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Abstract: Predicting wind speed for wind energy conversion systems (WECS) is an essential monitor,
control, plan, and dispatch generated power and meets customer needs. The Kingdom of Saudi Arabia
recently set ambitious targets in its national transformation program and Vision 2030 to move away
from oil dependence and redirect oil and gas exploration efforts to other higher-value uses, chiefly
meeting 10% of its energy demand through renewable energy sources. In this paper, we propose
the use of the artificial neural networks (ANNs) method as a means of predicting daily wind speed
in a number of locations in the Kingdom of Saudi Arabia based on multiple local meteorological
measurement data provided by K.A.CARE. The suggested model is a feed-forward neural network
model with the administered learning technique using a back-propagation algorithm. Results indicate
that the best structure is obtained with thirty neurons in the hidden layers matching a minimum
root mean square error (RMSE) and the highest correlation coefficient (R). A comparison between
predicted and actual data from meteorological stations showed good agreement. A comparison
between five machine learning algorithms, namely ANN, support vector machines (SVM), random
tree, random forest, and RepTree revealed that random tree has low correlation and relatively high
root mean square error. The significance of the present study relies on its ability to predict wind
speeds, a necessary prerequisite to executing sustainable integration of wind power into Saudi
Arabia’s electrical grid, assisting operators in efficiently managing generated power, and helping
achieve the energy efficiency and production targets of Vision 2030.
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1. Introduction

Today, governments, policymakers, and energy utilities employ a broad range of tools to encourage
the use of various renewable energy technologies, cash, and tax credit. According to various resources
in the energy sector like the Global Status Report REN21 [1] and the Global Wind Energy Council
Report GWEC [2,3], the global wind energy capacity installed in the last ten years increased from about
159 gigawatts (GW) in 2009 to about 591 GW at the end of 2018. By the end of 2019, it is expected to
achieve an installed capacity of around 656 GW, as shown in Figure 1, with more details in Table 1
showing data of the global annual installed wind capacity from 2009 to the expected year 2019e.
According to Wind Europe’s Central Scenario, 323 GW of cumulative wind energy capacity would be
installed in the EU by 2030. In the High Scenario, 397 GW of wind energy capacity would be installed
in the EU by 2030, with 298.5 GW onshore and 99 GW offshore. In the low scenario, there would be
256.4 GW of wind capacity in 2030, with 207 GW onshore and 49 GW offshore [4]. Currently, in Europe
alone, electricity generated from wind turbines covers up to 11% of the electricity demand. By 2020,
it will increase to 16.5%, and by 2030 it is expected that renewable energy could serve at least 27% of
Europe’s electricity need and will generate over three million jobs [4].
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Figure 1. Global annual and cumulative installed wind energy capacity. 

Table 1. Previous year's capacity, annual addition, and global cumulative installed wind capacity. 

Year Previous Year's Capacity (GW) Annual Addition (GW) Global Cumulative (GW) 
2009 120.696 38.475 159.171 
2010 159.052 39.062 198.114 
2011 198.114 40.635 238.749 
2012 238.749 45.030 283.779 
2013 283.779 36.023 319.802 
2014 319.802 51.675 371.477 
2015 371.477 63.533 435.010 
2016 435.01 54.642 489.652 
2017 489.652 52.492 542.144 
2018 542.144 51.316 593.460 
2019e 593.46 65.400 658.660 

2019e: 2019 expected, GWEC (2018). 

In Saudi Arabia, 15% of domestic oil production is used to generate electricity, and another 50% is 
consumed by electric power plants [5,6]. According to the Electricity and Cogeneration Regulatory 
Authority, the residential sector consumes 50% of the generated power [7,8]. In the last ten years, the 
consumption per capita increased from 7258 kWh/Capita to 9167 kWh/Capita. In 2017, Saudi Arabia 
produced only 0.04% of electricity from non-fossil fuels using solar energy [7,9]. Recently, Saudi Arabia 
set an ambitious target in its national transformation program and Vision 2030 to move from oil 
dependence and redirect the oil and gas exploration to other higher-value uses [10,11]. This goal is being 
achieved by setting an energy roadmap with the aim to supply 10% of its energy demand from renewable 
sources with an initial target of generating 9.5 GWs of renewable energy by 2023 and 3.45 GW by 2020. 
More recently, the Renewable Energy Project Development Office (REPDO) of Saudi Arabia’s Ministry of 
Energy, Industry and Mineral Resources [12] announced a substantial increase in the renewable energy 
share to produce 40 GW of solar energy and 16 GW of wind power over the next decade. Vestas will 
supply 99 V 150–4.2 MW wind turbines machines to Saudi Arabia's first utility-scale wind farm in the 
Dumat Al Jandal, south of the Al Jouf region. 

With the current rapid development and growth in wind generation, there is a need for serious 
research on different areas of wind energy conversion systems (WECS) and energy management, in 
particular, wind speed and power forecasting. As the wind speed and nonlinear fluctuations 
represent the main components in the prediction of the energy output of wind turbines, improving 
wind forecasting has substantial financial and technical benefits, and assists electrical system 
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In Saudi Arabia, 15% of domestic oil production is used to generate electricity, and another 50% is
consumed by electric power plants [5,6]. According to the Electricity and Cogeneration Regulatory
Authority, the residential sector consumes 50% of the generated power [7,8]. In the last ten years, the
consumption per capita increased from 7258 kWh/Capita to 9167 kWh/Capita. In 2017, Saudi Arabia
produced only 0.04% of electricity from non-fossil fuels using solar energy [7,9]. Recently, Saudi Arabia
set an ambitious target in its national transformation program and Vision 2030 to move from oil
dependence and redirect the oil and gas exploration to other higher-value uses [10,11]. This goal
is being achieved by setting an energy roadmap with the aim to supply 10% of its energy demand
from renewable sources with an initial target of generating 9.5 GWs of renewable energy by 2023 and
3.45 GW by 2020. More recently, the Renewable Energy Project Development Office (REPDO) of Saudi
Arabia’s Ministry of Energy, Industry and Mineral Resources [12] announced a substantial increase in
the renewable energy share to produce 40 GW of solar energy and 16 GW of wind power over the
next decade. Vestas will supply 99 V 150–4.2 MW wind turbines machines to Saudi Arabia’s first
utility-scale wind farm in the Dumat Al Jandal, south of the Al Jouf region.

With the current rapid development and growth in wind generation, there is a need for serious
research on different areas of wind energy conversion systems (WECS) and energy management,
in particular, wind speed and power forecasting. As the wind speed and nonlinear fluctuations
represent the main components in the prediction of the energy output of wind turbines, improving
wind forecasting has substantial financial and technical benefits, and assists electrical system operators in
decreasing the risk of unreliability in electricity supply. The wind is particularly intermittent and variable
by nature, and any unexpected variations critically affect the operating costs of electricity production.
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In this paper, we propose using the artificial neural networks (ANNs) method to predict the
daily wind speed distribution in some locations in the Kingdom of Saudi Arabia using multiple local
meteorological measurement data provided by K.A.CARE [13]. The primary benefit of using artificial
intelligence techniques to determine wind speed is the ability to build a prediction model capable of
forecasting short term wind speed distribution since the model can train and learn from the historical
data set. The rest of this paper is organized as follows: Section 2 details the main research on wind
speed forecasting techniques and methods for wind energy conversion systems (WECS). Section 3
discusses the wind data collection and analysis in some cities in Saudi Arabia. Section 4 presents the
artificial neural network modeling designed to forecast wind speed distribution. Section 5 discusses the
results obtained from the prediction of the wind speed distribution and its comparison to experimental
data. Finally, Section 6 provides the main conclusion of this study.

2. Related Work

With rapid technology development, wind energy has become an important commercial option
for large scale power production. However, wind energy resource is highly variable, and the resulting
fluctuations in the generation capacity can cause instability in the power grid. Today there is a growing
ambition and enthusiasm about using the power of the wind to generate clean and environmentally
friendly renewable energy and reduce our dependence on fossil fuel resources. In a report published
by the United Nations [14], it is recommended that the maximum emission of CO2 should not exceed
44 gigatons by 2020, falling to 40 gigatons by 2025 and further to 22 gigatons by 2050. With the
current rapid development and growth in wind generation, there is a need for serious research on
different areas of wind energy conversion systems (WECs) and energy management, in particular,
wind speed prediction and power forecasting. As the wind speed and nonlinear fluctuations represent
the main components in the prediction of the energy output of wind turbines, investigating wind
energy production from wind turbine machines at a given location requires an intensive study of wind
distribution in terms of its availability, direction, hourly distribution, diurnal variation, and frequency.
In contrast to conventional power plants, the electricity generated from wind turbines depends
mostly on meteorological conditions, in particular, the magnitude of the wind speed, the atmospheric
turbulence, and the control of the wind turbine characteristics [15,16]. In recent years, there has been an
increasing interest in developing methods and techniques to predict the wind speed and the generated
power of WECS to maintain a sustainable integration of wind power into the electricity grid [17–21].
These methods are based on the time scale of (i) very short-term forecast, (ii) short-term forecast,
(iii) medium-term forecast, and (iv) long-term forecast, as shown in Table 2 along with the time zone,
range, and applications.

Table 2. Wind speed prediction based on the time scale.

Time Zone Range Application References

Very short-term Few seconds to 30 min
Forecasting wind speed and power for
electricity market clearing, regulatory

actions, and operational aspects
[22,23]

Short-term 30 min to 6 h
Dispatching the generated power of the
WECS to meet customer need within a

short time
[24,25]

Medium-term 6 h to 1 day Operational security, safety, and
electricity market [26,27]

Long-term 1 day to 1 week or above
Unit commitment decisions,

maintenance scheduling, and
operational management

[28,29]



Energies 2019, 12, 4669 4 of 16

Machine learning methods have been widely used to predict wind speed distribution [17,30–32].
These methods are divided into (i) supervised learning where both inputs and output are provided,
(ii) unsupervised learning where only the input data is provided, (iii) reinforcement learning represented
by a mixture of supervised and unsupervised learning, and (iv) evolutionary learning, which is
considered a biological approach to machine learning. On the other hand, wind forecasting methods
are classified into four categories: physical methods, statistical methods, hybrid methods, and artificial
intelligence methods [17,19,33]. Other authors, such as Sun et al. [34] listed the persistence method
or “Naïve Predictor”, which assumes a correlation between the wind speed at a time “t + x” and the
current wind speed at the time “t”, where both speeds are assumed to be the same. The precision of
this model decreases quickly in subsequent prediction time. The following subsections highlight the
main points of each of the four forecasting methods.

2.1. Physical Methods

Physical methods are based on a series of empirical formulas where a large amount of data
is obtained from weather forecasts based on the geographical locations of the WECS and physical
parameters such as temperature, humidity, and pressure [19,35–37]. The training input from past data is
not necessary for the physical method. Using the downscaling method, the meteorological wind speed
is used to determine the wind speed at the hub of the WECS and then the amount of energy produced.
Multiple physical models have been developed to help in producing a more reliable forecast, such as
the numeric weather prediction (NWP) model [35], which solves complex mathematical equations
describing the physical process of the wind over a given geographical area. NWP runs once or twice a
day, which limits its use to a short-term prediction. Applying physical modeling requires excessive
computer time and shows better results only when weather conditions are stable [38].

2.2. Statistical Methods

Wind speed prediction using statistical methods is based on historical data and patterns [19,39].
These methods are fundamental for WECS control and planning. However, due to the stochastic nature
of wind, the predictions are not as successful as we expected them to be. The time series technique
uses a statistical approach by training on the experimental data and minimizing the difference between
the predicted and the experimental data. Time series models such as the autoregressive model (AR),
moving-average model (MA), auto-regressive moving average (ARMA) model, or autoregressive
integrated moving average (ARIMA) model, are capable of forecasting the average hourly wind speed
and the annual power generated by the WECS [17–19].

2.3. Hybrid Methods

Hybrid methods use a combination of different techniques such as mixing physical and statistical
methods, individual models, or short-term and medium-term forecasts. The main objective is to take
advantage of each method and increase the accuracy of the wind speed forecast [17,40]. Several hybrid
techniques have been used to forecast the wind speed and power generated by WECS, including
Wavelet and ANN, ANN and Fuzzy logic, spatial correlation and neural networks (NNs), and ARIMA
and neural networks (NNs) to list just a few [41]. In a recent study conducted by Alencar et al. [19] on
ultra-short, short, medium, and long-term wind speed prediction models based on ANN, ARIMA,
and hybrid models, the authors concluded that despite the existence of a full range of methods none of
the forecasts cover the entire forecasting possibilities between ultra-short-term and several years ahead.

2.4. Artificial Intelligence Methods

The core strategy in artificial intelligence methods is to build a relationship between the input
and output data using algorithms as opposed to using analytical methods. In statistical methods,
the model looks for decreasing the difference between the predicted and immediate past values using
an auto-recursive mathematical model, while neural networks look for patterns in the input and output
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data over a long period. Among the most popular models used in forecasting wind speed based on
artificial intelligence we found ANN models [18,42], support vector machines (SVM) [43,44], fuzzy
logic [45], and the adaptive neuro-fuzzy inference framework (ANFIS) approach [46,47]. Although
ANN has some advantages due to its simplicity and self-learning capacity, selecting the appropriate
method is not an easy task. In some locations and under certain atmospheric circumstances, some
models may perform well in predicting the wind speed; however, the same models may generate
false previsions under other circumstances. As artificial intelligence methods developed rapidly, many
researchers turned to machine learning techniques to predict wind speed, as reported by [17,30,43].
Artificial intelligence can capture the non-linearity of the wind speed characteristic but may not capture
all the factors, such as the topography of the terrain, the temperature, the humidity, the seasonal wind
speed distribution, and the height of the wind turbine machines. There is still more work to be done to
increase the accuracy of wind speed prediction.

Neural network approaches require particular attention to select the appropriate and relevant
structural parameters of the model such as the number of layers and neurons. Alencar et al. [19] and
Sun et al. [34] revealed that the forecasting error increases with the increase in the time horizon. In a
comparison between ANN and a hybrid model (ANN and computational fluid dynamics (CFD)) against
the Supervisory Control and Data Acquisition (SCADA) in a wind farm in Italy, Burlando et al. [48]
found that both methods gave similar results, however, ANN forecasts were better at medium wind
speed ranges while the hybrid model forecasts were better at low and high wind speed ranges.
In another review of ANN models for energy prediction, including wind, solar, and hydropower,
Bermejo et al. [49] concluded that many contributions endorsed the ANN model but only under some
conditions including the use of a large range of data to improve the prediction accuracy. The authors
stated that the main advantage of ANN models is due to its capacity to determine complex relations
among variables while keeping high data tolerance. Ernst et al. [50] stated that using a combination of
models and forecasting for larger regions and shorter horizon reduces the average predicted errors.
An exhaustive survey of artificial neural network applied in wind energy systems published by
Marugán et al. [51] demonstrated that artificial neural networks could be an alternative to conventional
methods in many cases. This analysis summarizes the key approaches by compiling processes,
algorithms, and mode. The concluded highlighted the evolution of ANN in the last 10 years along
with future trends and application in the domain of wind turbines. In a review of 30 years of wind
speed prediction, Costa et al. [52] suggested further study on complex terrain and research on adaptive
parameter estimation. A best practice for short-term forecasting has been suggested by Giebel and
Kariniotakis [53]. Mujeeb et al. [54] proposed a demand management scheme and a wind power
forecasting method using big data-driven wind power forecasting. They employed a deep-learning
technique to predict the day-ahead wind power at the New England’s wind farm located in Maine,
USA. Mosavi et al. [17], in a study on “State of the Art of Machine Learning Models in Energy Systems,
a Systematic Review”, indicated that currently, the trend is towards personalized machine learning
models designed for a particular application.

3. Wind Data Collection

The cut-in speed for a wind turbine machine is typically between 3–4 m/s [55]. In terms of
wind speed distribution, Saudi Arabia’s regions are surrounded by a significant onshore wind speed
distribution ranging between 6 and 8 m/s [56–58] enough for a wind turbine machine to produce
an output. The average annual wind speed at 100-m height recorded in Saudi Arabia at different
cities ranges from 5.50 at Al Wajh (Latitude: 26◦14′43.84” N, Longitude: 36◦27′8.96” E) to 8.70 m/s
in the Northern region of Yanbu (24◦11′12.6528” N, 24◦11′12.6528” N). According to Amin and
El-Samanoudy [59], the coastal region of the Arabian Gulf can experience speeds up to 6 m/s, while the
red sea coastal region can reach a wind speed between 4.5 and 5 m/s at 100 m height.

Data used in the present study has been collected from the King Abdullah City for Atomic and
Renewable Energy as part of the Renewable Resource Monitoring and Mapping (RRMM) Program [13].
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The hourly data provided (May 2013 to July 2016) includes different attributes such as air temperature,
wind direction and speed, global horizontal irradiance (GHI), relative humidity, and barometric
pressure. The hourly distribution of wind speed for the city of Jeddah during January and May 2015 is
shown in Figure 2. A comparison between wind distribution in 2014 and 2015 is given in Figure 3.
Both Figures 2 and 3, show the random variation of the wind speed.
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Using 16 cardinal directions presented in a windrose diagram for two cities, Jeddah and Taif,
the distribution of the average wind direction in the period of 2013–2016 is shown in Figure 4.
The windrose diagram in Figure 4a shows that the most prevailing wind directions in Jeddah city
are in the 315–317.5 sectors, north-west, but it rarely blows from the south or east. The north-west
and north-north-west also comprise almost 50% of all hourly wind directions. For the Taif region,
Figure 4b, the most prevailing wind direction is from the west and west-north-west.
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Another important parameter is the variation of the wind speed as a function of the height of the
WECS. The speed increases with the height according to a power law [60]. Based on measured data at
a specific height, usually 10 m, it is possible to calculate the wind speed at different heights using:

Vz

Vr
=

( Z
Zr

)α
, (1)

where Vz is the wind speed at the height Z, Vr is the wind speed at the reference height, and α is the
wind shear or Hellman’s exponent, which depends on the terrain and atmospheric stability [61]. It is
important to note that the power generated by the wind turbine, Equation (2), is proportional to the
cube of the wind speed [55].

Pout =
1
2
ρ ηt ηm ηe AV3, (2)

where ρ is the air density, A is the area swept by the rotor of the wind turbine machine, V is the wind
speed, and ηt, ηm, ηe represent the turbine efficiency, mechanical efficiency, and electrical efficiency,
respectively. It is therefore strongly recommended to accurately predict the wind speed distribution
to collect the power generated since any error in predicting wind speed will affect the power output
generated by the WECS.

4. Artificial Neural Network Modeling

In a neural network-based system, the neurons are linked by weighted activation where the
network is modeled by an input layer related to the sources of information (input data), the hidden
layer constructed of several neurons, and an output layer comprised of information transferred from
the network to the signal output [36,62,63]. The available database used for the ANN prediction
is divided into training and validation sets. The main objective of the algorithm is to minimize
the difference between the predicted and actual data. All the input parameters are gathered for
wind speed estimation and analyzed to characterize the connection between the input and output
using the correlation technique. The suggested neural network for the wind speed prediction
model is a feed-forward neural network model with the administered learning technique using the
back-propagation algorithm [64].
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Assuming wi j as the connection weight vector between the input node and the hidden node,
woj the bias on the hidden node, v jk the connection weight vector from the hidden layer to the output
node, and vok the bias term of output, then the output is calculated by Equations (3)–(6) [65].

znetj =
∑Ninput

i
xiwi j + w0 j. (3)

z j = g
(
znetj

)
. (4)

ynetk =
∑Nhidden

j
z jv jk + v0k. (5)

yk = g(ynetk). (6)

Equation (3) represents the summing product of the net inputs, Equation (4) represents the hidden
layer using the sigmoid activation function, Equation (5) represents the summing product of the hidden
layer outputs, and, finally, the output layer is calculated using Equation (6) along with the sigmoid
function defined by g(x) = 1

1+e−x .
An example of multi-layer neural networks formed by three layers, a passive input layer with

seven nodes, three hidden-layers with eight, four, and three neurons, respectively, and an active output
layer for the wind speed prediction is shown in Figure 5. Each input is multiplied by a weight, and
then summed up to produce a single value that is passed through a nonlinear mathematical transfer
function “sigmoid.” The input layer includes, among others, the air temperature, the relative humidity,
the wind direction, the direct normal irradiation (DNI), the diffuse horizontal irradiation (DHI), the
global horizontal irradiation (GHI), and the barometric pressure. In addition, selecting the number
of layers and neurons in each layer is a very important decision in selecting the architecture of the
ANN used. However, there is no ‘one size fits all’ solution to all applications but there are some
guidelines that most researchers follow such as i) increasing the number of neurons when the input
data’s connection to the required output is complex, ii) increasing the number of hidden layers when
modeling a multiple-stage process, etc. [66].
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The weights in each intermediate and output layer are set in the training mode until the errors
are recognized within a prescribed scope. During the training period, the system parameters can be
monitored and adjusted based on the multilayer perceptron method, as defined in WEKA software [64].
The training sets determine the output by iteratively limiting the errors using the steepest decision
technique, and the slope is resolved using a backpropagation algorithm. The performance of the
proposed algorithm is measured by using the root-mean-square-error (RMSE), the mean absolute
error (MAE), and the correlation coefficient (R). Values close to zero are appropriate for MAE and
RMSE, while values close to one for (R) indicate a strong correlation. Assuming Vact

i is the wind speed

observed, Vpred
i is the wind speed predicted, the root mean square root is given by

RMSE =

√
1
N

∑N

i=1

(
Vact

i −Vpred
i

)2
. (7)

The mean absolute error (MAE) measuring the average magnitude of the absolute difference
between the predicted and actual data can be written as:

MAE =
1
N

∑N

i=1

∣∣∣∣Vact
i −Vpred

i

∣∣∣∣. (8)

Using the average Vact and Vpred wind speeds, the linear correlation coefficient can be rearranged as

R =

∑N
i=1(V

act
i − Vact)(Vpred

i − Vpred)√∑N
i=1 (V

act
i −Vact)

2
√∑N

i=1 (V
pred
i − Vpred)

2
. (9)

5. Results and Discussion

Four cities have been selected for the prediction of wind speed using artificial neural networks
(ANNs). To develop the model using ANN, the database was divided into two stages: training and
testing phases. To train neural networks, several architectures using the cross-validation method have
been applied. The method consists of performing the optimization of the weights by finding the set of
weights that minimizes the errors. The number of attributes, the percentage of training and testing,
and the number of hidden layers and neurons were selected according to the accuracy determined by
the root-mean-square-error (RMSE), the mean absolute error (MAE), and the correlation coefficient
(R). As explained in the previous section, there is no known solution for calculating the number of
hidden layers and neurons; to overcome these challenges, a number of tests were performed to select
the optimum number of hidden layers and neurons. We tested 2, 5, 10, 20, 30, 40, and 50 neurons;
the result is shown in Table 3 and Figure 6. Using one layer and 30 neurons, the best result with an
RMSE of 0.6109 and a correlation coefficient of 0.9222 was obtained for the station at King Abdulaziz
University (KAU) located in the city of Jeddah. Therefore, a network with 30 neurons was selected for
the optimum ANN algorithm. Once the number of layers and neurons was set, additional runs were
conducted to select the best percentage for training and testing. Our tests showed that 70%–30% for
training and testing gives the best RMSE of 0.8078 compared to RMSE of 1.1119 obtained when using
60%–40%. On the number of attributes used in this study, an extensive test was conducted to study
the effect of different attributes. After a series of tests, six attributes were selected from 13 attributes
available in the original data, including the air temperature, the wind direction, the GHI, the peak
wind speed, the relative humidity, and the pressure. Therefore, a network with 30 neurons, six layers,
along with 70%–30%, was selected for the optimum ANN algorithm. Note that other parameters
such as the direct normal irradiation (DNI) and the diffuse horizontal irradiation (DHI) were dropped
from the input data since the global horizontal irradiation (GHI) includes both the DNI and the DHI.
On the number of data used, tests were conducted on four years of data as well as on one year of
data. The performance obtained at three different stations located in four cities: King Abdulaziz
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University (KAU) in Jeddah (21.49604, 39.24492), King Saud University in Riyadh (24.72359, 46.61639),
Taif University in Taif (21.43278, 40.49173), and Afif Technical Institute in Afif city (23.92118, 42.94815)
is shown in Table 4. The correlations (R) between the predicted and actual data is better in the case of
the station located in Jeddah with R = 0.9222.

Table 3. Selection of the number of neurons, city of Jeddah.

Layers R MAE RMSE RAE

2 0.9143 0.9564 1.1574 57.72%
5 0.9218 0.6467 0.8373 39.03%
10 0.9216 0.6056 0.8020 36.55%
20 0.9224 0.6265 0.8209 37.81%
30 0.9222 0.6109 0.8078 36.87%
40 0.9213 0.6244 0.8232 37.69%
50 0.9227 0.6944 0.8964 41.91%
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Table 4. Performance of wind speed prediction at three different stations.

Station Longitude Latitude R RMSE

Jeddah (KAU) 21.49604 39.24492 0.9222 08078
Riyadh (KSU) 24.72359 46.61639 0.8655 0.5388

Taif University (TU) 21.43278 40.49173 0.9039 0.8580
Afif Technical Inst. (ATI) 23.92118 42.94815 0.8957 1.1195

Figures 7–10 show the distribution of wind speed for training and actual data using ANN
simulation during the year 2015 for the city of Jeddah, Riyadh, Taif, and Afif. The fit between the
predicted and actual data was reasonably good, with a correlation of 0.9222, 0.8655, 0.9039 and
0.8957, respectively.
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Table 5 and Figure 11 show a comparison between ANN and four other machine learning
techniques, namely SVM, random tree, random forest, and RepTree. Details of each of these techniques
can be found in [64,67]; however, we highlight the main characteristics of each method. The support
vector machine (SVM) is a supervised machine learning algorithm that classifies linear and nonlinear
data. SVM uses a kernel trick technique to transform the available data and then finds an optimal
correlation between possible outputs. The random tree is an ensemble learning algorithm that generates
many individual learners. The performance of single decision trees is significantly enhanced by using
tree diversity and randomization. The random forests are, as its name implies, an ensemble learning
method for classification or regression made up of many decision-making trees acting as an ensemble.
During the testing process, the prediction is performed by averaging each decision tree prediction.
The reduces error pruning (REP) tree is a fast decision tree learning algorithm that builds a regression
or decision tree using the reduction of information gain and prunes it using reduced-error pruning.
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Table 5. Performance comparison of machine learning algorithms.

Machine Learning Algorithm Correlation Coefficient Mean Absolute Error Root Mean Square Error

Random Forest 0.9325 0.5543 0.7396

Random Tree 0.8688 0.8054 1.06223

RepTree 0.9144 0.6274 0.8305

ANN 0.9222 0.6109 0.8078

SVM 0.9182 0.6111 0.8111
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When comparing the five algorithms (Table 5), the random forest presented slightly better
performance than the rest of the algorithm, but they all showed favorable results except the random
tree, which showed low correlation and relatively high root mean square error.

6. Conclusions

Wind speed forecasting represents significant potential for energy infrastructure development
and management, requiring careful investigations of availability, direction, hourly distribution,
and frequency to examine wind energy production and ensure a sustainable integration of wind power
into electricity grids. The present paper introduced artificial neural networks (ANNs) as a powerful
tool to predict wind speed distribution, required for energy applications in Saudi Arabia. The study
showed that it was possible to estimate and predict wind speed variability using ANN techniques.
Based on different tests, ANN proved itself a flexible method in terms of accuracy and computer
time usage, when compared to atmospheric models such as weather research and forecasting (WRF).
Correlation coefficients of 0.9222, 0.8655, 0.9039 and 0.8957, were obtained for the city of Jeddah, Riyadh,
Taif, and Afif, respectively. Data obtained from the King Abdullah City for Atomic and Renewable was
trained with different hidden layers and 2, 5, 10, 20, 30, 40 and 50 neurons. Based on the RMSE and the
correlation coefficient “R,” the best result was obtained with an RMSE of 0.6109 for ANN and an RMSE
of 0.5543 for the random forest. Our tests also showed that 70%–30% for data training and testing
provided the best correlation. Moreover, correlation between actual and predicted data was low in the
case of random tree, where the root mean square error was relatively high. ANN predictions could be
improved by conducting additional tests on hidden layers and ANN parameters producing the best
RMS and correlation. More work is underway to compare and test other machine learning algorithms
capable of predicting wind speed distribution with better accuracy as well as a study of the effect of
different attributes on the prediction of wind speed through sensitivity analysis.
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