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Abstract: To obtain accurate optimal design results in electric machines, the finite element analysis
(FEA) technique should be used; however, it is time-consuming. In addition, when the design of
experiments (DOE) is conducted in the optimal design process, mechanical design, analysis, and
post process must be performed for each design point, which requires a significant amount of design
cost and time. This study proposes an automated DOE procedure through linkage between an FEA
program and optimal design program to perform DOE easily and accurately. Parametric modeling
was developed for the FEA model for automation, the files required for automation were generated
using the macro function, and the interface between the FEA and optimal design program was
established. Shape optimization was performed on permanent magnet synchronous motors (PMSMs)
for small electric vehicles to maximize torque while maintaining efficiency, torque ripple, and total
harmonic distortion of the back EMF using the built-in automation program. Fifty FEAs were
performed for the experimental points selected by optimal Latin hypercube design and their results
were analyzed by screening. Eleven metamodels were created for each output variable using the DOE
results and root mean squared error tests were conducted to evaluate the predictive performance of
the metamodels. The optimization design based on metamodels was conducted using the hybrid
metaheuristic algorithm to determine the global optimum. The optimum design results showed that
the average torque was improved by 2.5% in comparison to the initial model, while satisfying all
constraints. Finally, the optimal design results were verified by FEA. Consequently, it was found that
the proposed optimal design method can be useful for improving the performance of PMSM as well
as reducing design cost and time.

Keywords: automation; finite element analysis; PMSM; DOE; optimization; metamodeling

1. Introduction

The necessity of eco-friendly vehicles has been highlighted owing to environmental pollution and
depletion of fossil fuels. Global electric car stocks are growing rapidly, crossing the 3 million vehicle
threshold in 2017. The estimated demand for electric vehicles by 2030 is 100 to 140 million. The core of
an electric vehicle is the electric powertrain, which consists of a traction motor, a reduction drive, an
inverter, and a power delivery module. Permanent magnet synchronous motors (PMSMs) have been
mainly used as a traction motor for electric vehicles because they have high efficiency and high output
power density characteristics.

Several studies have been conducted on the PMSMs used in electric vehicles that require various
characteristics such as torque, efficiency, and harmonic distortion (THD). Optimal design is essential to
satisfy the various design requirements of PMSM at once. Optimal design is a method of finding the
values of design variables to obtain an optimal solution within a range of constraints. The optimal design
for PMSMs is created by combining design methods such as the analytical model, magnetic equivalent
circuits (MEC) model, and finite element analysis (FEA) with optimal design algorithms [1-8]. First of
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all, there are studies on optimal design using the analytical model [1,2]. In [1], the optimal design of a
PMSM based on the magnetic field analytical model was determined. The objective function used in that
study consisted of efficiency, electrical time constant, and mechanical time constant. The experimental
results showed that the efficiency increased by 1%. To minimize torque ripple, a novel analytical
solution of a PMSM was proposed [2]. The stator current was optimized considering magnetic
saturation using an analytical expression. The following are studies on optimization using the MEC
model [3,4]. In [3] it was reported that the MEC optimization method combined with an optimization
algorithm can optimize the volume and energy loss of a PMSM. A novel MEC model of a PMSM to
obtain the maximum efficiency, minimum weight, and price was developed [4]. K-means clustering
algorithm was utilized to obtain the best solution out of the eight clusters. Finally, some research on
optimization combined with FEA have been published [5-7]. The work in [5] performed multi-objective
shape optimization of a PMSM based on FEA and particle swarm optimization algorithm. Five rotor
topologies were compared, aimed at efficiency, flux-wakening rate, and price. The work in [6] proposed
an optimization process of a PMSM to optimize the weight, output power, and suitability. It performed
shape optimization of permanent magnets and rotor core using FEA with the fuzzy inference system
strategy. Using a novel memetic algorithm, an optimal design based on FEA to minimize torque ripple
in a PMSM was created [7]. In [8], multi-physics and multi-objective optimization of a PMSM based on
FEA and analytical magnetic model were studied. Although the FEA optimization method combined
with optimization algorithm has the highest accuracy, it has high computational cost [5].

There are two main ways to optimize design variables: To combine the optimal algorithm with
design methods directly and combine the optimal algorithm with the metamodel from the results of
design of experiments (DOE). Metamodel is a mathematical model that approximates the relationships
between design variables and responses. DOE is an application of statistics aimed at designing
experimental methods and analyzing the results to identify relationships between design variables and
responses. First, directly connecting the optimal algorithm with the design methods can determine
the best solution more clearly [9]. However, this method takes a long time to optimize and it is
difficult to predict the design time. Additionally, if the formulation of the optimal design is wrong,
it is difficult to find the best solution. In the case of optimization by creating metamodels using
DOE results, it is possible to predict the optimal results by analyzing the sensitivity between design
variables and target goals. In addition, the time taken for the optimization design is clear. However, the
number of DOE and test points must be selected properly, and the metamodel must be made correctly.
Meanwhile, non-automated DOE requires a lot of effort and time because mechanical modeling and
analysis must be performed as many times as DOE. Although a large number of DOEs are required to
achieve good optimal design results, it takes a significant amount of effort and time. The work in [10]
reported optimization results using response surface methodology combined with metamodels from
the DOE results. To produce DOE results, a total of 15 models were made and 15 FEAs were conducted.
The study in [11] optimized a PMSM by combining an optimal algorithm and metamodel, i.e., the
genetic algorithm and the Kriging model, based on DOE. In that study, to obtain the DOE results,
several models had to be designed and FEAs were required.

The novelty of this distinguishes it from previous studies for the following reasons: First, optimal
design can be easily processed based on a novel automated DOE procedure based on FEA, so it can be
done faster and more accurately. In general, DOE by FEA consists of modeling process using CAD
tools, analysis condition setting process for FEA, FEA process, and post process for extracting and
organizing results. To obtain a reliable optimal design result, a large number of DOE have to be carried
out. However, the conventional method of manually performing the process was complicated and
time consuming, and thus the number of DOE was limited [10-18]. However, using the automated
DOE process proposed in this study, not only can the DOE be easier but also the number of DOE can
be dramatically increased, resulting in high reliability of the optimal design result. The proposed
automated design method is expected to reduce the design cost and time. Moreover, it can be used
to find the optimal solution for various design problems as well as PMSMs. In addition, since the



Energies 2019, 12, 4673 30f18

proposed procedure is based on commercial tools, it has a ripple effect that can easily apply optimal
design in academia and industry.

Most of the previous studies have been applied to optimal design using metamodel generated in
one way. There have been a lot of optimizations recently using a single metamodeling technique such
as Kriging and response surface method [10-18]. However, since a suitable metamodel is different
according to each design problem and condition, it is necessary to select the best metamodel through
accuracy evaluation after generating several metamodels. This is because the accuracy of the metamodel
must be high to obtain good optimal design results. In this study, metamodels of objective functions
and constraints are generated in 11 ways, and the most accurate metamodels are selected through the
root mean squared error (RMSE) test, respectively.

In this study, shape optimization is performed for a PMSM to maximize the torque while
maintaining efficiency, torque ripple and THD in the back electromotive force (EMF). First, the design
target specification of a PMSM for small electric vehicles is established, and the characteristics of the
initial model are analyzed using FEA. To improve the accuracy of the design results, DOE is performed
using FEA. After the creation of metamodels using the DOE results, the optimal values are obtained
by the optimal algorithm. The optimal Latin hypercube design (OLHD) technique [19] is applied for
the DOE, and the appropriate DOE number and test point number are selected to produce accurate
metamodels. To perform DOE easily and accurately, this study proposes an automated DOE procedure
through linkage between an FEA program and an optimal design program. Using the DOE results,
the relationship between the design and output variables are analyzed by screening. To generate an
accurate metamodel, the RMSE tests are performed on eleven metamodels for each output variable,
and the best metamodels are selected for each output variable. Optimization based on metamodels
is performed, and the global optimization algorithm hybrid metaheuristic algorithm (HMA) [20] is
utilized as the optimal algorithm. The overall process of this study is represented in a flowchart, as
shown in Figure 1.

Outputs (in some cases the inputs of the next step)

| Section 2.1. | Initial modeling |
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr Specifications of initial model
Section 2.2. [ No load analysis (2D-FEA) ]
rrrrrrrrrrrrrrrrrrrrrrrrrrrr Back EMF, and its FFT and THD of the initial model
| Section 2.3. [ Load analysis (2D-FEA) |

""""""""""""""" Torque, core loss of the initial model

(Section 3.1, Establish the design process &
— define optimal design problem
I The objective function, constraints, variables
\W Establish the automated DOE
= procedure (Maxwell & PIAnO)
I Torque, core loss, FFT of back EMF (.vbs, .bat files)
[ Section 3.3. | Decide the number of DOE
and its sampling points (OLHD)
[ 50 sampling points of DOE
| Perform the automated DOE |
""""""""""""""""" 50 DOE results
| Analyze DOE results (screening) |
Sensitivity analysis result, Best solution of DOE
(Section 3.4 Generation of metamodels
———— (11 techniques)
11 metamodels of the objective function and constraints
Evaluation of metamodels
(RMSE test)
Best metamodel of the objective function and constraints
Section 35, Search optimum values using
= optimal algorithm (HMA)
/ Optimal values (Objective function, constraints, variables)
TR Verification of the optimal
Section 3.6.
“ model (2D-FEA)

Figure 1. Flowchart of the overall research procedure.
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2. Finite Element Analysis

The target specifications are determined by referring to the Renault’s Twizy with a torque of
57 N-m and an output power of 13 kW at 2100 rpm. In this study, a PMSM is selected as the design
model, and the target output power is 15 kW which should satisfy 60 N-m at 2387 rpm.

2.1. Initial Model

Figure 2 and Table 1 show the structure and specifications of a 15 kW PMSM for a small electric
vehicle, respectively. The PMSM has 8 poles, 36 slots, and distributed winding.

Stator core e——

Stator
windings

Permanent
—
magnets

Rotor core =—

Figure 2. Structure of initial permanent magnet synchronous motor (PMSM) model (1/4 model).

Table 1. Specifications of analysis model.

Items Unit Value
Max. output power kW 15
Required specification Max. torque N-m 60
Rated speed rpm 2387
Continuous current Arms 146
Electrical Current phase angle ° 25
Winding specification - 2 0.9, 11 turns (3 strand)
No. of poles and slots ea 8/36
Outer diameter of stator mm 202
Inner diameter of stator mm 140
Mechanical Outer diameter of rotor mm 138
Inner diameter of rotor mm 40
Air-gap mm 1
Lamination mm 45
Thermal Reference temperature °C 20

The electromagnetic, mechanical and thermal properties of the 35PN210 core material are shown
in Table 2. Core loss is the sum of hysteresis loss, eddy-current loss, and excess loss, and is calculated
by Equation (1). The core loss varies with frequency, but the analysis is based on 60 Hz.

Pe = Kp.f (By)* + Ke(fBu)* + Ke(fBu) " (1)

where P, is the core loss, K}, is the hysteresis loss coefficient, K is the eddy current loss coefficient, K, is
the excess loss coefficient, f is the frequency, and By, is the amplitude of the alternating flux component.

The electromagnetic, mechanical and thermal properties of permanent magnets are shown in
Table 3. V-shaped N38UH grade NdFeB are applied to concentrate the magnetic flux. The magnetic flux
density and coercivity decreased with increasing temperature, but the analysis is conducted at 20 °C.
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Table 2. Properties of electrical steel.
Items Unit Value
Grade (Manufacturer) - 35PN210 (POSCO)
Anisotropy type - Isotropic
Flux density at 2.5 kA/m T 1.56
Flux density at 5 kA/m T 1.65
Electromagnetic Conductivity S/m 1,694,915
Frequency Hz 60
Hysteresis loss coefficient w/m3 85.0512
Eddy-current loss coefficient w/m?3 0.34153
excess loss coefficient w/m?> 4.94904
Mechanical Thickness mm 0.35
echanica Mass density kg/m3 7600
Thermal Reference temperature °C 20
Table 3. Properties of permanent magnets.
Items Unit Value
Grade - N38UH
Magnetizing direction - Parallel
Permeability type - Anisotropic
Electromagnetic Relat.ive pe%rmeab.ility - 1.05
Residual induction T 1.23
Coercivity kA/m -932.193
Bulk conductivity S/m 625,000
Thickness mm 5
Mechanical Length mm 20
Mass density kg/m? 7650
Reference temperature °C 20
Thermal Reversible temp. coefficient of induction %/°C -0.12
Reversible temp. coefficient of coercivity %/°C —0.465

2.2. No Load Analysis

Characteristic analysis of the initial model is performed by FEA under the no load condition

without current excitation. When the rotor of the initial model rotates at the rated speed, back EMF
is induced in the stator winding. Since the back EMF simulation is performed while rotating the
rotor under the no load condition, the equivalent circuit when the PMSM operates as a generator
should be considered, as shown in Figure 3. The voltage equation of the equivalent circuit is shown in
Equation (2). However, since no current flows in the armature winding under the no load condition,
the terminal voltage and the no load EMF are the same. The back EMF of phase A can be obtained by
Equation (3), and the analysis result by FEA is illustrated in Figure 4a.

V = Eo— (j(Xa+ X)) + Ro) I [V] 2

where V is the terminal voltage, Ey is the no load EMF, X, is the armature reation reactance, Xj is the
leakage reactance, R, is the armature resistance and I,. is the load current.

E, = N@wcoswt [V] 3)

where E,. is the back EMF of phase A, N is the number of the amarture turns, & is the magnetic flux
and w is the electrical angular velocity.
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THD is an important factor in the electrical equipment and power systems. THD can be obtained
by adding the harmonic components to the fundamental wave components of voltage or current as
shown in Equation (4) [21]. A higher THD increases the core loss in electric machines, which can reduce
the efficiency and generate excessive heat. The harmonic analysis result of the back EMF waveform is
shown in Figure 4b, and the THD of the back EMF calculated by Equation (4) is 3.52%.

VV22+ Va2 + V2 4o+ V2

100 4
v x @

Vrup =

where Vryp is the THD of the back EMF, V; is the RMS voltage of the fundamental frequency and V,
is the RMS voltage of nth harmonic.

an le Ra

o
O

Figure 3. The equivalent circuit of PMSM (generator mode).
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Figure 4. The back EMF of initial model under the no load condition: (a) Waveform; (b) Harmonic.

2.3. Load Analysis

Target specifications are 15 kW and 60 N-m at 2387 rpm as shown in Table 1. To perform load
analysis, a current condition satisfying the target torque of 60 N-m at 2387 rpm should be found.
Through static torque analysis, the current condition is determined as the RMS value of 146 A and
phase angle of 25°. As shown in Figure 5a, the average torque is 59.95 N-m and the torque ripple is
5.09% of torque. The core loss is interpreted as shown in Figure 5b, and total losses are the sum of the
core loss and copper loss. The output power of the motor is calculated as the product of torque and
angular velocity, and the efficiency can be calculated from the output power and total losses of the
motor. The efficiency of the initial model is calculated to be 91.42%.
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Figure 5. Torque and core loss of the initial model under the load condition: (a) Torque; (b) Core loss.

3. Design Optimization

3.1. Design Process

The design optimization process for maximizing the average torque, while maintaining THD of
the back EMF, efficiency, and torque ripple, is shown in Figure 6. The objective function, constraints,
thermal condition, and design variables are established, as described in Equations (5)-(9) and Figure 7.
To improve the average torque, the average torque is set as both an objective function and a constraint,
with a goal of 2% improvement over the initial model. THD of the back EMF and the efficiency are
set as constraints to maintain the same level as the initial model. The torque ripple is set below 10%,
which is an acceptable level as a traction motor for electric vehicles [22]. To improve the accuracy of the
design results, DOE is performed using FEA. Because DOE using FEA requires a significant amount
of time and effort, interworking is conducted between the FEA and optimal design programs, which
are ANSYS Maxwell and PIANnO, respectively, to automatically perform DOE. When the analysis and
extraction of results for one experiment is finished, the values of the design variables are automatically
changed to perform the FEA at the next DOE point. From the DOE results, sensitivity analysis
between design variables and output variables is conducted using screening, and each metamodel for
output variables is generated. RMSE test was conducted to evaluate the predictive performance of
the metamodels, and the best metamodel is selected for each output variable. Based on the selected
metamodels, the optimal values are obtained using the HMA.

Objective function
Maximize the average torque 5)

Mechanical Constraints
Average torque > 61.152 N-m

Torque ripple < 10 % (6)

Electrical Constraints
THD of the back EMF < 3.414 %

Efficiency > 91.42 % @)

Thermal condition
Reference temperature = 20 C° (8)
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Design variables (based on the value of the initial model)

—4 mm < DV1 (Barrier length) < 10 mm
—1.0 mm < DV2 (Rib thickness) < 0.5 mm
—-1.0 mm < DV3 (Teeth width) < 0 mm 9)
0 mm < DV4 (Teeth thickness) < 1.0 mm
0 mm < DV5 (Barrier gap) < 2.0 mm

Establish the objective function,
constraints, and variables
i...

Satisfy?

FEA software | Initial modeling |
5 \ i
(Maxwell) i \ Parametric analysis setting \
A= o e — ...
i Maxwell modeling fil I
| : | axwell modeling file open F*‘
| Time step 2D-FEA analysis Modif |
Automated || (No-load & Load condition) oty
DOE e E = de.51gn |
rocedure | Call vbscript from batch files vanab-les |
p (FEA conditions & results) automatically i
J .
I Calcuate output values RCC‘?HSUUCFK’“ of
| |l (Objective function, constraints) | | design variables
Optimization | Analyze DOE results |
software by screening |
(PIAnO) | B .
Generation and evaluation of |
I metamodel
I
! Search optimum values l
[ using optimal algorithm |
[ |
I

Figure 7. Shape design variables.

The mechanical constraints of the barrier length are set from a range that facilitates the flow of
magnetic flux to a range that inhibits the flow of magnetic flux very much, as shown in Figure 8a.
Rib thickness is set to be at least 1 mm in consideration of workability at manufacture and mechanical
rigidity at high speed, as shown in Figure 8b. Figure 8c shows the mechanical constraints of the teeth
width, and the range is set so that the slot is smaller than the initial model and maintains the proper
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fill factor. The range of teeth thickness is set up to reduce the saturation of the magnetic flux at the
tip of the teeth and maintain the proper fill factor, as shown in Figure 8d. Barrier gap size affects the
formation of magnetic flux and the motor performance since the permanent magnet position also
changes. Therefore, its mechanical constraints are set as shown in Figure 8e.

. xDVI==4mm  XDVI=10'mm | ,DV2==1 mm 7, DV2=0:5 mm

R

() _ (b)

’ Nf Gl =

>

)
VV5—dnuﬁ Vvs#zimﬁ_

< e«
(e)

Figure 8. Mechanical constraints of design variables: (a) DV1 (barrier length); (b) DV2 (rib thickness);
(c) DV3 (teeth width); (d) DV4 (teeth thickness); (e) DV5 (barrier gap). Notes: The values of the design
variables are relative to the values of the initial model.

I\"" .~"47;\ \ ’,’\
ADV3==1 mm DV3=0 mm DV4=0 mm I DV4=1 mm

3.2. Automated DOE Procedure

To perform DOE, the shape of design variable should be changed. However, when DOE is
processed manually, the shape of each model is drawn using the CAD tool. Next, the designed
shape should be imported into the FEA program and the FEA should be performed for each model.
After FEA, the post process is required to calculate the desired result. As manual DOE requires a
lot of effort and time, this study suggests the automation of the DOE process. First, the Maxwell’s
parametric sweep setup function is used to change the shape of design variables without using the
CAD tool. The use of this function can change the shape of the FEA model by inputting numerical
values in the Maxwell program. Next, Maxwell’s Macro function is used to perform DOE using
PIANO, an optimal design program. As the design variables change, the vbscript and batch files are
created to automatically change the shape of the FEA model. In addition, vbscript and batch files are
generated for FEA under the no load and load conditions for each experiment. Vbscript and batch
files also are generated to output and quantify the torque, core loss and FFT analysis results of the
back EMF obtained through FEA. The files created through the Macro function are shown in Figure 9.
Next, the interface configuration between Maxwell and PIAnO for automation is shown in Figure 10.
To process DOE in PIANO, the files created in Maxwell are imported as shown in Figure 10a, and the
script for calculating the output variables is shown in Figure 10b.
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@. CorelossLegend.csv

B FFT.csv exported FEA results

B. Torguelegend.csv

%] MX_15_Open_aedtvbs o—8 vbscript to open FEA model of Maxwell
%] MX_17_Edit_ShapeVariables.vbs «—— vbscript to change shape of design variables
%] MX_20_Solving_1stvbs s————————— vbscript to analyze under load condition
5] MX_30_RegendExport_CoreLoss.vbs s——= vbscript to export core loss

ES MX_31_RegendExport_Torque.vbs s———s Vbscript to export torque

%] MX_52_Solving_Noload_2nd.vbs s——— vbscript to analyze under no load condition
5] MX_60_Export_FFT.vbs vbscript to export FFT of back-EMF

%] MX_80_Close_aedt.vbs vbscript to close FEA model of Maxwell

5] MX_85_Delete_aedt_aedtresults.vbs s——s vbscript to delete FEA model and results folder
%] TMPL_MX_17_Edit_ShapeVariables.vbs «—s vbscript of template file to change design variables

(Be] MX_1500_PreProcess.bat

] MX_2000_Solving_1st.bat

(5] MX_3000_PostProcess_1st.bat
“:] MX_5000_Solving_2nd.bat

(] MX_6000_PostProcess_2nd.bat
] MX_8000_Close_aedt.bat

batch files for execution related to vbscript files

- Analysis Tool Editor

Figure 9. Vbscript, batch, and output files using the Macro function of Maxwell.
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Figure 10. Cont.
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& Connector |[5] Show Grid || Zoom 100% - | Line Type Orthogonal -
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# Analysis Tool Editor C X
Variables Script Editor [D:%AnsysWPIAnO_CoupledWCal_Output_1,vbs]
Tta Ti= O = k2R Yo £3 Run
Name Value 1 Const ForReading = 1 -
2 Const ForAppending = 8
1 2 CoreLoss_avg 64,2514 3
2 S Torque 61,4987 4 Const TristateUseDefault = 2 ' Opens the file using the system default.
3 M Torque_pk2pk 48032 5 Const TristateTrue = 1 ' Opens the
6 Const TristateFalse = 0 ' Opens the file as ASCII.
4 W Stator_current 146 7
5  Stator_phase._res 0,021 8 Dim FSO, stream, Line, LineNo, Fields, value
9
6
¥ Speed =8 10 Function CalculateThdFromCsv(csvFileName, colIndex
7 % Pl 31416 " Set fso = CreateObject ("Scripting.FileSystemObject™)
12 Dim firstValue, sumOtherValue, thdValue
8 2 Copper_Loss 1 . -
» pper. 342908 13 If fso.FileExists(csvFileName) Then
9 “A CorelLoss_avg_k 0,0642514 14 Line = "n
10 % Total_Loss 1.40715% :: Linela = 0
sumOtherValue = 0
l “ TorqueRipple ~ 7.84276740809 | Const StarcBow = 2
12 2 Output_ Power 15,3726234033 18 Set stream = fso.OpenTextFile (csvFileName, ForReading, False, TristateFalse
19g o il "
13 % Input_Power 16, 7797828033 = Do While Not stream.AtEndOfStream
20 Line = stream.ReadLine()
14 % Efficiency 916139593909 | 21 & If LineNo > StartRow - 1 Then
15 | % THD aomsmazsen | 2 fields
23 value =
A If LineNo
25 firstValue = value
2% Else
27 sumOtherValue = sumOtherValue + value * value
28 End If
2 End If
30 LineNo = LineNo + 1
3 Loop
2 stream.Close ()
k] thdValue = Sgr (sumOtherValue) firstValue * 100.0
£ CalculateThdFromCsv = thdValue
35 Exit Function
36 Else
37 Err.Raise 1000, "THD calculation error."
38 End If
39 - End Function ~
< >

(b)

Figure 10. Interface configuration with Maxwell using PIAnO: (a) Interface setting; (b) Script for
calculating output variables.

3.3. Design of Experiment

The number of experiments and the number of test points are determined in three steps [23].
First, the number of experiments should be selected according to the number of design variables.
When the number of design variables is ten or less, the number of experimental points is determined
by Equation (10),

(nDV + 1) X (nDV +2)
2

where nEXP is the number of DOE, nSAT is the number of saturation, and nDV is the number of

design variables.

Next, the number of DOEs that can be used as test points for evaluating the accuracy of the
metamodel should be secured by Equation (11):

nEXP > 1.5 X nSAT =15 X

(10)

(nDV +1) x (nDV + 2)
2

nEXP > min , 10xnDV|+ (5xnDV) (11)

Because five design variables are used in this study, the number of DOE should be more than 46
by Equations (10) and (11). Therefore, the number of DOE is determined to be 50, which is a multiple
of the design variables. If fifty experiments are manually operated, a significant amount of effort and
time would be required. However, in this study, automation is implemented so that DOE can be
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easily developed and design cost can be reduced. Finally, the number of test points for evaluating the
accuracy of the metamodel is determined to be five by Equation (12),

nEXP_ts > min[nEXP x 10%, 10 x nDV] (12)

where nEXP_ts is the number of test points.

The OLHD technique is applied to determine the sampling point of the DOE. OLHD is a type of
DACE sampling technique developed for computational experiments. In the computer experiment,
because there are no random errors, only the bias error should be considered and the test point should
be spread evenly inside the design area. OLHD improves the space-filling property by using the
optimum conditions and spreads the test points evenly; thus, even if there are several test points,
they can be selected efficiently. DOE for fifty test points selected by OLHD is easily performed using
the automated program. Sensitivity analysis is conducted to analyze the correlation between the
design variables and design results. Figure 11 shows that the barrier length has the highest impact on
the output variables among the five design variables. However, as shown in Table 4, even the most
optimal experimental point among the 50 experiments does not satisfy the constraints. Therefore,
metamodeling based on DOE results is conducted.

: DV5(Barrier gap)
| | DVA4(Teeth tip)
100 - | |DV3(Teeth width)
| |DV2(Rib thickness)
19% 20% | |DVI(Barrier length)
25%
80— 4% 0%
_ (S 13% 3%
Q\c 3%
= 60 - N
é\ 21% 10% 22% 31%
. E 12%
Z 40+
5]
n
20 6% 41% 44% 38%
0 T T T T T T T 1
Torque THD Efficiency Torque ripple
Figure 11. Sensitivity analysis using screening.
Table 4. DOE results.
Items Unit Initial Model Best Solution of DOE
Barrier length mm 0 —0.642
Rib thickness mm 0 0.37
Design variables Teeth width mm 0 —-0.34
Teeth thickness mm 0 0.337
Barrier gap mm 0 0.76
Average Torque N-m 59.95 59.9
Desion results THD of the back EMF Y% 3414 3.245
& Efficiency % 91.42 91.41
Torque ripple % 5.086 4131

3.4. Metamodeling

Five test points are selected to evaluate the metamodel, and eleven metamodels are generated for
each output variable. The metamodel can be classified into a regression model and an interpolation
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model. The regression model, i.e., polynomial regression (PR), radial basis function regression (RBFr),
ensemble of decision trees (EDT), and multi-layer perceptron (MLP), smoothens the noise data because
they do not pass through the test points exactly. Therefore, this model is useful for real experiments
with random errors. PR allows free choice of regression terms [24]. RBF is easy to design and generalize,
and has strong tolerance to input noise [25]. EDT is advantageous for expressing nonlinearity in
large amounts of data. MLP is type of deep learning algorithm and has the advantage of being able
to represent the nonlinear relationships between input and output variables [26]. In contrast, the
interpolation model, i.e., Kriging and radial basis function interpolation (RBFi), is well suited for
function approximation using analytical results without random errors because it passes through the
test points exactly. The estimated equation of the Kriging model was defined to eliminate bias and
thereby minimize error variance [27]. Thus, a numerically robust model is provided. RBFi was first
popularized in the machine learning community and has been used in computer graphics [28].

The accuracy of the metamodel is a very important factor in the optimal design using
metamodel [12]. This is because the predictive performance of the metamodel affects the reliability of
the optimal design. Most of the existing studies have been metamodeled by a single method such as
Kriging and RSM, and the accuracy evaluation has not been performed [10-18]. In this study, however,
metamodels for the objective function and constraints are generated in 11 ways provided by PIAnO,
and the best metamodels are selected, respectively, by comparing the RMSE test results to evaluate the
metamodel accuracy. The predictive performance of the metamodel is evaluated by the RMSE test and
is calculated by Equation (13) [23],

nEXP_ts

L (X)) - 9(X) 2 (13)

RMSE = nEXP_ts
where y(X;) is the value of the real function and §(X;) is the value of the metamodel.

Through the RMSE test, the predictive performances of the metamodels are evaluated for the
output variables. The RMSE test showed the best predictive performance of RBFr as a metamodel of
the average torque as shown in Table 5. Similarly, the RMSE tests are conducted on the metamodel for
efficiency, torque ripple, and THD of the back EMF. Based on the test results, the metamodels with
the best predictive performance for each output variable are selected for use in the optimal design, as
shown in Table 6.

Table 5. RMSE test results of metamodels for the objective function.

Rank Metamodel RMSE Test Value
1 RBFr 0.34648496
2 RBFi 0.38436657
3 PR (Backward stepwise regression) 0.40021405
4 PR (Simple cubic model) 0.44883739
5 PR (Full quadratic model) 0.50425469
6 PR (Forward stepwise regression) 0.68032589
7 PR (Linear model) 1.15518494
8 PR (Simple quadratic model) 1.21540869
9 Kriging 1.30829623
10 EDT 1.32713329
11 MLP 1.38523885
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Table 6. Selected metamodels of the output variable by RMSE test.

Output Variable Metamodel RMSE Test Value
Average torque RBFr 0.346485
THD of the back EMF Kriging 1.276249
Efficiency MLP 0.025028
Torque ripple Kriging 0.228137

3.5. Design Optimization Based on Metamodel

The HMA, a global optimization algorithm, is used for the optimal design based on the metamodel.
The HMA was proposed in 2016 by Park [20]. HMA can determine the global optimum faster than other
global optimizers owing to the combined advantages of improved constrained differential evolution
and modified cuckoo search.

The optimum design results predicted from the metamodel based HMA are shown in Table 7
and verified through FEA. The predicted results showed that the average torque, THD of the back
EME, efficiency and torque ripple results are similar to the FEA results. Therefore, the automated DOE
procedure and the generation and evaluation of the metamodel were verified. The average torque of
the optimal model was 2.5% better than the initial model, and the torque ripple increased slightly, as
shown in Figure 12. THD of the back EMF and efficiency set by the constraints were slightly improved.
Although the torque ripple of the optimal model is 7.822%, it is very acceptable as a traction motor for
electric vehicles [22].

Table 7. Optimization results.

It Unit Initial Model Optimal Model Optimal
ems m (FEA) (Predicted) Model (FEA)
Barrier length mm 0 —-0.356 -0.356
Rib thickness mm 0 —0.893 —0.893
Design variables Teeth width mm 0 -0.236 —-0.236
Teeth thickness mm 0 0.269 0.269
Barrier gap mm 0 1.388 1.388
Average torque N'm 59.95 61.03 61.43
Desi THD of the back EMF % 3.414 3.424 3.065
esign results o
Efficiency % 91.42 91.57 91.61
Torque ripple % 5.086 7.258 7.822
70 T T T T T T
Initial model
— —— Optimal model
E 65- .
&
3
o
-
8
(5
en
<
=
Q55 _
<
50 T T T T T T

0 1 2 3 4 5 6
Time [msec]

Figure 12. Torque waveforms.
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3.6. Consideration of Optimal Design Results

Figures 13 and 14 show the flux distributfion and flux density of the initial and optimal models,
respectively. In comparison to the initial model, the rib thickness and barrier length of the optimal
model were reduced, and the barrier gap was increased. As the rib thickness decreased, the unnecessary
flux flow between the north pole and south pole through the rotor rib was reduced. In addition, the
flux flow was smoothly improved owing to the reduction in barrier length, and consequently, more
flux passed through the stator core. The improvements in the magnetic flux flow and the change in
reluctance can be considered to be the cause of the increase in the back EMF and torque [29]. Owing to
the improvements of in the flux flow, the back EMF of the optimum model was 35.0 V, which showed
an improvement of 7.4% in comparison to 32.6 V of the initial model, as shown in Figure 15. In addition,
owing to the sinusoidal improvement in the waveform of the back EMF of the optimal model, the THD
was slightly improved from 3.414% to 3.065%.

(@) (b)

(b)

Figure 14. Flux density under no load condition: (a) Initial model; (b) Optimal model.
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Figure 15. Back EMF waveforms.

4. Conclusions

This paper presented shape optimization of a PMSM for small electric vehicles to maximize
torque while maintaining efficiency, torque ripple and THD of the back EMFE. To improve the accuracy
of the optimal design results, DOE was performed using FEA. This study proposed an automated
DOE procedure through linkage between an FEA and optimal design programs to perform DOE
easily and accurately. Parametric modeling was performed for the FEA model to change the shape
variables automatically, and automation-related files were created using Maxwell’s Macro function.
In addition, an interface was established to link the FEA program with PIAnO, an optimal design
program. Using the built-in automation program, 50 FEAs for the experimental points selected by
OLHD were easily performed. From the DOE results, the relationship between the design and output
variables was analyzed by screening. Among the five design variables, the barrier length was found
to have the greatest effect on the output variables. Eleven metamodels were created for each output
variable and RMSE test was conducted to evaluate the predictive performance of the metamodels.
Consequently, the metamodels with the best predictive performance for each output variable were
selected. Finally, the optimization design based on the metamodel was determined using the HMA to
find the global optimum. The objective average torque improved by 2.5% over the initial model while
satisfying all the constraints. The optimal design results were finally verified by FEA.

The proposed automated design method is expected to reduce design cost and time. Moreover,
it can be used to find the optimal solution for various design problems as well as PMSMs. By following
the procedure given below, the proposed optimal design method can be applied to any type of motor
without any special constraints. First, in order to change the shape of the optimum design variable
automatically, the dimension of the optimal design variable should be set using Maxwell’s parametric
sweep setup function. Next, determine the values that you want to extract from Maxwell and create
vbscript and batch files to extract them. Finally, an interface setting must be performed to accommodate
Maxwell’s output values in an optimization program called PIAnO.

Optimization of multi-physics systems by simulation takes significant computing time for each
simulation run, and its process depends on numerous runs, making it difficult and expensive [30].
However, using the automated DOE procedure suggested in this study can reduce design cost and
time, so I think multi-physics analysis is possible in the near future. In the next project, I will consider
multi-physics analysis that takes into account the mechanical and thermal properties.
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Abbreviations

Acronym Descriptor

DOE Design of Experiments

EDT Ensemble of Decision Trees

FEA Finite Element Analysis

HMA Hybrid Metaheuristic Algorithm

MEC Magnetic Equivalent Circuits

MLP Multi-layer Perceptron

OLHD Optimal Latin Hypercube Design
PMSM Permanent Magnet Synchronous Motor
PR Polynomial Regression

RBFi Radial Basis Function Interpolation
RBFr Radial Basis Function Regression
RMSE Root Mean Squared Error

THD Total Harmonic Distortion
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