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Abstract: The energy storage system (ESS) is the main issue in traction applications, such as battery
electric vehicles (BEVs). To alleviate the shortage of power density in BEVs, a hybrid energy storage
system (HESS) can be used as an alternative ESS. HESS has the dynamic features of the battery
and a supercapacitor (SC), and it requires an intelligent energy management system (EMS) to
operate it effectively. In this study, a real-time EMS is proposed, which is comprised of a fuzzy logic
controller-based low-pass filter and an adaptive proportional integrator-based charge controller.
The proposed EMS intelligently distributes the required power from the battery and SC during
acceleration. It allocates the braking energy to the SC on the basis of the state of charge. A simulation
study was conducted for three standard drive cycles (New York City cycle, Artemis urban cycle,
and New York composite cycle) using MATLAB Simulink. Comparative analysis of conventional
and proposed EMSs was carried out. The results reveal that the proposed EMS reduced the stress,
temperature, and power losses of the battery. The steady-state charging performance of the SC was
98%, 95%, and 96% for the mentioned drive cycles.

Keywords: energy management system; adaptive controller; semi-active hybrid energy storage
system; electric vehicle; battery; supercapacitor

1. Introduction

The transportation sector plays a key role in energy consumption and greenhouse gas emissions,
triggering global warming with limited fossil fuel resources and price fluctuations, which leads to the
need for investigating an alternate energy source [1,2]. Therefore, attention has shifted to battery electric
vehicles (BEVs) [3]. A BEV provides a high energy density, which looks like an ideal solution for reducing
the energy of the transport sector and gas emissions [4]. However, it brings some challenges; for instance,
the requirement of a high-power energy storage system (ESS) that can satisfy the power requirements
during acceleration and efficiently recover energy during deceleration without the deterioration in the
life cycle and efficiency of the ESS [5,6]. Thus, the practice of using a battery alone as an ESS is highly
vulnerable to the high power demand of the electric vehicle caused by variable driving road and traffic
conditions, which compromises the battery life and performance, and induces battery aging [7–9].

To address this problem, an alternate ESS is required for BEVs to overcome the challenges of the
battery. Supercapacitors (SCs) can be used as a secondary source, which has a higher charging/discharging
efficiency, high power density, and a longer lifespan compared to batteries [10,11]. Figure 1 presents the
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comparison between the power and energy density of different ESSs in a Ragone plot [12]. A hybrid ESS
(HESS) has a combination of two storage elements having high-energy and high-power to increase the
overall specific energy and specific power [13].
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In general, there are three main categories of HESSs, i.e., passive HESS, semi-active HESS, and
fully active HESS [14]. In a passive HESS, different ESSs are connected in parallel to each other without
any converter directly coupled to the DC bus [15]. A passive HESS is very simple and cost-effective,
but there is no control algorithm involved in this system [11]. In contrast, a fully active HESS has
the best control topology because each ESS has its own converter [16,17]. However, this topology
demands a high cost, is heavyweight, has a large size, is less efficient, and has complicated control
circuitry [18]. Compared with the above two topologies, a semi-active HESS is a good tradeoff between
performance and system cost because it involves only one bi-directional DC–DC converter. Because of
these advantages, a semi-active HESS is the preferred topology to use [19,20].

By having two different ESSs, an intelligent and robust energy management system (EMS) is needed.
In the literature, there are two main types of EMS for an HESS: An off-line strategy uses the advance
optimization algorithms, for instance, particle swarm optimization, dynamic programming (DP), and
genetic algorithm [21,22]. The other strategy is the real-time approach, such as rule-based methods, the
model predictive control (MPC) method, and frequency-based methods. The off-line strategy is very
complex, which requires complete load profile information in advance and the backward calculation
process makes this strategy difficult to implement in practical applications [23]. The real-time strategy,
on the other hand, is explicit and very easy to implement in onboard applications [24,25].

Previously, researchers have used different EMSs for hybrid electric vehicles (HEVs) [26–28].
In Santucci et al. [26], an HEV consisted of an HESS and an internal combustion engine that used the
equivalent consumption minimization strategy with an MPC and DP algorithm. Masih et al. [27] used a
similar HEV configuration as discussed in Santucci et al. [26], but the EMS used in their research was a
fuzzy logic controller (FLC) and a DP algorithm was used to increase the battery life cycle. Similarly,
Ansarery et al. [28] used an HEV composed of a fuel cell system and an HESS. A multi-dimensional
DP algorithm was used as the EMS between the fuel cell and the HESS to decrease the hydrogen
consumption. However, few studies aimed at the energy management of the HESS for a pure HEV.
Kailong et al. [29] studied different techniques for a EMS with the discussion of the battery model
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in terms of the state of charge (SOC), the state of health, and the internal temperature of the battery.
Song et al. [18] compared four EMSs, which are the filtrating-based controller, the rule-based controller,
the MPC, and the FLC. The rule-based EMS implemented in References [16,30], which was based on
expert experience, used a rule-based controller considered a load power and the SOC of an HESS to
improve the range and the performance of the electric vehicle (EV). The rule-based method does not
require any prior information about the drive cycle, but it does not consider the frequency components
in load demand, which is very harmful to battery life. Also, these rules were analyzed based on
the initial state of the HESS and cannot precisely reflect the conditions of the system components
after a long period of operation. Therefore, the distribution of energy is an essential factor to ensure
EVs over a long range and also to improve the battery life cycle [31]. Wang et al. [31] proposed an
MPC for different energy sources to achieve the required energy distribution of an EV without prior
knowledge of the drive cycles. Still, an MPC needs a highly accurate model. A nonlinear MPC was
used as an EMS for an HESS in the real-time system and compared with linear MPC and a rule-based
controller [32]. A frequency-based EMS considers the high- and low-frequency components in the load
power demand, and two filters are used to achieve frequency separation [33]. Huang et al. [34] presented
only two cut-off frequencies: the urban driving cycle mode and the highway driving cycle mode in a
frequency-based EMS. Only two frequencies were proposed, i.e., a high frequency for the SC and a low
frequency for the battery. However, the cut-off frequency in these cases is not adaptive and does not
consider the specific changes in load power in different situations. The frequency distribution should
be continuously updated to guarantee real driving conditions. Andersson et al. [35] implemented a
fixed-frequency-based EMS with a proportional controller (FF-P) for the charging control of a SC, but
the SOC of a SC is not strictly controlled and the power allocation does not update with variations in the
drive cycle. Hamid et al. [36] studied an adaptive intelligent EMS for a HEV using FL, but required high
memory for the optimization. Jamila et al. [37] used an adaptive FLC-based filtering strategy, but for
controlling the SC, they used a sliding mode controller, which is a tedious and complicated task for the
optimum sliding surface [38]. References [39,40] used the filtering method for optimizing the sizing of
the electric system without discussing the fluctuation in SC voltage and other battery parameters under
a high transient load current. Shen et al. [41] used the Karush–Kuhn–Tucker condition and a neural
network-based EMS for splitting the load power between the battery and SC using a real-time strategy.
The fixed frequency-filtering-based EMS was suggested, having a predefined drive cycle [42], but with
a fixed cut-off frequency, but the optimal separation of power is not ensured in real driving situations.
To ensure the safety of the EMS with a rapid charging system, the battery temperature and total costs
caused by aging and losses were studied [43,44]. Besides efficiency concerns, the major problem for
real-time applications is to ensure the safe operation of the system. It is essential to actively control
the voltage of the SC according to the variations in the driving cycle to fulfill the requirement for all
possible driving conditions. Therefore, controlling the SC voltage and adaptive frequency distribution
is very important for a reliable, safe, and an efficient system.

This paper proposes a real-time EMS consisting of an adaptive charging controller for a SC and
an adaptive low-pass filter (A-LPF) for a battery–supercapacitor semi-active HESS. The proposed
charging controller uses an adaptive proportional integrator (API) to protect the SC from overcharging.
The A-LPF uses an FLC to generate the optimal power for each source to fulfill a continuous load
power-demand and keep the DC bus voltage constant. The mathematical models of the proposed EMS
for the semi-active HESS were developed and simulated using MATLAB Simulink (2019a, MathWorks,
Natick, MA, USA). Three drive cycles were utilized to validate the proposed technique. The simulation
results of the proposed EMS (A-LPF + API) were compared with an FF-P EMS, an A-LPF with a
proportional integrator derivative (PID) charge controller (PID EMS), and a BEV. The comparative
analysis was carried out for different parameters, such as battery power losses, SOC and the voltage of
the battery, the battery root mean square (RMS) current reduction ratio, and battery temperature.

The rest of the paper is organized into four sections. Section 2 outlines the methodology of the
proposed system. Section 3 presents the simulation results and Section 4 discusses the results. Section 4
concludes the paper.
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2. Methodology

2.1. Modeling

2.1.1. Supercapacitor Modeling

The conventional and simplest equivalent circuit, but still very accurate modeling of a SC, has one
resistance in series and one in parallel with the capacitor [35,45]. Figure 2 represents the equivalent
RC circuit.
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The performance of the SC may be represented by the terminal voltages (VSC) during discharge
and charge with different current rates [46]. In the equivalent circuit, the key components are the
parallel leakage resistance Rp, series resistance Rs, capacitance C, and the variables are the terminal
voltage Vsc, terminal current i, capacitor voltage Vc, capacitor internal current ic, and leakage current
il. The model represents the leakage effects that impact the SC performance in long-term energy
storage [47]. The equivalent series resistance and capacitance is the main component in this equivalent
circuit. The mathematical modeling of the SC is given in Equations (1)–(3) [48]:

Vsc = Vc − i×Rs, (1)

dVc/dt =
−ic
C

, (2)

and the leakage current (il) can be expressed as:

il = Vc/Rp. (3)

The SOC of the SC (SOCsc) is defined as the ratio of the voltage of the SC (Vsc) to its maximum
voltage of SC (Vsc_max). The SOCsc is calculated using [37]:

SOCsc = (Vsc/Vsc_max)
2
× 100. (4)

Table 1 presents the main parameters of the SC model used in this paper.

Table 1. Parameters of the supercapacitor model.

Parameter Values (Unit)

Capacitance (C) 2700 (F)
Series Resistance (Rs) 0.7 (mΩ)
Rated Voltage (Vsc) 2.7 (V)

Series Resistance (Rp) 1 (kΩ)
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2.1.2. Battery Modeling

The battery is the main ESS for an EV, which is connected directly to a DC bus in a semi-active
HESS. The charging and discharging of the battery considerably depends on various parameters, such
as temperature (T) and the SOC of the battery (SOCbat) [35]. The first-order resistor and capacitor (RC)
network, as shown in Figure 3, was used to handle the trade-off between the modeling accuracy and
complexity [49,50]. The Thevenin equivalent circuit base for a simple resistive and capacitive circuit
model with a voltage source was developed using ADVISOR [51,52]. Vocv is the open-circuit voltage,
and Rin is the battery’s inner resistance. For transient behavior, the resistance (Rap) and capacitance
(Cap) were connected as a parallel network. The electrical behavior of the battery can be expressed
using the following equations [53]:

Cap
dVp

dt
+

Vp

Rap
= IL, (5)

Vt = Vocv −Vp − ILRin. (6)
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Using this model, we can compare and calculate the power losses in a BEV and semi-active
HESS. The RMS current gives a rough estimation of the relative ohmic loss of the internal resistance.
The reduction ratio is presented as a percentage below [54]:

Battery current reduction ratio =


√

1
T

∫ T
0 I2

bat × dt√
1
T

∫ T
0 I2

load × dt

× 100 (7)

To calculate the SOCbat variation, the change in charge (∆Q), and the initial SOC (SOCbat(0)) of
the battery is required. For ∆Q, the battery current is integrated as follows [55]:

SOCbat(t) = SOCbat(0) +
∫

1
C
× Ibat × dt. (8)

Generally, the heat generation in the battery can be categorized as a resistive heat and the entropic
heat. In this paper, only the resistive heat (Qgen) was considered for simplicity and it can be expressed
as [56]:

Q
′
gen = (Vocv −Vt) Iload. (9)

After calculating the heat generation within the battery, the temperature rise can be calculated as
follows [57]:

Q
′
gen −Q

′
c =

Energies 2019, 12, x FOR PEER REVIEW 5 of 25 

 

accuracy and complexity [49,50]. The Thevenin equivalent circuit base for a simple resistive and 
capacitive circuit model with a voltage source was developed using ADVISOR [51,52]. 𝑉  is the 
open-circuit voltage, and 𝑅  is the battery’s inner resistance. For transient behavior, the resistance 
(𝑅 ) and capacitance (𝐶 ) were connected as a parallel network. The electrical behavior of the 
battery can be expressed using the following equations [53]: 𝐶 𝑑𝑉𝑑𝑡 + 𝑉𝑅 = 𝐼 , (5) 𝑉 = 𝑉 − 𝑉 − 𝐼 𝑅 . (6) 

Using this model, we can compare and calculate the power losses in a BEV and semi-active 
HESS. The RMS current gives a rough estimation of the relative ohmic loss of the internal resistance. 
The reduction ratio is presented as a percentage below [54]: 

Battery current reduction ratio = 1𝑇 𝐼 × 𝑑𝑡 1𝑇 𝐼 × 𝑑𝑡 × 100 (7) 

 

Figure 3. Schematic diagram of the battery model. 

To calculate the 𝑆𝑂𝐶  variation, the change in charge (Δ𝑄), and the initial SOC (𝑆𝑂𝐶 (0)) of 
the battery is required. For Δ𝑄, the battery current is integrated as follows [55]: 𝑆𝑂𝐶 (𝑡) = 𝑆𝑂𝐶 (0) + 1𝐶 × 𝐼 × 𝑑𝑡. (8) 

Generally, the heat generation in the battery can be categorized as a resistive heat and the entropic 
heat. In this paper, only the resistive heat (𝒬 ) was considered for simplicity and it can be expressed as 
[56]: 𝒬 = (𝑉 − 𝑉 ) 𝐼 . (9) 

After calculating the heat generation within the battery, the temperature rise can be calculated 
as follows [57]: 𝒬 − 𝒬 = 𝓂 𝒞 𝜕Τ𝜕𝓉, (10) 

where 𝓂, 𝒞 , 𝒬 , and 𝒬  are the mass, specific heat capacity, rate of heat generation, and rate of 
convection heat, respectively. Table 2 presents the main parameters of the battery model used in this 
paper. 

2.1.3. Electric Vehicle Model 

CP
∂T
∂

Energies 2019, 12, x FOR PEER REVIEW 5 of 25 

 

accuracy and complexity [49,50]. The Thevenin equivalent circuit base for a simple resistive and 
capacitive circuit model with a voltage source was developed using ADVISOR [51,52]. 𝑉  is the 
open-circuit voltage, and 𝑅  is the battery’s inner resistance. For transient behavior, the resistance 
(𝑅 ) and capacitance (𝐶 ) were connected as a parallel network. The electrical behavior of the 
battery can be expressed using the following equations [53]: 𝐶 𝑑𝑉𝑑𝑡 + 𝑉𝑅 = 𝐼 , (5) 𝑉 = 𝑉 − 𝑉 − 𝐼 𝑅 . (6) 

Using this model, we can compare and calculate the power losses in a BEV and semi-active 
HESS. The RMS current gives a rough estimation of the relative ohmic loss of the internal resistance. 
The reduction ratio is presented as a percentage below [54]: 

Battery current reduction ratio = 1𝑇 𝐼 × 𝑑𝑡 1𝑇 𝐼 × 𝑑𝑡 × 100 (7) 

 

Figure 3. Schematic diagram of the battery model. 

To calculate the 𝑆𝑂𝐶  variation, the change in charge (Δ𝑄), and the initial SOC (𝑆𝑂𝐶 (0)) of 
the battery is required. For Δ𝑄, the battery current is integrated as follows [55]: 𝑆𝑂𝐶 (𝑡) = 𝑆𝑂𝐶 (0) + 1𝐶 × 𝐼 × 𝑑𝑡. (8) 

Generally, the heat generation in the battery can be categorized as a resistive heat and the entropic 
heat. In this paper, only the resistive heat (𝒬 ) was considered for simplicity and it can be expressed as 
[56]: 𝒬 = (𝑉 − 𝑉 ) 𝐼 . (9) 

After calculating the heat generation within the battery, the temperature rise can be calculated 
as follows [57]: 𝒬 − 𝒬 = 𝓂 𝒞 𝜕Τ𝜕𝓉, (10) 

where 𝓂, 𝒞 , 𝒬 , and 𝒬  are the mass, specific heat capacity, rate of heat generation, and rate of 
convection heat, respectively. Table 2 presents the main parameters of the battery model used in this 
paper. 

2.1.3. Electric Vehicle Model 

, (10)



Energies 2019, 12, 4662 6 of 24

where
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, CP, Q′gen, and Q′c are the mass, specific heat capacity, rate of heat generation, and rate of
convection heat, respectively. Table 2 presents the main parameters of the battery model used in
this paper.

Table 2. Modeled battery parameters.

Parameter Values (Unit)

Single Cell Voltage (Vt) 3.6 (V)
Internal Resistance (Rin) 8.9 (mΩ)

Capacitance (Cap) 34.9818 (F)
Parallel Resistance (Rap) 24.1 (mΩ)

2.1.3. Electric Vehicle Model

Table 3 presents the main parameters of the practical EV model used in this paper [58]. The DC
bus voltage (VDC) was assumed to be constant, and the inverter efficiency was considered to be 90%.
The force from the road grade was zero as the road gradient was zero. The load power of the EV is as
follows [59]:

Pload =

(
v
η

)
×

m +
jwheel

r2
wheel

dv
dt

+ Fr + Fd

. (11)

The tire rolling resistance Fr is:

Fr = Cr ×m× g× cosθ. (12)

The drag force Fd can be calculated using:

Fd = 0.5× ρ×A f ×Cd × v2. (13)

As the DC bus/battery voltage was almost constant, load current is given as [60]:

IL =
Pload
VDC

. (14)

Table 3. The key parameters of an electric vehicle.

EV Characteristic (Symbol) Values (Unit)

Vehicle mass (m) 500 (kg)
Inertia ( jwheel) 0.5 (kg·m2)

Rolling resistance coefficient (Cr) 0.015
Rolling resistance coefficient (Cr) 1.25 (kg·m−3)

Aerodynamic drag coefficient (Cd) 0.51
Front Area (A f ) 2.4 (m2)

Wheel radius (rwheel) 0.26 (m)
Road grade (θ) 0 (◦)
Efficiency (η) 95 (%)

Vehicle Speed (v) NYCC, Artemis, and NY Comp (km/h)

2.2. The Proposed Strategy of the Energy Management System

The proposed strategy used two adaptive controller-based EMSs for the battery–supercapacitor
semi-active HESS. The EMS contained an API controller, which protected against deep discharging and
over-charging, and the A-LPF-based controller, which was responsible for providing optimal power
sharing according to the SOCSC and load current, as shown in Figure 4. The Ibas_corr was the function
that adjusted the battery current when the DC–DC converter reached its maximum current.
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2.2.1. Fuzzy Logic Controller Architecture

Looking at the hybrid EMS as a nonlinear and time-varying system, a fuzzy logic controller
was the most logical strategy for the problem. The FLC was classified into four parts, as shown in
Figure 5 [61,62]. (1) Fuzzifier: In a fuzzifier, linguistic fuzzy sets are obtained from the true value
of the membership function. (2) Fuzzy rule base: the fuzzy rule base is designed from professional
experience and controls the system operation. (3) Fuzzy interface engine: the fuzzy linguistic input
is transformed into a fuzzy linguistic output with respect to the controlled law stated in the fuzzy
rule set. (4) Defuzzifier: the linguistic fuzzy set is converted to the true value using the membership
function. The control signal is the control output of the FLC. It collects the system performance,
matches it with the reference crisp input x(t), and decides what the system input y(t) would be to
assure performance objectives.
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2.2.2. The Adaptive Charging Controller for SC

To operate the HESS during long drive cycles and steady-state situations, the SC should be charged
using a low-power load. After every drive cycle, the charging must guarantee that the final voltage of
the SC will be close to the initial SC voltage. SC’s cells are very susceptible to over- and under-voltages,
which require special protection in an HESS [63]. The charge of the SC is not allowed to go down below
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70% to 50% of the maximum voltage [18,64]. Andersson et al. [54] use a proportional controller, but it
did not update according to the drive cycle. For this purpose, we used the API controller. During low
or no-load currents, the battery charged the SC to a specified value using an API controller with a fixed
reference voltage (VSC_ref). This controller was used to control the voltage of the SC and create margins
for regenerative braking. The battery will charge the SC if the voltage of SC is very low (undercharging)
and will make the SC current equal to zero until braking or deceleration. Then the overall discharge
current of the battery will be the combination of the low-pass filter current and the charging current.

Figure 6 represents API, in which K1 and K2 are the tuning gains for the PI controller. According to
the error µ(t), the desired PI controller performance is improved by updating the gains. The difference
between the VSC_ref and VSC was adapted using an FLC for the desired charging performance.
The linguistic variables are small, medium, and large, as shown in Figure 7. For the PI controller to be
adaptive using fuzzy rules: If

∣∣∣µ(t)∣∣∣ is small, then K1 is large, and K2 is medium; if
∣∣∣µ(t)∣∣∣ is medium,

then K1 is large, and K2 is small; and if
∣∣∣µ(t)∣∣∣ is large, then K1 and K2 are large.
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The Gaussian membership function was utilized in the rules, which depends on two variables,
namely the variance σi or standard deviation and center
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The defuzzied output of the fuzzy system is fed as the gain (KP, Ki) to the PI. Thus, the PI controller
is mathematically defined as [65]:
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ν∗sc(PI) = KP µ(t) + Ki

∫
µ(t)d(t). (16)

where µ(t) is the controller input, ν∗sc is the controller output, and KP and Ki are the controller gains,
respectively. As the gains in the PI do not change, they need to be adapted according to the system.
In order to make the PI controller adaptive, the controller uses the µ(t) signal as an input for the gain
parameters KP and Ki. The FLC has one input (

∣∣∣µ(t)∣∣∣) and two output fuzzy variables U1 and U2,
respectively. The outputs U1 and U2 are obtained using the center of gravity method of defuzzification.
Here, U1 and U2 are the fuzzy controller output for the gains K1 and K2, respectively. Hence, the
adaptation of Equation (16) using the API controller is mathematically defined as [66]:

ν∗sc(API) = U1K1 µ(t) + U2K2

∫
µ(t)d(t). (17)

2.2.3. Adaptative Low Pass Filtering

In this controller, the demanded current is divided into a low and a high-frequency component
using a low-pass filter (LPF). The transfer function of the LPF is as follows [67]:

H(S) =
1

1 + s
2×π× fc

. (18)

The adaptive FLC is used to enhance the robustness of the variation of drive cycles. A-LPF is
used to divert the high current in real-time during acceleration and deceleration from the battery to the
SC using the DC–DC converter regardless of the driving condition. To make the LPF adaptive, the
cut-off frequency (fc) is continuously updated according to the load current and SOCSC in the FLC
circuit, as shown in Figure 8. The input variables of the FLC are the SOCSC and the load current (IL),
and output is the fc. Figure 9 presents the membership function of two inputs and the output variable
of the FLC. The linguistic variables are very low (VL), low (L), medium (M), and high (H) for fc and
SOCsc fuzzy variables and negative (N), positive (P), and zero (Z) are the linguistic variables for the
input variable IL [37]. In defuzzification, to transform the fuzzy outcome to a crisp output, a centroid
defuzzification and min-max fuzzy inference were used [62]. During acceleration, the IL is P, and if
SOCSC is H, then maximum power will be supplied by the SC, meaning fc should be at the minimum
frequency. If SOCSC decreases to VL, fc should increase. Moreover, in deceleration or braking, the IL is
N, and if SOCSC is VL, then most of the regeneration power should be supplied to the SC pack for this,
and fc will be VL. If SOCSC reaches H, then fc should increase to H. When IL is very low or zero (IL is Z),
i.e., when EV is moving at a constant low speed, then the load current will be supplied by the battery.Energies 2019, 12, x FOR PEER REVIEW 10 of 25 
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The A-LPF output is the optimal battery current, which is directly related to the fc of the FLC.
By using an adaptive method, this frequency can choose to minimize the battery current by intelligently
deviating the load current to SC. Figure 10 shows the output surface view of the FLC for an LPF.Energies 2019, 12, x FOR PEER REVIEW 11 of 25 
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Figure 10. The fuzzy logic controller surface view of the adaptive low-pass filter.

3. Results

To evaluate the dynamic response of the proposed methodology, three standard drive cycles—the
New York City cycle (NYCC), the Artemis urban (AU) cycle, and the New York composite cycle (NY
Comp)—were analyzed. These cycles cover different speed ranges and have different power ranges for
the same vehicle.

Figures 11–13 illustrate the simulation results of the proposed EMS using NYCC, AU, and NY
Comp, respectively. Figure 11a, Figure 12a, and Figure 13a represent the speed profiles of the three
drive cycles. Figure 11b, Figure 12b, and Figure 13b show the power profiles of the load, SC, and
the battery in the proposed system. The power profile indicates that for high power demand, the SC
provides most of the power.
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Figure 11c, Figure 12c, and Figure 13c show the battery and SC voltages of the proposed EMS.
The voltage of SC in the proposed system remains the same as the initial voltage at the end of every
drive cycle, which indicates the stability of the proposed system. Figure 11d, Figure 12d, and Figure 13d
represent an adaptation of the frequency in three drive cycles, which were according to load current
and SOCSC in the proposed system.

To validate the proposed strategy, the proposed EMS was compared with the online FF-P EMS,
A-LPF with a PID EMS, and a BEV, using the three drive cycles. Figure 14 shows the SOCSC in the
proposed EMS and FF-P EMS. The SOCSC in the proposed system was in the limit regardless of the
harsh driving conditions of all three driving cycles, as discussed in Section 2.2.1. It did not go below
70% in all three driving conditions, which is an optimum limit [46]. Figure 14 shows that overcharging
occurred in all three driving conditions (the SOCSC crossed 100%) in the FF-P EMS and PID EMS
because the frequency was fixed and the charging of the SC was not properly controlled for using
different standard drive cycles [35,54]. It was concluded that the fixed-frequency splitting used in the
FF-P EMS and not properly controlling for the SOCSC in the PID EMS led to overcharging, which is
very dangerous for EVs in terms of the safety of the system.
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Figure 15 compares the SOC of the battery of the proposed EMS, and the FF-P EMS, PID EMS,
and BEV. It shows that the battery in the proposed system had a smoother and higher battery SOC
compared to other EMSs. The final SOC battery value of the proposed EMS was higher than the other
three systems. The results of the SOC variations are shown in Figure A1 of Appendix A.
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Figure 16 represents the battery voltages of the proposed EMS, and the FF-P EMS, PID EMS, and
BEV. It shows that the battery in the proposed method was smoother and less variable compared to the
other systems, which is very useful for the battery life cycle. The battery or bus voltage in the proposed
strategy was almost constant compared to the other three strategies.
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Figure 16. The battery voltages of the proposed EMS, FF-P EMS, PID-EMS, and BEV: (a) battery voltages
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Figure 17 presents the battery power losses in the proposed EMS, and the FF-P EMS, PID EMS,
and BEV. The graphs clearly show the proposed methodology significantly reduced power losses
compared to the other three methods.
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Figure 17. Simulation results of the battery power losses of the proposed EMS compared with the FF-P
EMS, PID-EMS, and BEV: (a) battery losses in the NYCC, (b) battery losses in the AU cycle, and (c)
battery losses in the NY Comp drive cycle.

Figure 18 shows the battery temperature of the proposed EMS, and the PID EMS, FF-P EMS, and
BEV for the three drive cycles. The battery temperature of the proposed method was lower than the
other systems, which is very helpful for the battery life cycle.
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Figure 18. Simulation results of battery temperature of the proposed EMS, and the PID EMS, FF-P EMS,
and BEV: (a) battery temperature in the NYCC; (b) battery temperature in the AU cycle, and (c) battery
temperature in the NY Comp drive cycle.

The power losses in the battery of the four strategies (the proposed EMS, and the FF-P EMS, PID
EMS, and BEV) were compared. The battery power losses in the BEV was the highest. The battery
power loss ratio in the proposed EMS was lower than the FF-P EMS and PID EMS, as presented in
Table 4. The charging performance for the proposed system is the relation between the initial voltage
of SC and the average SC’s voltage during each cycle. To ensure the steady state of the system, the
proposed model was simulated for four repeated cycles, and the charging performance was calculated
after each drive cycle, as shown in Table 2. All three drive cycles showed an almost constant charging
performance value, i.e., 98%, 95%, and 96%, respectively.
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Table 4. The charging performance of the proposed method and the battery power loss ratio of the
proposed system, FF-P EMS, and PID EMS compared to the BEV.

Drive Cycles
Battery Power

Loss Ratio of the
Proposed System

Battery Power
Loss Ratio of the

FF-P EMS

Battery Power
Loss Ratio of the

PID EMS

Charge Performance
of the Proposed

System

NYCC 14% 18% 19% 98%, 98%, 98%, 98%
NY Comp 25% 30% 26% 96%, 95%, 95%, 95%
AU cycle 18% 19% 19% 96%, 96%, 96%, 96 %

The battery RMS current gives a rough estimation of the relative ohmic loss of the battery’s
internal resistance. This parameter was evaluated by comparing the battery RMS current to the load
current using Equation (7). Figure 19 compares the battery current reduction ratio and total efficiency
of the proposed EMS with the FF-P EMS and PID EMS for the three drive cycles.Energies 2019, 12, x FOR PEER REVIEW 21 of 25 
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4. Discussion

The proposed EMS can prolong the battery lifetime by filtering the high-frequency power demand
into the supercapacitor. Figures 11–13 confirm that the power trajectories of the battery were smoother
compared to the SC and total load power. The results of the three drive cycles show that the proposed
strategy prolonged the battery life significantly by reducing the peak charge/discharge power stress on
the battery. The aim of adaptive frequency varying was the maximization of the effectiveness of the SC
bank utilization. All the regenerative energy returned to the SC after considering the SOCSC, and it
enhanced the energy efficiency of the proposed system. From Figure 14, it is clear that the FF-P EMS
and PID EMSs did not adapt to the change in the load power and SOC of the SC, causing overcharging
during regenerative braking; however, in the proposed system, this can be successfully maintained
within suitable limits and does not overcharge, which improves the reliability of the system. The SOC
consumption of battery was significantly lowered compared to the FF-P EMS, PID EMS, and BEV given
in Figure 15, which aids in extending the driving range of a HEV. Figure 16 shows the battery/DC
bus voltage was almost constant, which is very important for transferring power to the load. As the
performance and lifetime of batteries are strongly dependent on losses and temperature, Figures 17
and 18 confirmed the power losses and temperature in the proposed system was lower than the other
three methods. Similarly, the battery RMS current is a reasonable demonstration of the aging parameters.
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The current reduction ratio in the proposed system was less than the FF-P EMS and PID EMS for all three
driving cycles. Similarly, the total efficiency of the proposed system was higher than the FF-P EMS and
PID EMS, as shown in Figure 19. To ensure the steady state, the proposed model was simulated for four
repeated cycles and the charge performance of the HESS was calculated to be 98%, 95%, and 96% for the
three drive cycles, as shown in Table 2. These results display the stability of the proposed strategy.

5. Conclusions

An energy management system for a semi-active hybrid electric vehicle using an adaptive low-pass
filter and an adaptive charging controller was implemented in this study. The charge controller was
comprised of an adaptive PI controller, which ensured the safe utilization of the SC and protected it
from overcharging. For optimal power-sharing between the battery and supercapacitor, an FLC-based
low-pass filter was used. The stress on the battery was reduced by deviating the peak power of the
load to the SC. For a short period of time, the high regenerative braking current was effectively fed to
the SC for its charging. To verify the proposed EMS, three standard drive cycles (NYCC, AU cycle, and
NY Comp) were used and analyzed in terms of a comparison between the proposed system and the
FF-P EMS, PID EMS, and BEV. The simulation results confirmed that the proposed technique provided
less variation in voltage, a small increase in battery temperature, a higher battery SOC, lower battery
power losses, a higher efficiency, a reduction in the battery RMS current, and a controlled SOC of the
SC as compared to the others. Also, the charging controller value of the SC displayed the steady-state
charge performance of the SC for all three drive cycles.

In the future, the proposed methodology can be implemented on hardware using an FPGA or
DSP TMS3200F28xx Kit and a dynamometer. The dSPACE and LabVIEW can be used for the digital
signal controller board and data acquisition system. The controller code will be generated and will
compile directly from the MATLAB Simulink and will then be downloaded to the dSPACE.
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Appendix A

Figure A1 shows the results of proposed methodology under different SOCs.
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In the future, the proposed methodology can be implemented on hardware using an FPGA or 
DSP TMS3200F28xx Kit and a dynamometer. The dSPACE and LabVIEW can be used for the digital 
signal controller board and data acquisition system. The controller code will be generated and will 
compile directly from the MATLAB Simulink and will then be downloaded to the dSPACE. 
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Figure A1 shows the results of proposed methodology under different SOCs. 
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