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Abstract: Recently, there have been frequent fluctuations in the wholesale prices of electricity
following the increased penetration of renewable energy sources. Therefore, retailers face price risks
caused by differences between wholesale prices and retail rates. As a hedging against price risk,
retailers can utilize critical peak pricing (CPP) in a price-based program. This study proposes a novel
multi-stage stochastic programming (MSSP) model for a retailer with self-generation photovoltaic
facility to optimize both its bidding strategy and the CPP operation, in the face of several uncertainties.
Using MSSP, decisions can be determined sequentially with realization of the uncertainties over time.
Furthermore, to ensure a global optimum, a mixed integer non-linear programming is transformed
into mixed integer linear programming through three linearization steps. In a numerical simulation,
the effectiveness of the proposed MSSP model is compared with that of a mean-value deterministic
model based on a rolling horizon method. We also investigate the optimal strategy of a retailer
by changing various input parameters and perform a sensitivity analysis to assess the impacts of
different uncertain parameters on the retailer’s profit. Finally, the effect of the energy storage system
on the proposed optimization problem is investigated.

Keywords: critical peak pricing; demand response; retailer; multi-stage stochastic programming;
rolling horizon method

1. Introduction

Recently, renewable energy sources (RESs) have been introduced to the power system of several
countries, supported by political investment. However, fluctuation in wholesale electricity prices has
increased because of the intermittent nature of generation from RESs [1]. By contrast, the retail market
generally offers flat pricing or block pricing, because customers cannot continuously respond to price
fluctuations [2]. Therefore, retailers who secure energy in the wholesale market to serve the demand of
customers face price risks caused by the difference between wholesale prices and retail rates. This is a
challenge for retailers trying to maximize profits [3].

To hedge the price risk, retailers can undertake several strategies such as power purchase
agreements, optimizing self-generation portfolio, and financial contracts on the secondary market.
Among the hedging methods, implementing an electricity sales plan in the retail market is generally the
adopted method in restructured electricity markets [4]. This can be accomplished through the optimal
operation of a demand response program, which is divided into two categories: Incentive-based
programs (IBPs) and price-based programs (PBPs) [5,6]. Using IBPs, retailers provide incentive
payments to customers depending on the amount of reduced load. To measure demand reduction,
retailers should determine the customer baseline load (CBL), which varies significantly depending
on the evaluation method. Therefore, a fundamental weakness of the IBP is that there is no reliable
baseline [7]. By contrast, the PBP is based on dynamic pricing, with higher rates during peak periods
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than off-peak periods. Customers participating in a PBP voluntarily reduce their power consumption
in response to time-varying price signals. Pricing methods are typically divided into three types:
Real-time pricing (RTP), time-of-use (TOU) pricing, and critical peak pricing (CPP) [5]. RTP is the most
economically efficient pricing to hedge against price risk because retail rates can directly reflect the
variations in wholesale prices [7]. However, customers find it difficult to participate in RTP because of
continuously changing rates. Compared to RTP, TOU is easily accepted by customers because it has
a simple rate structure, which divides a day into several blocks and charges a constant rate in each
block. With TOU, however, it is difficult to induce customers to reduce demand during critical peak
periods [8]. By contrast, CPP has several advantages over the other two pricing models. For example,
CPP can be easily implemented because it is based on the rate structure of TOU [9]. Likewise, it can
enhance a customer’s price responsiveness by applying an extremely high rate during critical peak
periods [10].

Although several studies analyze the responses of various demand types under CPP with
experimental data [11–16], only a few have investigated the implementation of CPP. In Joo et al. [17],
a retailer decides, using a method similar to a swing option problem, when to call a critical event to
maximize profit. Park et al. [18] proposed guidelines for designing various parameters in CPP, such
as optimal peak rates, event duration, and number of events. In addition, the optimal schedule of
critical events was determined. Park et al. [19] investigated the impact of the payback phenomenon
on the optimal schedule of critical events and the optimal peak rate. Zhang et al. [20] proposed a
decision model to determine critical events by considering the interests of both customers and retailers.
This model is deterministically re-calculated daily based on day-ahead price updates for the remaining
scheduling horizon. In Chen et al. [21], dynamic thresholds to trigger critical events are computed
daily through dynamic programming based on probability distributions of temperature and price.
Moreover, Zhang [22] used a stochastic approach to decide the optimal schedule of critical events
by formulating an objective function as a mixed integer non-linear programming (MINLP) problem.
However, previous studies have not fully analyzed the impact of balancing cost on the CPP operation.

By contrast, in most power markets, the balancing cost is allocated not only to the generation
company, but also to the retailer to motivate each to reduce their own variability and uncertainty [23].
The power exchange for frequency control (PXFC) market first proposed in [24] has been investigated
in several studies to evaluate the optimal strategy of market participants with balancing cost [23,25,26].
In a PXFC market, the balancing cost is allocated to each retailer based on a cost-causality principle in
the form of a band capacity purchase [25]. Therefore, we assume the PXFC market circumstance to
consider the impact of the balancing cost on strategy of retailer.

In this study, we propose an optimal strategy for a retailer who owns a self-generation facility to
maximize its expected profit. The problem is formulated to optimize both the bidding schedule in
the PXFC market and the CPP operation in the retail market. Unlike previous works, we introduce a
multi-stage stochastic problem (MSSP), incorporating the retailer’s uncertainties such as electricity
price, demand, and photovoltaic (PV) generation, represented by multiple scenarios. In contrast
to a mean-value deterministic stochastic model, MSSP can make decisions sequentially with the
uncertainties revealed over periods. Thus, successive decisions can be modified through future
observation of uncertainties. Based on the rolling horizon (RH) method, we identify the effectiveness
of the proposed MSSP model compared with that of a mean-value deterministic model. Moreover,
the MINLP is reformulated as a mixed integer linear problem (MILP) to ensure a global optimum.

The contributions and novelty of the proposed method can be summarized as follows: (1) We
suggest an optimization problem to determine the bidding strategy and schedule critical events to
maximize the expected profit of retailers considering balancing costs; (2) we develop an MSSP for
decisions to be taken recursively with the realization of uncertainties; (3) we linearize the non-linear
problem with a binary variable; (4) we analyze the impact of various parameters on the retailer’s
optimal strategy and profit.
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The rest of the paper is organized as follows. Section 2 introduces the background of this
study, including the PXFC market, CPP, and MSSP based on the RH method. Section 3 presents the
mathematical formulation of MSSP and the proposed algorithm based on the RH method. Section 4
provides a numerical simulation and discusses the results obtained from various case studies. Finally,
Section 5 provides the concluding remarks and future research directions.

2. Background

2.1. The PXFC Market

In the PXFC market, all market participants, including generation companies and retailers, bid for
energy and a band capacity on an hourly basis. Energy is exchanged based on anticipated supply and
demand, as in a conventional day-ahead energy market. In addition, market participants purchase
band capacity as a reserve capacity to prepare for maximum deviation from the energy. In this respect,
balancing cost is allocated in the cost-causality principle. Similar as the PXFC market, Australian Energy
Market Operator (AEMO) allocates balancing cost based on the cost-causality principle by utilizing
a performance index, indicating the impact of power deviation of each participant on frequency
deviation [27]. Figure 1 shows an example of energy and band capacity bids in a PXFC market.
Specifically, the reserve capacity used for frequency control is determined in the form of a band capacity
purchase in the PXFC market. If the imbalance of each market participant exceeds the band capacity,
a penalty price is imposed on the amount of violation. This makes all market participants try to meet
their energy schedule. In addition, based on the amount of band capacities purchased from market
participants, the system operator estimates the total power imbalance in the system to procure an
appropriate amount of reserve [25].
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Figure 1. Example of energy and a band capacity bid in the power exchange for frequency control market.

In this study, the retailer’s balancing cost is represented as the purchasing cost of a band capacity
in the PXFC market. Consequently, the PXFC market allows retailers to plan an optimal strategy in
advance, reflecting their anticipated imbalance.

2.2. Description of CPP

The rate structure in CPP is designed to encourage reduced consumption by triggering critical
events during periods of high wholesale market prices. When a critical event occurs, a pre-specified
high retail price is imposed on the customer. Retailers can hedge against price risk caused by a flat
rate in the retail market [18]. However, critical events are limited to a certain number of hours per
year or month [9]. Therefore, retailers should carefully determine when to issue a critical event to
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maximize profit. From the data collected by the U.S. Energy Information Administration, CPP is
typically combined with a TOU rate, and a critical peak rate can be 3–10 times the off-peak rate [9].
Figure 2 illustrates the residential CPP provided by the Wisconsin Public Service (WPS), which provides
electricity and gas in northeast and central Wisconsin [28].
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Figure 2. Practical example of residential critical peak pricing implemented by the Wisconsin Public
Service: (a) Winter and (b) summer.

This example of CPP is also combined with a general TOU structure, in which on-peak and
off-peak hours vary with season and day of the week [9]. For example, in winter season, on-peak
hours are 7 a.m.–12 p.m. and 5 a.m.–8 p.m., from Monday to Friday, except holidays. As shown in
Table 1, the on-peak rate, off-peak-rate, and critical peak rate are 0.17933 $/kWh, 0.0607 $/kWh, and
1.002 $/kWh, respectively. The critical peak rate is nearly 5.8 times higher than the off-peak rate. WPS
can trigger 50 h of critical events per year and events last between 2 h and 8 h. In addition, customers
are notified at least 1 h in advance.

Table 1. Critical peak pricing rates of Wisconsin Public Service based on time of day.

Classification Sub-Classification Winter (October–April) Summer (May–September)

On-peak
Rate 0.17933 $/kWh

Hours
Monday–Friday, except holidays

7 a.m.–12 p.m. and 5
p.m.–8 p.m. 11 a.m.–8 p.m.

Off-peak Rate 0.0607 $/kWh
Hours All hours not listed as on-peak hours

Critical peak Rate 1.0002 $/kWh
Hours Vary

Another example of residential CPP is provided by Minnesota Power, where critical peak hours
are between 12:00 noon and 3:00 p.m. in summer and between 5:00 p.m. and 8:00 p.m. in winter [29].
In other words, retailers only need to determine the day when the critical event is triggered, since
critical peak hours are fixed and last for 3 h. In addition, if there is a serious emergency from the
Midcontinent Independent System Operator, critical events can be issued at any time and last up to 8 h.
Furthermore, the notification of a standard critical event takes place at 8:00 p.m. the day before event
day and at least four hours prior to emergency events.

Consequently, CPP has a variety of pricing structures to handle emergencies in the power system
and increase the profit of retailers. Therefore, retailers can exploit CPP by considering their own
strategy or power market circumstance.

2.3. Overview of MSSP and RH Method

MSSP is usually used to solve planning problems such as those relating to transmission networks
or transportation planning, handling sequential decisions under uncertainties at different time horizons
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(stages) [30]. In a multi-stage stochastic model, decisions can be made recursively with the gradual
realization of uncertainties over time [31]. In this study, the RH method is exploited for numerical
simulation of the problem. Figure 3 shows the concept of an RH method for MSSP.Energies 2019, 12, 4658 5 of 20 
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The RH method is a reactive method that solves sub-problems iteratively by moving the
optimization horizon forward with every iteration [32]. As shown in Figure 3, the original problem is
decomposed into sub-problems and each sub-problem is solved successively through a scheduling
horizon. A rolling period is defined as a period when input parameters associated with uncertainties
are updated after the arrival of new information. The rolling period can consist of a multiple number of
time steps [33]. Therefore, the forecast data or most recent market information are available to largely
reduce uncertainties [34]. In addition, once solutions for a sub-problem are obtained, variables for the
previous scheduling horizon are fixed for all subsequent sub-problems. This also helps reduce the
complexity of the problem.

3. Mathematical Formulation

3.1. Objective Function

The objective function of a retailer is to maximize expected profit by optimally bidding in the
PXFC market and optimally operating CPP in the retail market. In the PXFC market, a retailer should
purchase anticipated demand of customers and the maximum deviation from the anticipated value
for dealing with uncertainties. In addition, a retailer sells energy to customers with CPP, which is the
retail rate, and decides when to call critical events. Therefore, the profit of a retailer consists of the
difference between the revenue from the sale of energy to customers in the retail market and its cost in
the PXFC market. In addition, uncertainties such as electricity price, demand, and generation from
PV are represented by multiple scenarios. Specifically, the mathematical formulation of the objective
function is as follows:

max
us,t,Es,t,BDs,t

[
Ns∑

s=1
ps

Nt∑
t=1
{us,tρCPPDCPP

s,t + (1−us,t)ρ0D0
s,t}

−

Ns∑
s=1

ps
Nt∑

t=1
{us,tρE

s,tEs,t + (1− us,t)ρE
s,tEs,t}

−

Ns∑
s=1

ps
Nt∑

t=1
{(us,tρBD

s,t BDs,t + (1− us,t)ρBD
s,t BDs,t}

−

Ns∑
s=1

ps
Nt∑

t=1
{us,tICPP

s,t + (1− us,t)I0
s,t}]

(1)

In this study, we assume two rates in CPP to simplify the problem, as in other works [17–19].
The first term in Equation (1) denotes the revenue from selling electricity with CPP to the customers.
The next three terms represent purchasing cost of energy, purchasing cost of band capacity, and penalty
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cost in the PXFC market, respectively. Es,t, BDs,t, and us,t are decision variables, which are bidding
amount of energy and band capacity in the PXFC market and triggering time of the critical event in the
retail market, respectively. The penalty cost function with and without a critical event is defined in
Equations (2) and (3). ∆ECPP

s,t and ∆E0
s,t are energy imbalance, respectively, with and without a critical

event, which can occur both in the upward and downward directions. Therefore, if the absolute value
of the imbalance exceeds the purchased band capacity, a penalty cost is imposed.

ICPP
s,t = max(0,ρP(

∣∣∣∆ECPP
s,t

∣∣∣− BDs,t)), ∀s ∈ Ns, ∀t ∈ Nt, (2)

I0
s,t = max(0,ρP(

∣∣∣∆E0
s,t

∣∣∣− BDs,t)), ∀s ∈ Ns, ∀t ∈ Nt. (3)

3.2. Constraints

3.2.1. Demand Reduction with Critical Event

When a retailer triggers a critical event, demand is reduced in response to the variation in price.
In this study, we use the following demand reduction model, as suggested by Park et al. [18].

DCPP
s,t = D0

s,t{1 + β(
ρCPP

ρ0 − 1)}, ∀s ∈ Ns, ∀t ∈ Nt (4)

where β is the price elasticity of the customer; it has a negative value because demand decreases with
an increase in price. As described in Equation (4), customers change consumption when the price
moves from ρ0 to ρCPP. The value of price elasticity experimented in the California Statewide Pricing
Pilot ranges from −0.04 to −0.03 under CPP [35].

3.2.2. Energy Imbalance

These constraints refer to the energy imbalance with and without a critical event. Energy imbalance
occurs when the bidding amount of energy in the PXFC market differs from the real-time energy in
scenario s at time t, as expressed in Equations (5) and (6). The self-generation PV facility in this study
is assumed as a behind-the-meter resource consistent with previous studies [36,37]. Therefore, for each
scenario and time, the real-time energy is net load demand defined as the difference between the total
customers’ demand and the generation of PV resources. Also, for each scenario and time, the real-time
energy is the difference between the demand and the generation of PV resources. Theses constraints
are described in Equations (7) and (8).

∆ECPP
s,t = Es,t −QCPP

s,t , ∀s ∈ Ns, ∀t ∈ Nt (5)

∆E0
s,t = Es,t −Q0

s,t, ∀s ∈ Ns, ∀t ∈ Nt, (6)

QCPP
s,t = DCPP

s,t − Ps,t, ∀s ∈ Ns, ∀t ∈ Nt (7)

Q0
s,t = D0

s,t − Ps,t, ∀s ∈ Ns, ∀t ∈ Nt. (8)

3.2.3. Critical Event

The constraints on a critical event consist of the maximum total critical event number, maximum
critical event duration, and minimum interval between successive critical events. These constraints are
necessary because frequent triggering of a critical event can cause inconvenience of customers and
increase their electricity costs. The specific constraints are given as follows:
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Maximum total critical event number (TCPP)

Nt∑
t=1

us,t ≤ TCPP, ∀s ∈ Ns, ∀t ∈ Nt (9)

Maximum critical event duration (DCPP)

k+DCPP∑
t=k

us,t ≤ DCPP, ∀s ∈ Ns, ∀t ∈ Nt, ∀k ∈ {1, 2, · · · , Nt −DCPP} (10)

Minimum interval between successive critical events (SCPP)

k+SCPP−1∑
t=k

(1− us,t) ≥ SCPP(us,k−1 − us,k), ∀s ∈ Ns, ∀t ∈ Nt, ∀k ∈ {1, 2, · · · , Nt − SCPP + 1}, (11)

Nt∑
t=k

(1− us,t) ≥ (Nt − k + 1)(us,k−1 − us,k), ∀s ∈ Ns, ∀t ∈ Nt, ∀k ∈ {Nt − ICPP + 2, · · · , Nt}. (12)

The total number of critical events is limited to TCPP in each scenario s, as described in Equation (9).
As for Equation (10), the duration of critical events is limited up to DCPP hours. In addition,
the constraint on SCPP is similar to the minimum down time constraint in the unit commitment
problem. The constraint in Equation (11) prevents triggering of a critical event for at least SCPP hours,
once it is issued. In addition, the constraint in Equation (12) prevents the critical event until the end
of the scheduling horizon if it is issued during the final SCPP−1 period in the scheduling horizon.
In Equations (9)–(12), us,t = 0 is assumed for ∀s∈Ns and t ≤ 0.

3.2.4. Nonanticipativity

Nonanticipativity constraints in the MSSP model ensure that the decisions, taken at a specific stage,
depend only on the information available up to that stage, but are not influenced by future observations.

us,t = us′,t, ∀s, s′ ∈ Ns, s , s′ , f or which ξs,[t] = ξs′,[t], (13)

Es,t = Es′,t, ∀s, s′ ∈ Ns, s , s′, f or which ξs,[t] = ξs′,[t], (14)

BDs,t = BDs′,t, ∀s, s′ ∈ Ns, s , s′, f or which ξs,[t] = ξs′,[t] (15)

3.3. Proposed Algorithm with the RH Method

The RH method is used to simulate MSSP formulated in this study. Figure 4 shows the algorithm
that applies the RH method to MSSP. In the initialization step, given the initial scheduling horizon (Nt)
and rolling period (Nd), the total iteration number (itot) is calculated as a value of Nt divided by Nd.
In the next step, the uncertain parameters are updated with the new information. For example, in most
power markets, electricity prices are publicly announced in day-ahead market on an hourly basis [38].
Therefore, by setting Nd as 24 h, the uncertainty of electricity price is largely reduced. Then, in the
optimization step, each sub-problem is formulated, deterministically with the updated information on
the rolling period and stochastically with the scenarios in the rest of the scheduling horizon after the
rolling period [39]. After a sub-problem is solved, we fix the values of ut, Et, and BDt during the rolling
period. Then, in the modification step, the critical event constraints are revised, since the successive
sub-problem should reflect the schedule of the previous critical events. For example, if critical event
is triggered at t = 23 h and 24 h, with DCPP = 2 h in sub-problem 1, it cannot be issued at t = 25 h in
sub-problem 2. This is because the DCPP constraint prevents the issue of a critical event. Therefore,
the initial condition of ut related to the critical event constraints in sub-problem 2 will be changed to
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reflect previous ut values in sub-problem 1. Furthermore, scheduling horizon for the next sub-problem
is reduced. Finally, the iteration process terminates when all sub-problems are solved.
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3.4. Linearization of the MINLP Model

As shown in Section 3.1, the entire problem is formulated as an MINLP problem. Considering the
mathematical complexity of non-linearity, the MINLP problem is solved using a heuristic approach,
which, however, does not guarantee a global optimum—this of course depends on the solver [40]. To
obtain a global optimum, therefore, we transform the MINLP to an MILP through three linearization
steps, as described in the following paragraphs.

The objective function in Equation (1) can be rearranged as shown in Equation (16). For simplicity,
the linear terms that do not need to be reformulated are replaced by L(us,t, Es,t, BDs,t) function, as
given in Equation (17). First, absolute functions in Equation (17) are linearized by introducing positive
variables, QPCPP

s,t , QNCPP
s,t , QP0

s,t, and QN0
s,t. Moreover, the constraints related to these positive variables

are added to the initial constraints, as shown in Equations (18)–(23).

max
us,t,Es,t,BDs,t

Ns∑
s=1

ps
Nt∑

t=1
{us,tρCPPDCPP

s,t + ρ0D0
s,t−us,tρ0D0

s,t − ρ
E
s,tEs,t − ρBD

s,t BDs,t

−us,tmax(0,ρP(
∣∣∣∣Es,t −QCPP

s,t

∣∣∣∣− BDs,t) ) −max(0,ρP(
∣∣∣∣Es,t −Q0

s,t

∣∣∣∣− BDs,t))

+us,tmax(0,ρP(
∣∣∣∣Es,t −Q0

s,t

∣∣∣∣− BDs,t))}

, (16)

max
us,t,Es,t,BDs,t

Ns∑
s=1

ps
Nt∑

t=1
{L(us,t, Es,t, BDs,t) − us,tmax(0,ρP(QPCPP

s,t + QNCPP
s,t − BDs,t) )

−max(0,ρP(QP0
s,t + QN0

s,t − BDs,t)) + us,tmax(0,ρP(QP0
s,t + QN0

s,t − BDs,t))}
, (17)

ECPP
s,t −QCPP

s,t = QPCPP
s,t −QNCPP

s,t , (18)

QPCPP
s,t ≥ 0, (19)

QNCPP
s,t ≥ 0, (20)

E0
t −Q0

s,t = QP0
s,t −QN0

s,t, (21)

QP0
s,t ≥ 0, (22)

QN0
s,t ≥ 0, (23)

where
∣∣∣∣Es,t −QCPP

s,t

∣∣∣∣ = QPCPP
s,t + QNCPP

s,t , and
∣∣∣∣Es,t −Q0

s,t

∣∣∣∣ = QP0
s,t + QN0

s,t.
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Second, the max functions in Equation (17) are replaced by positive variables, MCPP
s,t and M0

s,t,
in Equation (24). In addition, the constraints associated with these positive variables are added in
Equations (25)–(28).

max
us,t,Es,t,BDs,t

Ns∑
s=1

ps

Nt∑
t=1

{L(us,t, Es,t, BDs,t) − utMCPP
s,t −M0

s,t + utM0
s,t} , (24)

MCPP
s,t ≥ 0, (25)

MCPP
s,t ≥ ρ

P(QPCPP
s,t + QNCPP

s,t − BDs,t), (26)

M0
s,t ≥ 0, (27)

M0
s,t ≥ ρ

P(QP0
s,t + QN0

s,t − BDs,t), (28)

where MCPP
s,t = max

(
0,ρP

(
QPCPP

s,t + QNCPP
s,t − BDs,t

))
, and M0

s,t = max
(
0,ρP

(
QP0

s,t + QN0
s,t − BDs,t

))
.

Finally, the products of a binary and a continuous variable in Equation (24) are replaced by new
positive variables, zCPP

s,t = utMCPP
s,t , and z0

s,t = utM0
s,t, as shown in Equation (29). Equations (30)–(37)

are constraints related to these positive variables.

max
us,t,Es,t,BDs,t

Ns∑
s=1

ps

Nt∑
t=1

{L(us,t, Es,t, BDs,t) − zCPP
s,t −M0

s,t + z0
s,t} , (29)

zCPP
s,t ≤ Aus,t, (30)

zCPP
s,t ≤MCPP

s,t , (31)

zCPP
s,t ≥MCPP

s,t − (1− us,t)A, (32)

zCPP
s,t ≥ 0, (33)

z0
s,t ≤ Aus,t, (34)

z0
s,t ≤M0

s,t, (35)

z0
s,t ≥M0

s,t − (1− us,t)A, (36)

z0
s,t ≥ 0. (37)

After returning the L(us,t, Es,t, BDs,t) function back to the original terms, the final objective function
is linearized as shown in Equation (38), and the associated constraints are Equations (4), (7)–(15),
(18)–(23), (25)–(28), and (30)–(37). Thus, the initial MINLP problem is reformulated as an MILP.

max
us,t,Es,t,BDs,t

Ns∑
s=1

ps

Nt∑
t=1

{us,tρ
CPPDCPP

s,t + ρ0D0
s,t−us,tρ

0D0
s,t − ρ

E
s,tEs,t − ρ

BD
s,t BDs,t − zCPP

s,t −M0
s,t + z0

s,t} (38)

4. Numerical Simulation

In the simulation, the expected profit of a retailer for a month, Nt = 744 h, is optimized by the
multi-stage stochastic model proposed in this study. In addition, uncertainty parameters are updated
every day on an hourly basis, and therefore, Nd = 24 h. Regarding the customer’s responsiveness, β is
assumed to be −0.03; other simulation conditions are provided in Table 2.

Uncertainties of demand and PV generation are considered based on the forecast errors and
each probability distribution function of forecast error is modeled as an independent normal
distribution [41–47]. In each normal distribution, means are set equal to the forecasted values
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and the standard deviations are a specific percentage of the mean value. For the forecasted values of
demand and PV generation, day-ahead predicted demand data scaled as 0.5% of the total demand of
PJM in July 2017 [48] and forecasted PV generation data scaled as 5% of the total installed capacity of
Belgium in July 2017 [49] are used, respectively. The standard deviations are 3% and 10% of the means,
respectively [41]. In addition, day-ahead locational marginal prices obtained from PJM in July 2017 are
set as the forecasted values of both energy and band prices [48]. Uncertainty of price is derived by
forecast errors of demand and PV generation weighted by Pearson correlation coefficient, respectively,
and also the randomness of price itself is added as expressed in Equation (39).

Xt
P = Pt(1 +

(Xt
D −Dt)

Dt
corrD,P +

(Xt
PV − PVt)

PVt
corrPV,P) + Xt

r. (39)

Based on the probability distribution, 1000 scenarios are generated using the Monte Carlo method
with even probability. To reduce computational burden, 1000 original scenarios are reduced to 10
through the backward scenario reduction algorithm, the Kantorovich distance method [50]. One of ten
representative scenarios associated with each uncertain parameter is depicted in Figure 5 and each
scenario probability is listed in Table 3.

Table 2. Input data used in simulation.

Input Data ρ0 ρcpp ρp

Price ($/MWh) 40 120 150

Input Data Tcpp Dcpp Icpp

Constraints of critical event (h) 10 3 12
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Furthermore, we assume that some demand peaks that were initially unpredicted emerge over
time. These demand peak values are presented in Table 4. Moreover, as explained in Section 3.3,
electricity prices are updated daily based on the price announced in the day-ahead PXFC market.
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Table 3. Probability of ten representative scenarios.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Probability 0.064 0.083 0.116 0.082 0.102 0.237 0.075 0.059 0.06 0.122

Table 4. Updated demand peak values.

Time (h) 255 256 257

Demand (MW) 890.55 890.77 907.37

To maximize profit, a retailer optimizes bidding amount of energy and band capacity in the PXFC
market and when issuing critical events in the retail market. The resulting optimal bidding amount
of hourly energy and band capacity are represented by the solid line and dotted line, respectively, in
Figure 6. In addition, the positive and negative violations that exceed the band capacity are depicted
in Figure 7. A penalty price is imposed on the amount of violation.
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4.1. Comparison Between the Mean-Value Deterministic Model and Multi-Stage Stochastic Model

This section analyzes the optimization results of the mean-value deterministic model and
multi-stage stochastic model to validate the effectiveness of the proposed model. First, profits of the
retailer calculated for one month in these two models are compared in Table 5. Total profit is greater
by 2.45%, revenue is higher, and all costs are lower in the multi-stage model than the mean-value
deterministic model.

Table 6 shows the optimal critical event schedule of each model. The intuitive explanation for
the notification of critical events at time periods 255, 256, and 257 in the multi-stage model is that the
optimal schedule reflects the re-predicted demand peaks. Analytically, a shift in critical event time can
be explained by the profit index (PI), defined in Park et al. [18]. The PI is an additional profit for the
retailer when a critical event is triggered for each time period t. Table 7 lists the PI results for different
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critical event schedules in each model. The PIs are higher for time periods 255, 256, and 475 than
for time periods are 281, 282, and 472 in both models. In other words, periodically updating market
information with the most recent data can trigger critical events more accurately, and maximize profit,
with the multi-stage stochastic model compared to the mean-value deterministic model.

Table 5. Operation results of mean-value deterministic model and multi-stage stochastic model.

Model Profit ($) Revenue ($)
Costs ($)

Purchasing Energy Purchasing Band Capacity Penalty

Mean-value
deterministic 2,770,585 15,848,124 11,678,390 507,935 891,214

Multi-stage stochastic 2,838,581 15,874,009 11,672,411 509,280 853,737

Table 6. Optimal critical event schedule in each model.

Model Optimal Critical Event Schedule

Mean-value deterministic 257, 281, 282, 305, 473, 474, 475, 496, 497, 498
Multi-stage stochastic 255, 256, 257, 305, 472, 473, 474, 496, 497, 498

Table 7. Profit index (PI) at different event schedule in each model

Model PI255 ($) PI256 ($) PI281 ($)

Mean-value
deterministic 75,706 79,545 58,384

Multi-stage stochastic 75,706 79,545 48,005

Model PI282 ($) PI472 ($) PI475 ($)

Mean-value
deterministic 45,830 50,351 64,887

Multi-stage stochastic 45,830 50,351 54,320

4.2. Impact of Input Parameters Change

This section investigates the strategy and profit of a retailer with the variation of four input
parameters. First, as shown in Figure 8a, the profit of the retailer monotonically decreases with an
increase in the absolute value of price elasticity of demand (|β|). An increase in |β|means that demand
further reduces in response to a variation in price, as expressed in Equation (4). Table 8 summarizes
the total demand reduction for different price elasticities of the demand. The decrease in profit can be
explained in relation to the demand reduction as follows. It is because sales revenue, which applies a
high peak rate to the remaining demand when a critical event is issued, is greater than the overall
cost savings in the PXFC market due to demand reduction. Consequently, the profit of the retailer
decreases as demand is further reduced.

Table 8. Total demand reduction for different price elasticities of customer.

β −0.01 −0.02 −0.03 −0.04 −0.05 −0.06

Total demand reduction (MW) 157 314 471 628 785 942

Second, as shown in Figure 8b, the profit of the retailer increases as the maximum critical event
duration (DCPP) increases. This is because the longer a critical event lasts after its triggering, the more
relaxed the critical event constraint is. In Figure 8b, the retailer’s profit appears to be the same when
DCPP is 3 h and 4 h. However, precisely when DCPP is 4 h to 5 h, the profit increases slightly and the
optimal critical event schedule changes, as shown in Table 9. The optimal critical event schedule for
different values of DCPP is also summarized in Table 9, with successive critical events separated by a
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slash. Eventually, the profit converges when DCPP exceeds 5 h because there is no need to maintain
critical event.
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Third, we analyze the retailer’s profit by introducing a PV proportion factor (PF) to adjust the
capacity of the self-generation PV facility. In the case of a reference PV capacity, PF is set as 1.0.
As shown in Figure 8c, an increase in the PF leads to a monotonic increase in the retailer’s profit.
This is because the amount of energy that should be purchased in the PXFC market decreases as PF
increases, as seen in Figure 9. However, with the increasing fluctuation in PV generation as the PF rises,
the retailer purchases more band capacity to prevent an extreme increase in penalty costs. In other
words, when the probability of exceeding the band capacity increases, the retailer will establish a more
conservative bidding strategy. Figure 10 illustrates optimal purchases of energy and band capacities
for different PFs.

Table 9. Optimal critical event schedule and retailer’s profit for different values of DCPP.

Dcpp Optimal Critical Event Schedule Profit ($)

1 65/257/282/305/425/450/474/497/521/570 2,774,535
2 256, 257/281, 282/304, 305/473, 474/497, 498 2,813,374
3 255, 256, 257/305/472, 473, 474/496, 497, 498 2,838,581
4 255, 256, 257/471, 472, 473, 474/496, 497, 498 2,840,666
5 255, 256, 257/471, 472, 473, 474, 475/497, 498 2,841,121
6 255, 256, 257/471, 472, 473, 474, 475/497, 498 2,841,121
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Finally, a higher penalty price leads to a monotonic decrease in the retailer’s profit, as shown in
Figure 8d. Similar to the case of PF, if the penalty price increases, the retailer purchases band capacity
more conservatively to prevent a sharp increase in penalty costs. From Table 10, we can see that if the
penalty price increases by 2 times, from 125 to 250 $/MWh, retailer purchases 1.62 times more band
capacity and the penalty cost increases by 1.21 times.

Table 10. Total purchased band capacity and penalty cost for different penalty prices.

Penalty Price ($/MWh) Band Capacity (MW) Penalty Cost ($)

125 7531 872,474
150 8822 853,737
175 9884 913,932
200 10,797 965,932
225 11,565 1,021,864
250 12,204 1,059,206

4.3. Sensitivity Analysis

In this section, we conduct a sensitivity analysis to assess the impact of each uncertain parameter
on the retailer’s profit. First, we define an uncertainty factor (UF) that scales the standard deviation of
each uncertain parameter so that the degree of uncertainty can be changed. UF of price, demand and
PV generation are represented as UFP, UFD, and UFPV, respectively. By Equation (39), UFt

P, which
refers to UFP at time period t, can be derived as a function of UFD and UFPV as in Equation (40).
To make one representative value over the time period, the average value of UFt

P can be obtained from
Equation (41). In Table 11, UFP is calculated for each pair of UFD and UFPV and it can be observed that
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the UFD has a greater impact on UFP than UFPV. Profit by changing UF for uncertain parameters of
demand and PV generation is shown in Figure 11 and Table 12. Since the PV generation is extremely
small compared to demand, as seen in Figure 11, the increase in the UFPV does not have a significant
impact on the retailer’s profit. There are even intervals where the retailer’s profit increases as the
UFPV increases. This is because the retailer revises the optimal schedule by reflecting the increased
uncertainties. Thus, the retailer maintains a consistent profit level. In contrast, the increased UFD

results in a significant decrease in the retailer’s profit, as shown in Table 12. In other words, in this
case, a shift in the optimal critical event schedule does not prevent profit reduction.

UFt
P =

√√√√√√√σ2
r +

(PtcorrD,PσD
Dt

UFD
)2
+

(PtcorrPV,PσPV
PVt

UFPV
)2

σ2
r +

(PtcorrD,PσD
Dt

)2
+

(PtcorrPV,PσPV
PVt

)2 . (40)

UFP =

Nt∑
t=1

1
Nt

√√√√√√√σ2
r +

(PtcorrD,PσD
Dt

UFD
)2
+

(PtcorrPV,PσPV
PVt

UFPV
)2

σ2
r +

(PtcorrD,PσD
Dt

)2
+

(PtcorrPV,PσPV
PVt

)2 . (41)

Table 11. Uncertainty factor (UF) of price.

UFP
UFD

0.6 0.8 1.0 1.2 1.4

UFPV

0.6 0.6262 0.7410 0.8600 0.9813 1.1039
0.8 0.7017 0.8113 0.9267 1.0455 1.1662
1.0 0.7849 0.8887 1.0000 1.1156 1.2340
1.2 0.8737 0.9717 1.0784 1.1906 1.3063
1.4 0.9669 1.0590 1.1611 1.2696 1.3824Energies 2019, 12, x FOR PEER REVIEW 15 of 20 
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Table 12. Profit change for different pair of uncertainty factors ($).

Profit ($)
UFD

0.6 0.8 1.0 1.2 1.4

UFPV

0.6 3,203,048 2,995,153 2,765,404 2,443,881 2,282,891
0.8 3,198,617 2,987,038 2,747,736 2,447,954 2,288,846
1.0 3,164,769 2,952,281 2,798,589 2,424,483 2,192,705
1.2 3,169,896 2,948,796 2,684,038 2,434,676 2,246,904
1.4 3,157,469 2,933,102 2,729,988 2,446,274 2,235,362
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4.4. Effect of the Energy Storage System

In this section, the effect of the energy storage system (ESS) on the proposed optimization problem
is investigated. For the ESS operation, a rule-based strategy is applied, in which ESS is charged when
the energy price is low, and discharged when the energy price is high, to reduce the purchasing cost of
energy in the PXFC market. Parameters of ESS are summarized in Table 13. It is assumed that the
number of cycles per day is limited to one and the initial stored energy is 1 MWh. Figure 12 illustrates
the power of ESS based on the rule-based strategy for 24 h. From the operation result, the retailer’s
profit increases by 3.22% with the same optimal critical event schedule compared to the case when ESS
is not utilized as shown in Table 14.

Table 13. Parameters of the energy storage system.

Capacity (MW) Maximum Stored
Energy (MWh)

Maximum/Minimum
State of Charge (%) Efficiency (%)

5 15 90/10 95
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Table 14. Operation results of utilizing energy storage system.

Profit ($) Optimal Critical Event Schedule

2,930,091 255, 256, 257, 305, 472, 473, 474, 496, 497, 498

5. Conclusions

This paper proposes an optimal CPP operation for a retailer with a self-generation PV facility.
The problem is formulated as an MINLP model to optimize both the bidding strategy in the PXFC
market and CPP operation in the retail market. In addition, an MSSP model is established for the
retailer to address the uncertainties of electricity price, demand, and PV generation. By using the
MSSP model, solutions can be determined sequentially with realization of uncertainties. The RH
method is used to simulate the problem to change the decisions iteratively. Furthermore, to ensure
global optimality, the MINLP is transformed into an MILP through three steps. In a numerical
simulation, the proposed multi-stage stochastic model yields higher total profit than the mean-value
deterministic model. In addition, we investigate the optimal strategy of the retailer by changing four
input parameters: Price elasticity of demand, maximum critical event duration, PV PF, and penalty
price. Sensitivity analysis confirms that a retailer’s profit is more sensitive to the uncertainty of demand
than that of PV generation. Finally, the effect of the energy storage system on the proposed optimization
problem is investigated.

However, some challenges still remain for future research, such as accurately modeling the
characteristics of residential demands. For example, we can consider the payback phenomenon.
If demand is reduced, some of it will be shifted to another time period. It is difficult to stochastically



Energies 2019, 12, 4658 17 of 20

model the extent to which or the time when reduced amount of demand will shift. However, as
mentioned above, demand uncertainty has the greatest impact on a retailer’s profit. Therefore, future
studies can consider the payback phenomenon stochastically for a more practical implementation of
CPP. Also, as many previous studies have demonstrated that curtailment of energy generation from
RESs can obtain an economic benefit, an effect of active control of RESs can be highlighted in the
proposed problem as future work. Finally, the same values are employed for energy and band capacity
prices in this study. It is because the price difference between the two products may lead to complex
strategic behavior of the participants in the PXFC market. Therefore, the proposed method can be
extended to cope with the price difference between energy and band capacity in the future study.
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Nomenclature

t Index of time (h)
s Index of scenario
Ns Number of scenarios
Nt Scheduling horizon
β Price elasticity of customer
ps Probability of scenario s
DCPP Maximum critical event duration (h)
TCPP Maximum total critical event number (h)
ICPP Minimum interval between successive critical events (h)
ρ0 Base rate in critical peak pricing ($/MWh)
ρCPP Peak rate in critical peak pricing ($/MWh)
ρP Penalty price ($/MWh)
ρE

s,t Energy price in PXFC market at time t in scenario s ($/MWh)
ρBD

s,t Band price in PXFC market at time t in scenario s ($/MWh)
Q0

s,t Amount of real-time energy without critical event in scenario s at time t
QCPP

s,t Amount of real-time energy with critical event in scenario s at time t
D0

s,t Demand without a critical event in scenario s at time t
DCPP

s,t Demand with a critical event in scenario s at time t
Ps,t Photovoltaic generation in scenario s at time t
∆E0

s,t Imbalance without critical event in scenario s at time t
∆ECPP

s,t Imbalance with critical event in scenario s at time t
I0
s,t Penalty cost without a critical event in scenario s at time t

ICPP
s,t Penalty cost with a critical event in scenario s at time t

us,t Critical event decision binary variable in scenario s at time t
BDs,t Decision variable determining band capacity in scenario s at time t
Es,t Decision variable determining energy in scenario s at time t
ξs,[t] History of the stochastic process of uncertain parameters up to time period t
A Large enough positive constant
QPCPP

s,t Positive variable for linearization
QNCPP

s,t Positive variable for linearization
QP0

s,t Positive variable for linearization
QN0

s,t Positive variable for linearization
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MCPP
s,t Positive variable for linearization

M0
s,t Positive variable for linearization

zCPP
s,t Positive variable for linearization

zCPP
s,t Positive variable for linearization

itot Total iteration number in rolling horizon method
Xt

D Independent normal distribution of demand at time period t
Xt

PV Independent normal distribution of photovoltaic generation at time period t
Xt

r Independent normal distribution of randomness at time period t
Pt Forecasted price at time period t
Dt Forecasted demand at time period t
PVt Forecasted photovoltaic generation at time period t
σr Standard deviation of Xt

r
σD Standard deviation of Xt

D
σPV Standard deviation of Xt

PV
corrD,P Pearson correlation coefficient between demand and price
corrPV,P Pearson correlation coefficient between photovoltaic generation and price
UFt

P Uncertainty factor of price at time period t
UFP Uncertainty factor of price
UFD Uncertainty factor of demand
UFPV Uncertainty factor of photovoltaic generation

Acronyms

RESs Renewable energy sources
CPP Critical peak pricing
PBP Price-based program
MSSP Multi-stage stochastic programming
PV Photovoltaic
RH Rolling horizon
MINLP Mixed integer non-linear programming
MILP Mixed integer linear programming
IBP Incentive-based program
CBL Customer baseline load
RTP Real-time pricing
TOU Time of use
PXFC Power exchange for frequency control
WPS Wisconsin Public Service
PF Proportion factor
UF Uncertainty factor
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