

2

+
n

∑
j=1

1
2

vM
j Kj +

n

∑
j=2

1
2

vM
j ρj

vM
n ρn
Kn

≤ −cnVn + λn

(9)

where
cn = min{2k1, · · · , 2kn,

σn

λmin(Λ−1)
, ς1σ1, · · · , ςnσn} > 0

λn =
1

2σθ

n

∑
j=1

(θ̂j − θ0
j )

2 +
n

∑
j=1

1
2

vM
j Kj +

n

∑
j=1

1
2σj

(v0
j −vj)

2 +
n

∑
j=2

1
2

vM
j ρj

vM
n ρn
Kn
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Vn ≤ Vn(0)e−cnt +
λn

cn
(1− e−cnt) (10)

is obtained in accordance with the exponential stability theorem [50] and direct integrations of (9).
Therefore, Vn is bounded, which implies that z1, z2, · · · , zn, θ̂1, θ̂2, · · · , θ̂n, φ̂ and χ̂n are globally

bounded. z1 is bounded, hence x1, α1, g1 are bounded. Assumption 1 and a previous work [51],
state that x2 is likewise bounded. Furthermore, z2 is bounded, thereby implying that α2 is bounded.
Therefore g2 is bounded, which leads to x3 being bounded. In summary, we can conclude that x1, x2,
· · · , xn, α1, α2, · · · , αn−1, and v̄, v are bounded.

Table 1. Adaptive backstepping control.

Change of coordinates:

z1 = x1 − yd (T-1)

zi = gi−1 − αi−1, i = 2, 3, · · · , n (T-2)

Adaptive control laws:

v = φ̂v̄ (T-3)

v̄ = ṽ− ϕn (T-4)

ṽ− ϕn = 1
∂gn−1

∂xn

(−knzn − ∂gn−1
∂xn−1

zn−1 + ∑n−1
j=1 (

∂αn−1
∂xj
− ∂gn−1

∂xj
)gj − ψ̂n−1 −∑n−1

j=1 (
∂gn−1

∂xj
− ∂αn−1

∂xj
)ϕn

− ∂gn−1
∂xn

ϕn + ∑n−1
j=0

∂αn−1

∂y(j)
d

y(j+1)
d + ∑n−1

j=1
∂αn−1
∂vj

v̇j + ∑n
j=1

∂αn−1
∂θ̄j

(τj,n −Λσθ(θ̂j − θ0
j ))) (T-5)

α1 = α̃1 − ϕ1 (T-6)

α̃1 = −k1z1 − θ̄1 f1 + ẏd (T-7)

ϕ1 = v1ρ1 tanh( z1ρ1
K1

) (T-8)

αi = α̃i − ϕi,i = 2, 3, · · · , n− 1 (T-9)

α̃i =
1

∂gi−1
∂xi

(−kizi −
∂gi−2
∂xi−1

zi−1 + ∑i−1
j=1(

∂αi−1
∂xj
− ∂gi−1

∂xj
)gj + ∑i−1

j=0
∂αi−1

∂y(j)
d

y(j+1)
d − ψ̂i−1

−∑i−1
j=1(

∂gi−1
∂xj
− ∂αi−1

∂xj
)ϕi + ∑i−1

j=1
∂αi−1
∂vj

v̇j + ∑i−1
j=1

∂αi−1
∂θ̄j

(τj,i −Λσθ(θ̂j − θ0
j ))) (T-10)

i = 2, 3, · · · , n− 1

ϕi = viρi tanh( ziρi
Ki

),i = 2, 3, · · · , n− 1 (T-11)

Parameter update laws:

v̇1 = ς1[z1ρ1 tanh( z1ρ1
K1

)− σ1(v1 −v0
1)] (T-12)

v̇i = ςi[
1

∂gi−1
∂xi

ziρi tanh( ziρi
Ki

)− σi(vi −v0
i )], (T-13)

i = 2, 3, · · · , n
˙̂θi = τi,i −Λσθ(θ̂i − θ0

i ),i = 1, 2, · · · , n (T-14)
˙̂φ = η(− ∂gn−1

∂xn
v̄zn − σφ(φ̂− φ0)) (T-15)

Tuning function:

ψ̂i−1 = ∑i−1
j=1(

∂gj
∂xj
− ∂αj

∂xj
)θ̂i−1 fi−1 +

∂gi−1
∂xi

θ̂i fi, (T-16)

i = 2, 3, · · · , n

τj,i = Λ ∂gj−1
∂xj

f jzj + Λ ∑i−1
l=j (

∂gl
∂xj
− ∂αl

∂xj
) f jzi, (T-17)

j(present step), i(total step)

Remark 3. The main contributions in this paper are summarized as follows: (i) it is shown that the possibility for
the proposed Bouc-Wen model as an illustration to hand asymmetric hysteresis nonlinearity; (ii) the difficulties
from the nonaffine structures in pure-feedback systems are solved by a novel and simpler adaptive scheme
implemented through the use of nonaffine functions to replace state variables in the backstepping design.
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4. Simulation Example and Experimental Result

A numerical simulation example is shown in this section to prove the feasibility of the control
scheme. Furthermore, we conduct an experimental verification on the dSPACE platform to improve
the reliability of the results for practical application.

4.1. Simulation Example

Consider pure-feedback nonlinear systems with external disturbances as follows:

ẋ1 = θ1
1− e−0.01x1

1 + e−0.01x1
+ q(x3

2 + x2) + d1

ẋ2 = θ2x2
1x2 + bu(v) + d2

y = x1

u = dpv + h

ḣ = v̇(Abw − |h|m(βsgn(v̇h) + γ)) + δv̇sgn(v)

In this simulation, θ1 = 15, q = 8, θ2 = 0.5, and b = 2, and the disturbances are d1 = 0.1 sin (t),
and d2 = 0.25 cos (t). Thus, v∗1 = 0.1, ρ1 = 1, v∗2 = 1.42 and ρ2 = 1. The initial values of the state
are given as x1(0) = −1.2 and x2(0) = 0. The desired tracking signal is yd = sin (t)− 2 cos (0.5t).
The parameters of the modified Bouc-Wen model are chosen as dp = 1.5, Abw = 1, β = 2, γ = 1.8,
m = 1, and δ = −0.3. The design parameters are selected as k1 = k2 = 1, η = 1, ζ1 = 0.01,
φ0 = v0

1 = v0
2 = 0, k1 = 100, and k2 = 100. Λ is first order unit matrix, namely, Λ = 1.

The adopted controller is compared with the control design in a previous work [19]. The obtained
simulation results, depicted in Figures 2 and 3, show the effectiveness and advantage of the proposed
controller over the reference controller [19]. The desired trajectory, the output of the proposed scheme
and the output signal of the reference scheme [19] are shown in Figure 2. The error between the
proposed scheme and the desired trajectory and the error between the reference scheme [19] and the
desired trajectory are shown in Figure 3. The EMAX and ERMS of the proposed scheme and scheme
in [19] are shown in Table 2. Compared with the reference method [19], the proposed method can
accurately track the reference signal of a class of pure-feedback nonlinear in the presence of system
uncertainty and external disturbances, thereby exhibiting stronger robustness. The proposed control
law v is illustrated in Figure 4.

In conclusion, an adaptive controller can modify its achieves in response to the dynamics in
the process of systems and the characteristic of disturbances. And therefore, as the simulation
time increases, its control performance will get better , which can be demonstrated from the above
simulation results.

Figure 2. Simulation output-tracking performance.
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Figure 3. Error between the system and the desired trajectory.

Figure 4. Control law v.

In order to compare an influence of the constant parameters in controller on the system output,
the simulation results are carried out for different k1 and k2 as shown in Figures 5 and 6.

Figure 5. the influence of change of constant parameter k2 impact on system output.
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Table 2. EMAX and ERMS of the proposed scheme and scheme in [19].

Error The Proposed Scheme Scheme in [19]

EMAX 0.2456 0.8
ERMS 0.0524 0.5137

Figure 6. the influence of change of constant parameter k1 impact on system output.

4.2. Experimental Results

Experiments are conducted on the piezoelectric actuated platform to verify the effectiveness
of the proposed control scheme as shown in Figure 7. The experimental platform consists of the
following elements.

1. Piezoelectric actuator: A PZT-752.21C piezoelectric actuator manufactured by Physik Instrument
Company is utilized in this experiment. The actuator has a normal expansion of 0–30 µm under
the input voltage 0–100 V.

2. Voltage amplifier: A voltage amplifier (LVPZT, E-509) with a fixed gain of 10 is used as the
excitation voltage of the regulation actuator.

3. Capacitive sensor: An integrated capacitive sensor is used to measure the displacement response
of the actuator.

4. Data acquisition system: The dSPACE DS1103 control board is used to obtain the displacement of
the piezoelectric actuator. The displacement is measured by a capacitive sensor. The dSPACE
is equipped with a 16-bit analog-to-digital converter (ADC) and a 16-bit digital-to-analog
converter (DAC).

In this experiment, pure-feedback nonlinear systems are same as the ones described in Section 4.1
and the desired tracking signal is yd = sin (t)− 2 cos (0.5t). The design parameters are selected as
v∗1 = 0.1, ρ1 = 1, v∗2 = 1.42 and ρ2 = 1,k1 = k2 = 1, η = 1, ζ1 = 0.01, φ0 = v0

1 = v0
2 = 0, k1 = 100,

and k2 = 100. Λ is first order unit matrix, namely, Λ = 1. The initial values of the state are given as
x1(0) = −1.2 and x2(0) = 0.

The tracking of the experimental output and the desired trajectory are shown in Figure 8.
The experimental data show satisfactory tracking performance, thereby demonstrating the effectiveness
of the controller. Figure 9 shows that a minor difference exists between the error of the two systems,
and the system has satisfactory stability.

A satisfactory agreement between the simulation and the experimental results is demonstrated.
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Figure 7. Experimental system.

Figure 8. Experimental output-tracking performance.

Figure 9. Error between the output of the experimental results and the desired trajectory.

5. Conclusions

Adaptive control is proposed in this work for an uncertain pure-feedback nonlinear system with
asymmetric hysteresis. The asymmetric property of hysteresis nonlinearity is depicted through the
introduction of an asymmetric item into the classical Bouc-Wen model. The novel control method
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is developed on the basis of nonaffine functions and backstepping technique to address nonaffine
appearance of the system. Lyapunov analysis proves that all the signals in the closed loop ultimately
guarantee global stability. The simulation comparison shows the effectiveness and superiority of
the proposed control design, and the simulation results and dSPACE experimental work prove the
feasibility and credibility of the proposed scheme.
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Appendix A

Proof of the upper bound of h
Consider all the situations of the signs of v, v̇ and h as Table A1:

Table A1. Possibilities of the signs of v, v̇, and h.

Situation v v̇ h

1 + + +
2 + + −
3 + − +
4 + − −
5 − + +
6 − + −
7 − − +
8 − − −

Define Lyapunov function V = 1
2 h2. In situation 1, V̇|s1 = h[v̇(Abw − hm(β + γ)) + δv̇] ≤ 0 for

h ≥ m
√

Abw+δ
β+γ . In situation 2, V̇|s2 = h[v̇(Abw− |h|m(−β + γ)) + δv̇] ≤ 0 for all values of h. In situation

3, V̇|s3 = h[v̇(Abw − hm(−β + γ)) + δv̇] ≤ 0 for all values of h. In situation 4, V̇|s4 = h[v̇(Abw −
|h|m(β + γ)) + δv̇] ≤ 0 for |h| ≥ m

√
Abw+δ

β+γ . In situation 5, V̇|s5 = h[v̇(Abw − |h|m(β + γ))− δv̇] ≤ 0

for h ≥ m
√

Abw−δ
β+γ . In situation 6, V̇|s6 = h[v̇(Abw − |h|m(−β + γ)) − δv̇] ≤ 0 for all values of h.

In situation 7, V̇|s7 = h[v̇(Abw − hm(−β + γ))− δv̇] ≤ 0 for all values of h. In situation 8, V̇|s8 =

h[v̇(Abw − |h|m(β + γ))− δv̇] ≤ 0 for |h| ≥ m
√

Abw−δ
β+γ .

Therefore, for all situations of the signs of v, v̇ and h, V̇ ≤ 0 for all |h| ≥ h0
m
√

Abw−δ
β+γ . Using [52],

for every initial condition h(t0) and h0
m
√

Abw−δ
β+γ , it comes that h ≤ max{|h(t0)|, h0}. Therefore, the proof

is completed.
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