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Abstract: To achieve high accuracy in prediction, a load forecasting algorithm must model various
consumer behaviors in response to weather conditions or special events. Different triggers will have
various effects on different customers and lead to difficulties in constructing an adequate prediction
model due to non-stationary and uncertain characteristics in load variations. This paper proposes
an open-ended model of short-term load forecasting (STLF) which has general prediction ability
to capture the non-linear relationship between the load demand and the exogenous inputs. The
prediction method uses the whale optimization algorithm, discrete wavelet transform, and multiple
linear regression model (WOA-DWT-MLR model) to predict both system load and aggregated load
of power consumers. WOA is used to optimize the best combination of detail and approximation
signals from DWT to construct an optimal MLR model. The proposed model is validated with both
the system-side data set and the end-user data set for Independent System Operator-New England
(ISO-NE) and smart meter load data, respectively, based on Mean Absolute Percentage Error (MAPE)
criterion. The results demonstrate that the proposed method achieves lower prediction error than
existing methods and can have consistent prediction of non-stationary load conditions that exist in
both test systems. The proposed method is, thus, beneficial to use in the energy management system.

Keywords: short-term load forecasting; day-ahead load prediction; multiple linear regression; discrete
wavelet transforms; Daubechies wavelet; whale optimization algorithm

1. Introduction

Necessity to construct a short-term load forecasting (STLF) model that has flexible applications
at the system’s level and end user’s level grows rapidly by the common implementation of a future
ahead bidding system, such as day-ahead demand response programs. System level refers to the
electricity utilities, such as medium-voltage level customers, the distribution system, or aggregated
residential users in one region. End-user’s level refers to the single residential load, apartment user, or
a small-scale distribution user. End-user’s load characteristic has more variety than system’s level
because it is strongly related to the user’s behavior, which is hard to model.

Both system and end-user data sets are necessary to have an accurate load prediction model to
support further process, such as energy utilization [1], microgrid scheduling [2], and system demand
analysis [3]. Habib et al. [1] applied the load prediction result to improve the energy and batteries
utilization in hybrid power system, while Jin et al. [2] designed a load prediction which is fed to
determine the optimal scheduling of distributed energy resources and microgrid of a smart building.
Meanwhile, He et al. [3] used the load prediction accuracy derived from decoupling relation between
electricity consumption and economic growth.
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To have an accurate STLF method, several approaches estimate the load patterns and non-stationary
part of load signal by modeling the user behavior and use signal decomposition to extract the
non-stationary part of load signal. The user behavior model is built to estimate the exact load signals
by considering various inputs, such as user daily schedules, as investigated by Stephen et al. [4]
and Sajjad et al. [5], while Perfumo et al. [6] used specific temperature formulation. Another way
to investigate user behavior is by using non-intrusive load monitoring to know status of each set of
appliances as proposed by Welikala et al. [7]. However, information to build user behavior is scarcer
in the wide area data set and driven by the seasonal effect of the time series, a fact that makes this
approach less attractive, as applied in the work of Kong et al. [8], Xie et al. [9], and Erdinc et al. [10].
In contrast to modeling user behavior, the decomposition method is built after the load inputs are
determined. Signal decomposition is used to smoothen the load variations, by using discrete wavelet
transform (DWT), so that the input load pattern can be decomposed into low- and high-frequency
parts of sub-signals for the input variables formulated.

To construct a closely fitting model of the load, a ubiquitous implementation of DWT is strongly
related to proper selection of both the decomposition level and type of wavelet. Among the types of
wavelet, Daubechies is well known due to its practicality in multiresolution signal application in which
there is flexibility in analyzing the content of the signal. Li et al. [11], Chen et al. [12], and Reis and
Alves da Silva [13] use the fourth order Daubechies (Db4) to predict the electric load with different
decomposition levels of 3 to 5. Meanwhile, Guan et al. [14] and Li et al. [15] use the Daubechies
types varying between Db1 to Db3 and the decomposition level of level-2. Bashir and El-Hawary [16]
use Db2 with level-2 to reflect the uncertain factors on daily load characteristics. A particle swarm
optimization (PSO) algorithm is then employed to adjust the weights of the artificial neural network
(ANN) in the training process.

In addition to selection of the DWT’s decomposition level and type of wavelet, arrangement of
the correct related exogenous inputs is necessary. Arrangement of input variables is mainly based
on various weather information, lagged historical data, or an ensemble of sub-signals after wavelet
decomposition. Pandey et al. [17] use conditional mutual information-based feature selection to extract
information of the built wavelet models before assembling those models into a final prediction model.
The prediction model designed by Chen et al. [12] is built based on Db4 and uses a similar day’s load
as the input. A forecasting method proposed by Guan et al. [14] uses 12 dedicated models with two
levels of decomposition and boundary of Daubechies type varying from Db1 to Db3. The problem of
selecting input variables becomes more difficult when every related exogenous factor is added to the
prediction model. Thus, this paper takes the idea of using correlation analysis and statistical t-test on
the common related weather information to carefully select them.

ANNs can be used to predict load by several input variables, such as month, hour, day, the
demand for same hour in the previous week, the demand of first- and second-forecasting hours,
weighted temperature, humidity, and power demand pattern, as applied by Kong et al. [8]. Within a
day of prediction horizon, some of the methods need to build separate ANN model for each hour as
shown by Chen et al. [12] and Guan et al. [14] or using decomposed signal as proposed by Rocha Reis
and Alves da Silva [13]. Guan et al. [14] proposed a prediction interval in which the decomposition
needs to filter out the high-frequency part of the signal to smoothen the load variation. Li et al. [15]
indicate the usage of the predetermined wavelet component and decomposition level cannot always
improve the performance of prediction model. In addition, manual tuning of a hidden layer in an
ANN cannot guarantee a general performance in a prediction model either, when it is used in another
data set. Thus, to accommodate the problems with how to automatically select proper parameters for
an accurate model, an optimal tuning algorithm is necessary.

To generalize the application of the load forecasting method, the prediction model must have
accuracy in both system and end-user data sets. Sun et al. [18] use wavelet neural network (WNN)
and load distribution factor to find suitable wavelet type varying from Db2 to Db20 for irregular and
regular nodes of load flow in distribution system, respectively. The method uses two decomposition
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levels and trains each decomposed signal in separate networks. However, the method fails to keep its
prediction accuracy for the smart meter load due to the unpredicted behavior of an end-user affecting
the load variation.

From the related works, the prediction model of STLF strongly depends on two key variables,
which are the predictors and structure of the prediction algorithm. The predictors are designed to
capture the load characteristics, while the structure of prediction algorithm determines the close-fitting
process between targeted output and the prediction result. Integrating the evolutionary algorithm
becomes the prominent way to address the issue to find optimal structure of prediction algorithm.
He et al. [3] show that an improved particle swarm optimization-extreme learning machine (IPSO-ELM)
can optimize the weight in an ELM, which improves the overall load prediction result. Bashir and
El-Hawary [16] used PSO to the ANN model combined with wavelet decomposition to successfully
extract redundant information from the load and achieve high precision.

For the design of highly correlated predictors to closely-fit the actual load, it is proved by
Stephen et al. [4] that the ensemble forecast from Autoregressive Integrated Moving Average (ARIMA),
ANN, persistent forecast, and Gaussian load profile can improve the mean absolute percentage
error (MAPE) from 18.56% to 11.13% for the residential load. In Kong et al. [8], long short-term
memory is used in the residential load forecasting to improve the performance by 21.99% of MAPE.
Pandey et al. [17] apply the WNN to Canadian utility load data, in which the predictors are grouped
into seasons, to achieve 1.033% of MAPE on average. Thus, the proposed method adheres to the related
works and investigates how to design the optimal predictors and prediction structure through several
preconditioning schemes and discrete wavelet decomposition.

This paper proposes a one-day ahead hourly prediction model that integrates multiple linear
regression (MLR) and discrete wavelet transform (DWT) optimized by using the whale optimization
algorithm (WOA). The WOA is proposed by Mirjalili and Lewis [19] as a novel meta-heuristic
optimization algorithm which mimics the social behavior of humpback whales to find a global
optimum solution. Compared to the other optimization algorithms, WOA converges fast and tunes
only a few parameters to approach an optimal solution. The proposed model provides a more
accurate prediction method that closely fits system-side loads and aggregated loads at downstream
level (end-user). Instead of using ANN, the proposed method is suitable for real time application
because it uses MLR that requires less time while dealing with multiple inputs. Multiple weather
attributes and load data conditions are employed as the input of MLR. Based on Daubechies type
wavelet, DWT is used to decompose a non-stationary signal into several components. The signal
is independently decomposed to the set of Daubechies levels and types by handling the selected
decomposition coefficients, while the remaining coefficients are replaced with zero. Based on this
scheme, the signal can be extracted with its unique characteristics reflected by individual approximation
and detail components. Then, WOA is used to optimize the combination of signals for constructing a
prediction model.

The proposed method is validated in both system-side and end-user data sets, respectively,
associated with actual weather information. The state-of-the-art features of the proposed
method include:

• Accurate and consistent implementation of STLF is achieved in both system-side and aggregated
end-user data sets by integrating WOA-based DWT in the MLR model.

• Due to the superior optimization ability of WOA, the best of DWT is implemented for more
accurate prediction with more sensible load pattern reconstruction and more flexibility to interpret
unique load characteristics of each data set.

• The simple design is targeted yet does not lose accuracy of prediction via best reconstructing
signals of DWT and determining the historical input from common related weather information.

The rest of the paper is organized as follows. In Section 2, the modeling approach of historical data
used in the proposed method is clearly described. Section 3 describes the proposed WOA-DWT-MLR
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prediction method. Section 4 provides the testing results for ISO-NE and aggregated load data.
Comparisons with other well-established methods are also provided in this section. Section 5 provides
the discussion. Finally, conclusions are given in Section 6.

2. Historical Data Modeling Approach

Appropriate selection of input variables based on historical load and weather variables that affect
load pattern is essential for STLF. Xin et al. [20] use correlation analysis to choose the decomposed
signal. In this paper, the correlation analysis is utilized to select proper input variables from several
preconditioned data. As shown in Figure 1, for selection of the input variables, historical data is
modeled through the following steps, which are the data indexing, data preconditioning, data selection,
and data rearrangement.Energies 2019, 12, x FOR PEER REVIEW 5 of 23 
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As the initial step, load data and weather information are prepared based on [21,22], respectively.
The data are arranged as a column-vector sorted in the row sequence. The input data for both system-
and end-user load are hourly data. The historical load (L) data are in metric of kW. The historical
weather data (We) consist of temperature (T), maximum temperature (Tmax), minimum temperature
(Tmin), humidity (H), wind speed (Ws), wind direction (Wd), rain (R), cloud (Cl), snow (Sn), pressure
(P), weather condition (Wecond), weather type (Wetype), and weather icon (Weicon).

Wecond, Wetype, and Weicon above are the weather information summary within the observed hour.
Wecond describes the general weather conditions, varying from clouds, rain, smoke, thunderstorm,
drizzle, haze, and mist. Wetype gives a detailed description of each Wecond, such as scattered clouds, few
clouds, broken clouds, proximity shower rain, thunderstorm with light rain, light-intensity shower
rain, light rain, light-intensity drizzle, and mist. Weicon is the visualization code of Wetype and Wecond.
Detailed information about the weather can be found in [22].
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In the next step, the following inputs are indexed into six different labels according to the hour (t),
day (d), month (m), year (yr), working/non-working day (w/nw), and season (s). This process is done to
ease the later process in the data preconditioning. Using this index, we can easily rearrange the data
into several preconditions that may have strong relations to the predicted signal. Weather information
and calendar events are also mapped to a load pattern to explain feature correlation.

Then, the load and weather data are manipulated into several conditions in the data preconditioning
step. The same hour and same day, daily mean and standard deviation, lagged data, and next-hour
prediction temperature are chosen. The lagged data, up to the previous three hours, are used to avoid
misinterpretation of non-stationary load patterns. The lagged version of the load data allows the
prediction model to include the recent history of a load sequence. For example, load in hour-24 is
highly correlated with the load variation between hour-21 and hour-23. By using the lagged data, the
sequential load variation pattern can thus be captured.

After the data preconditioning is done, the data selection and data rearrangement are processed.
From the following series, the correlation analysis and t-test are used to achieve the input-output
relation and relationship strength between each input to the output. Based on the result of t-test, the
input vectors that have p-value lower than 0.05 are classified as significant and used as input variables.
Then, the selected vectors are classified into the tuning set and testing set with ratios of 70% and 30%,
respectively, to the length of total historical data. The final input variables are then constructed.

3. Proposed Prediction Method

In general, a load pattern is the result of aggregated user behaviors from a downstream level to a
high-voltage level, in which the pattern repetition is affected in accordance to the level of aggregation.
The wider the system region, the lower non-stationary part of the load pattern is than the narrow
system region because the associated weather or user-behavior changes are canceled out by each
other. The difficulties in the STLF lie on the precision of modeling different load characteristics,
especially from system-side to aggregate end-user load data. DWT has been used to model various
load characteristics with different wavelet types and decomposition levels, as previously investigated
in [11–16]. However, the best reconstruction of DWT remained unsolved. Figure 2 shows the forecasting
results of different reconstructions of DWT using Db2. The figure shows that the forecasting accuracy
varies by different combinations of approximation and detail components (Am + Dm). In Figure 2a,
the signal is reconstructed from approximation level-4 and detail components level-2 and level-4,
which are shortened as A4, D2, and D4, respectively. Similarly, the combination of A2 and D1 and
combination of A4, D1, and D2 are used for Figure 2b,c, respectively. As seen from Figure 2a,c, though
they use same level of decomposition with different combination of detail components, the MAPE
changes drastically. Besides, in Figure 2b, by only using approximation and detail component in
decomposition level-2, it may achieve 9.4703% of MAPE, which is lower than the MAPE in Figure 2a
that uses decomposition level-4. It reflects that, unique to each signal, the chosen set of approximation
and detail components affects the decomposed signals and accuracy of prediction. The reconstruction
by using decomposed signals may either fit to the original load pattern or distort the original signal.
Therefore, the best reconstruction by using decomposed signals is an important task in modeling
historical data and prediction.
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Figure 2. Foresting results of different reconstructions of discrete wavelet transform (DWT):
(a) configuration of Approximation-4, Detail-2 and Detail-4; (b) configuration of Approximation-2
and Detail-1; (c) configuration of Approximation-4, Detail-1 and Detail-2. MAPE: Mean Absolute
Percentage Error.

3.1. The Proposed WOA-DWT-MLR Method

In this paper, the term of “open-ended” defines the general functionality of the prediction method
which is flexible in the application of system and end-user sides. An open-ended prediction method is
expected to have the capability to accommodate different load characteristics of aggregated system
load and individual end-user load, which have majorly different load characteristics observed from
their signal waveform and load capacity. The characteristic of system load is steadier in variation than
end-user load because the changes of aggregated load from various feeders are canceled out by each
other and result in less fluctuation.

Differing from the system load, the end-user load fluctuates much more according to the local
weather, user behavior, calendar, and usage of appliances. Those factors complicate the variation
and randomness of the load pattern from hour to hours and day to days. An open-ended prediction
method is expected to always have the best performance without any site-specific constraint, a fact
which is possible to be achieved by setting the optimal prediction model from the chosen inputs.

The open-ended prediction method is formulated based on WOA-DWT-MLR model. WOA is
used to find the optimal level of decomposition, type of wavelet, and composition of details and
approximations before those sub-signals are modeled into several MLR models. The DWT decomposes
the non-stationary part of inputs into several high- and low- frequency components and reconstructs
them in the original time domain signal. DWT uses the Daubechies type of wavelet which has scale
and translation parameters for transforming the signal into low- and high-frequency coefficients. The
low-frequency sub-signal is called as approximation component, while the high frequency part is
called as detail component. Search space of the Daubechies can be formulated as:

DWTr,m(n) =
1
√

2r
ψ
( 1

2r (n− 2rm)
)
, (1)
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where r is DWT’s level of resolution, and m is scale parameter relating to time step n. DWT is tuned
to find appropriate values in the wavelet type and decomposition level. The trend of the signal is
coarsened by the approximation component. The high frequency of the signal is captured by the detail
component. When the decomposition level is increased, the density of signal variation decreases or
sparser. For further details, refer to Mallat [23].

Figure 3 shows the DWT modeling process in the proposed WOA-DWT-MLR. Figure 3a shows
the decomposition tree of the proposed WOA-DWT-MLR, setting level-5 as the maximal level for
the WOA-DWT. In the proposed decomposition approach, the signal is independently decomposed
to the set of Daubechies levels and types by handling the selected decomposition coefficients while
the remaining coefficients are replaced with zero. Based on this scheme, the signal can be extracted
to its unique characteristics reflected by individual approximation and detail components. Instead
of taking the common decomposition structure as [Ar, Dr, . . . , D1], WOA is utilized to find the
optimal combination of the decomposed parts. This approach is taken to sort out the less necessary
DWT components to achieve accurate reconstruction of the actual signal. Only the selected parts of
decomposition are reconstructed. Figure 3b shows the illustration with the proposed method having
[A5, D3, D2, D1] as the final combination, due to less Least Square Error (LSE), as in Equation (12), than
the common structure of [A5, D5, D4, D3, D2, D1].
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(WOA)-DWT decomposition approach.

According to Mirjalili and Lewis [19], a humpback whale attacks prey by adopting the bubble-net
feeding strategy. Figure 4 shows this strategy with its shrinking encircling mechanism and spiral
updating process as used in the WOA [19]. The bubble-net feeding strategy is the hunting method of
whales by creating some bubbles along a spiral to corner the prey close to the surface before eating
them. In the mathematical model as illustrated in Figure 4a, the bubble tags are modeled as position
from (X, Y) towards (Xbest, Ybest), following a vector coefficient of 0 ≤ A ≤ 1, to replicate the shrinking
spiral of a whale to corner the prey. As shown in Figure 4b, the spiral position updating process is
used to update the distance between the whale located at (X, Y) and the prey located at (Xbest, Ybest).
The whale corners the prey within the shrinking circle and spiral shape, simultaneously, through
random update of position (X, Y) toward (Xbest, Ybest). In the optimization algorithm, WOA optimizes
the solutions following the number of search agents to tune the best performance. Basically, WOA
calculates the location of bubbles as the solutions and encircles them in the n-dimension search space.
In this research, WOA finds the set of approximation and detail components that has the minimum LSE
as the objective function in the tuning stage. Search agents then move in a hyper-cubed way around
the current best solution. The position of a search agent can be updated according to the position of
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the current best record Xbest. Different places around the best agent can be achieved with respect to the

current position by adjusting the value of coefficient vectors
→

A and
→

C.
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The updating process of current position is written as follows:

→

D =

∣∣∣∣∣→C·⇀Xbest(iter) −
→

X
∣∣∣∣∣, (2)

→

X(iter + 1) =
→

Xbest(iter) −
→

A·
→

D, (3)
→

A = 2
→
a ·
→
r −

→
a , (4)

→

C = 2·
→
r , (5)

where iter indicates the current iteration,
⇀
Xbest and

→

X are the latest position vector of the best solution
obtained and position vector, respectively, and

→
a describes the shrinking bubble-net strategy to the

surface by linearly decreased from 2 to 0 over the course of iterations, while
→
r is a random vector in

[0, 1]. The humpback whales swim around the prey within a shrinking circle and along a spiral-shaped
path simultaneously. There are two approaches to search for prey in WOA, which are exploitation and
exploration. The exploitation phase uses the bubble-net attacking method, following the shrinking
encircling mechanism and spiral updating position, which assumes 50% probability as follows:

→

X(iter + 1) =


⇀
Xbest(iter) −

→

A·
→

D, i f p < 0.5
→

D′·ebl
· cos(2πl) +

⇀
Xbest(iter), i f p ≥ 0.5

. (6)

1. Shrinking encircling mechanism: this behavior is modeled by decreasing the value of
→
a in

Equation (4) and further use
→

A in Equation (6) with p < 0.5.
→

A is a random value in the interval of
[−a, a], where a is decreased from 2 to 0 over the iterations.

2. Spiral updating position: this approach initially calculates the distance between the whale location
X and prey location Xbest and then constructs a spiral equation between the X and and Xbest to
mimic the helix-shaped movement of humpback whales as Equation (6) with p ≥ 0.5, where
→

D′ =
∣∣∣∣∣⇀Xbest(iter) −

→

X(iter)
∣∣∣∣∣ indicates the distance of the ith whale to the current best solution. In

this approach, b is a constant describing the shape of the logarithmic spiral, while l is a random
number in [−1, 1].
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The exploration of the humpback whales is defined by a random search with coefficient vector∣∣∣∣∣→A∣∣∣∣∣ > 1 that allows WOA to perform a global search. Instead of using the current best agent, the

humpback whales choose the search agent randomly based on the position of each other. This
mechanism can be modeled as follows:

→

D =

∣∣∣∣∣→C·⇀Xrand −
→

X
∣∣∣∣∣, (7)

→

X(iter + 1) =
⇀
Xrand −

→

A·
→

D, (8)

where
⇀
Xrand is a random position vector (a random whale) chosen from the current population.

In the proposed method, the search vectors of WOA are the wavelet type soli,1, decomposition
level soli,2, and reconstruction of details and approximation being used soli,3. These search vectors

are accommodated in
→

X, which is then extended to the size of agent numbers and search vectors as
row and column, respectively. After several iterations, the set of solutions is fed to DWT to get the
optimal approximation-component ak and detail-components dk varying from k = 1, 2, 3, . . . , soli,2 that
achieve minimum prediction error. Then, the final decomposition sub-signals of WOA-DWT are used
in prediction model, following the multiple linear regression model as in Equation (9):

yi = α+ β1xi1 + β2xi2 + · · ·+ βkxik + ei , (9)

yout = yi_ak + · · ·+ yidk
, LSEyout = min(LSE). (10)

The final prediction output is the summation of best combination MLR model that has the
minimum LSE as in Equation (10). The prediction output of each Daubechies wavelet component yi
is calculated from the input variables X, regression coefficients β, intercept α, and observed model
error e. The intercept α and regression coefficient β are obtained using the least-square estimator that
minimizes the sum of square errors (residuals).

S =
∑

εt
2 =

∑(
Yt − Ŷt

)2
, (11)

where εt is residual error between actual Yt and prediction value Ŷt at observed hour t.
The proposed prediction model is evaluated by LSE and Mean Absolute Percentage Error (MAPE).

LSE evaluates the WOA optimization, while MAPE evaluates absolute error between the prediction
result and actual load data. Calculation of MAPE and LSE based on number of hours Nh is shown in
Equations (12) and (13) as follows:

LSE =
1

Nh

∑Nh

t=1

∣∣∣Yt − Ŷt
∣∣∣2, (12)

MAPE =
1

Nh

∑Nh

t=1

∣∣∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣∣∣ × 100%. (13)

3.2. Prediction Models of Tuning and Testing Stages

Tuning, validation, and testing stages are run to build the prediction models. Figure 5a,b shows
the tuning and testing stages, respectively, of the proposed WOA-DWT-MLR to find the best prediction
model. In the proposed method, the DWT is subjected to each data set to handle the unique periodicity
of those seasons. DWT with the initial parameter tuned by WOA calculates the decomposition layer of
a set of input and output data. The initial parameter is taken randomly between 2 to 5 for Daubechies
level r and 1 to 5 for Daubechies type m. The validation stage is performed as the preliminary testing
after prediction model is built in the tuning stage. Each of these reconstructed signals is utilized in
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several individual MLR models. The output of each MLR is summed and the LSE is calculated. The
best prediction model with the minimum LSE is chosen as the final prediction model after several
iterations. In the tuning process, validation will be conducted using last 24-h time series data in each
season. In the testing stage, the tuned prediction model is tested with the testing data set. The tuning
stage takes 70% of the data to get more insight of the daily pattern. Both validation and testing stages
use the remaining 15% of data.Energies 2019, 12, x FOR PEER REVIEW 10 of 23 
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To show the effectiveness of the proposed prediction model, the inputs for both system and
end-user data sets are differentiated into working day and non-working day models. In the working
day model, historical data from Monday to Friday is contained, including deferred holidays to
compensate for holidays that fall on weekends. The data set excludes holiday happening within these
days. The non-working day model covers Saturday to Sunday, including national holidays happening
on weekdays.

The proposed method is tested by the system data set and end-user data set. In the system
data set, there are four different season models, starting from Fall, Winter, Spring, and Summer. It
is assumed that Fall runs from September to November, and so on for the remaining season models
in different months. For the end-user data set, there are only two different season models which are
sets of Fall-Winter and Spring-Summer, respectively. The Fall-Winter model is assumed to begin at
September and last till February. The end-user data set consists of only two different unique models
because of data lacking issues.



Energies 2019, 12, 4654 11 of 23

3.3. Benchmark Algorithms

To validate performance of the proposed method, five well-known algorithms are used as
benchmark. These methods have been applied to the same day-ahead load forecasting to show
individual prominent results. The comparison methods are traditional MLR, ANN, Autoregressive
moving average with exogenous input (ARMAX), support vector regression (SVR), and PSO-DWT-MLR.
Brief descriptions about the algorithms are as follows:

• MLR (Mohammad et al. [24]): the MLR prediction model calculates the targeted output based on
a set of predictors in which the coefficients of each predictor are calculated by least sum of squares
as in Equation (9). For the validation of the proposed method, MLR uses the same input variables
as the proposed method.

• ANN (Hernández et al. [25]): the ANN consists of the input layer, hidden layers, and output layer
interconnected via weights between nodes or neurons. To get the best weights from regression
models that describe the relationship between input variables and next-day hourly prediction, the
number of ANN’s hidden neurons needs to be fine-tuned.

• ARMAX (Hong-Tzer et al. [26]): ARMAX is used to model the relationship between load demand
and exogenous input variables. The ARMAX model can be written as follows:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t), (14)

where y(t) is the load demand, u(t) is the exogenous input related to load demand, e(t) is white
noise, and q−1 is a back-shift operator. A(q) = 1 + a1q−1 + · · ·+ anaq−na, a1, . . . , ana are parameters
of the Autoregressive (AR) part, na is the AR order; B(q) = b1 + b1q−1 + · · ·+ anbq−nb+1, b1, . . . , bnb
are parameters of the exogenous input (X) part, nb is the input order; C(q) = 1 + c1q−1 + · · ·+

cncq−nc, c1, . . . , cnc are parameters of the Moving Average (MA) part, and nc is the MA order. To
get the best tune of ARMAX parameters, PSO is used for each data set.

• SVR (Cortez and Vapnik [27], Chen et al. [28]): SVR is a non-parametric technique using sequential
minimal optimization to solve a decomposed equation for the input variables. For each iteration,
a working set of two points is chosen to find a function f(x) that deviates from yn by the value not
greater than the error in each previous training point of x. The result of iteration process can be
recalled as the mapping of the training data x into high dimensional feature space to represent
nonlinear relationship between input variables and targeted output.

• PSO-DWT-MLR: the prediction method uses PSO (Zhan et al. [29]) as the optimization algorithm
to find the best combination of reconstructed signals. PSO is used to optimize the DWT type, level,
and combination of wavelet component, as WOA did in the proposed method.

4. Simulation Results

The proposed method is simulated in MATLAB 2018 environment running with Intel Core™
i-73770 CPU of 3.40 GHz and 8 GB RAM. The decomposition level of DWT tuned by WOA is between
level-2 and level-5, while the type of DWT is between Db1 to Db5. The search agent of WOA is set to 50
with three solutions for decomposition level, type of wavelet, and combination between reconstruction
of details and approximation being used. WOA is also set with 50 iterations maximum to find the
optimal solution. For each tuning model, best performance and error distribution are observed in
ten trials. The performance is analyzed with MAPE in the validation stage and testing stage. The
prediction results of traditional MLR, ANN [25], autoregressive moving average with exogenous input
(ARMAX) [26], support vector regression (SVR) [27,28], and PSO-DWT-MLR are also provided to show
the effectiveness of proposed WOA-DWT-MLR. In MLR, optimal coefficients are found by least square
error. ANN uses six and seven hidden neurons in the single hidden layer for working day model and
non-working day model, respectively. ARMAX uses optimal order tuned by PSO where the lagged
time series and exogenous inputs are modeled as Gaussian distribution. SVR is set with Sequential
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Minimal Optimization (SMO) solver. Besides, PSO-DWT-MLR is used to compare the effectiveness of
WOA over PSO. All methods use the same input/output data sets for tuning, validation, and testing.
The existing methods are fine-tuned uniquely according to each data set.

4.1. Test System

The proposed method was tested on two different data sets that represent the system and
end-user data sets. The system data set used Independent System Operator of New England (ISO-NE).
ISO-NE is the regional transmission organization (RTO) that serves six regions with headquarters in
Massachusetts. The data can be accessed in [21]. Two years of data, from 1 January 2016 to 31 December
2017, was used. The end-user data set used load demand of Green Energy Building located in Shalun
Campus of National Cheng Kung University. The end-user data set consisted of aggregation of three
different smart meters in which the data set from 17 May 2017 to 26 September 2018 was taken for
the simulation.

The weather data used in this paper was taken from open access weather data provider as
Application Programming Interface (API) in [22], which presents information about temperature,
humidity, wind speed, wind gust, cloud condition, weather condition, and weather icon. Data, such as
temperature which may vary from positive to negative (for four-season countries), is preconditioned in
Kelvin metric instead of using Celsius. For condition explanation, such as “cloudy”, “sunny”, “partly
showered”, and so on, the weather-explanation is converted into the unique discrete range.

As explained in historical data modeling approach shown in Figure 1, the input variables are
selected with high correlated parameters using the correlation analysis and t-test. The results
of correlation analysis and t-test are shown in Table 1. Then, these parameters are given to
WOA-DWT-MLR to get the coefficient β of each input variable from the chosen DWT components. In
the training stage, we can figure out that each season (Fall, Winter, Spring, and Summer) has a unique
combination of coefficients which consist of nonzero values and zeros. The observation results of Fall
in the working day of the ISO-NE data set are shown in Figure 6. The data set of Fall is labeled as
1-Fall, which consists of approximation component level-4 and detail components level-1, 2, and 3,
which are shortened as A4, D1, D2, and D3, respectively. We can infer that the nonzero coefficients
reflect the relation of the input variables to the targeted output, while the zero coefficients reflect that it
has no relation to the targeted output, though it is already chosen from correlation analysis and t-test.

Table 1. Correlation analysis and T-test of input variables.

Name R p-Value Correlated (1)/Non Correlated (0)

Minimum temperature 5.100 × 10−2 9.131 × 10−21 1
Maximum temperature 3.627 × 10−2 3.052 × 10−11 1

Pressure −8.197 × 10−3 1.333 × 10−1 0
Humidity −5.185 × 10−3 3.424 × 10−1 0

Wind speed −4.580 × 10−2 4.816 × 10−17 1
Wind degree 1.365 × 10−2 1.246 × 10−2 1

Rain 1 h 1.880 × 10−2 5.738 × 10−4 1
Rain 3 h 3.168 × 10−2 6.533 × 10−9 1
Rain 24 h 9.255 × 10−3 9.012 × 10−2 0

Rain today .989 × 10−2 2.707 × 10−4 1
Snow 1 h −3.963 × 10−3 4.680 × 10−1 0
Clouds all −3.889 × 10−2 1.040 × 10−12 1

Weather ID 2.118 × 10−2 1.050 × 10−4 1
Weather main −2.779 × 10−2 3.594 × 10−7 1

Weather description −4.250 × 10−2 6.884 × 10−15 1
Weather icon −2.552 × 10−2 2.952 × 10−6 1
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The selected input variables used for each season in working and non-working data sets are listed
in Figures 7 and 8 for the ISO-NE data set and the Shalun data set, respectively. From these figures,
the ISO-NE test system is less sensitive to the lagged data as the selected input variable of predictors
in the Shalun test system. We can infer that the lagged data are not a strong correlated predictor
to the prediction result in the ISO-NE data set. The sensitivity above is measured by observing the
zero and nonzero values in the MLR coefficients. Besides, the ISO-NE test system needs less weather
information than the Shalun test system. For both test systems, each season in the non-working data set
has similar input variables, owing to the effect of data scarcity in comparison to the working data set.
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4.2. Numerical Results

The best WOA-DWT-MLR prediction model obtained can be observed in Tables 2 and 3. Prediction
models of working and non-working days for the system data set are shown in Table 2. It is observed
that the best decomposition of level-4 and level-5 is obtained with wavelet types Db3, Db4, and Db5.
For the end-user data set, the prediction models are shown in Table 3. In the end-user data set, the
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best prediction model uses decomposition level-3, level-4, and level-5 with wavelet types of Db3, Db4,
and Db5.

Table 2. Best prediction model of ISO-NE data set.

Season Wav. Type Dec. Level Wavelet Reconstruction Day Type

Fall Db3 4 A4, D1, D2, D3,

WorkingWinter Db3 4 A4, D1, D2, D3,
Spring Db5 5 A5, D1, D2, D3, D4, D5

Summer Db5 5 A5, D1, D2, D3, D4, D5
Fall Db5 4 A4, D1, D2, D3, D4, D5

Non-workingWinter Db4 5 A5, D1, D2, D3, D4
Spring Db3 4 A4, D1, D2

Summer Db5 5 A5, D2, D3, D4

Table 3. Best prediction model of End-User data set.

Season Wav. Type Dec. Level Wavelet Reconstruction Day Type

Fall-Winter Db3 3 A3, D1, D2, D3 Working
Spring-Summer Db5 5 A5, D1, D2, D3, D4, D5

Fall-Winter Db3 3 A3, D2, D3 Non-working
Spring-Summer Db4 4 A4, D1, D2, D3, D4

4.2.1. ISO-NE Data Set

Prediction results of the system data set (ISO-NE) are shown in Table 4 for working days. In the
validation stage, the proposed method achieves 1.1487%, 1.0603%, 1.0414%, and 0.8322% MAPE in Fall,
Winter, Spring, and Summer, respectively. When the final prediction model is tested, the proposed
method further shows its significant improvements among other methods by leading the accuracy
with 1.3024%, 1.6928%, 1.0104%, and 0.9213% MAPE. If validation errors are compared head-to-head to
testing errors among four seasons, prediction models of the proposed method can hold their accuracy
with MAPE of 0.1537%, 0.6325%, 0.031%, and 0.0909%, respectively, as compared to PSO-DWT-MLR.

Table 4. Prediction results of ISO-NE (working day). ANN = artificial neural network; PSO = particle
swarm optimization; ARMAX = Autoregressive moving average with exogenous input; SVR = support
vector regression.

Validation Error (%) Fall Winter Spring Summer

MLR 1.8383 1.8793 2.0956 1.4659
ANN 2.5472 2.1815 2.3387 1.4975

ARMAX 4.1761 2.0931 4.7462 2.3154
SVR 2.1130 1.8543 1.9406 2.3740

PSO-DWT-MLR 1.1963 1.2122 1.2380 1.3043
WOA-DWT-MLR 1.1487 1.0603 1.0414 0.8322

Testing Error (%) Fall Winter Spring Summer

MLR 1.8161 3.8908 1.9223 1.9868
ANN 2.1125 2.9227 2.1748 2.0401

ARMAX 4.4960 2.4762 4.5653 2.4149
SVR 2.32740 1.95772 1.96806 5.19816

PSO-DWT-MLR 1.3860 2.3867 1.3348 1.8368
WOA-DWT-MLR 1.3024 1.6928 1.0104 0.9213

For non-working data set, the proposed method also surpasses the compared methods in validation
stage with 1.2781%, 1.0374%, 1.3055%, and 1.4311% for Fall, Winter, Spring, and Summer, respectively,
as listed in Table 5. Though the same data set was applied to all methods, the ARMAX model fails
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to hold its prediction consistency in Summer, due to its inability in coefficient determination when
load variation is high as the effect of less data and unexpected weather variations. The proposed
method can have the lowest MAPE of 1.5869%, 1.2811%, 1.3399%, and 1.2398% for Fall to Summer in
the testing stage.

Table 5. Prediction results of ISO-NE (non-working day).

Validation Error (%) Fall Winter Spring Summer

MLR 1.9704 1.8694 2.2309 2.2502
ANN 3.1560 1.8876 2.9832 3.5523

ARMAX 2.3650 2.2913 3.4135 7.2335
SVR 1.8625 1.8376 2.0260 2.0172

PSO-DWT-MLR 1.8375 1.5342 1.4269 1.5848
WOA-DWT-MLR 1.2781 1.0374 1.3055 1.4311

Testing Error (%) Fall Winter Spring Summer

MLR 2.3733 2.1621 1.6637 2.1986
ANN 3.3239 2.2801 2.7051 3.1254

ARMAX 2.7512 2.8100 3.3978 7.0049
SVR 2.3201 2.1227 1.5502 2.1961

PSO-DWT-MLR 2.0463 2.0789 1.3616 1.2338
WOA-DWT-MLR 1.5869 1.2811 1.3399 1.2398

The predicted load patterns for the system data set in working day are observed in Figure 9a.
ARMAX faces difficulty in being consistent when the actual load pattern changes drastically in
transition of working hour to lunch time and transition of working hour to dinner time (as shown from
hour-10 to hour-13 and hour-16 to hour-19), while the other non-parametric based methods, such as
the proposed method, can predict the actual load pattern better. In this figure, MLR can closely predict
the load variation because the preconditioned input variables cover the detail associated weather and
statistical load data for standard deviation and mean value. Furthermore, in Figure 9b, compared
methods cannot closely predict the actual load on the valley-like pattern nor transition to a peak load,
as shown between hour-5 and hour-15. In contrast, the proposed method can predict the actual load
well, while other methods still have a significant gap to the actual load.

4.2.2. End-User Data Set

For the end-user data set, load variation is expected to happen in the actual load signal, due to the
aggregation of only three smart meters. The variation is strongly related to any human behavior inside
the offices. For the working data set, the proposed method successfully presides at the prediction
accuracy of 5.4697% and 3.2479% as compared to the other methods which have almost twice and
higher MAPE in validation stage, as shown in Table 6. Differing from other non-parametric and
traditional regression methods, PSO-DWT-MLR provides the second accurate prediction. This is the
proof that the integration of signal decomposition improves the prediction accuracy. In the testing
stage, the proposed method can hold its prediction consistency by surpassing the other methods with
6.0246% and 5.5222% of MAPE. The prediction performance of Spring-Summer model in testing stage
decreases in the validation stage because the data in the testing stage contains many missing data.

Table 7 presents prediction accuracy of the non-working data set. The proposed method
outperforms the other methods with 5.3888% and 3.2748% MAPE in validation stage for the Fall–Winter
model and Spring-Summer model, respectively, and maintains the corresponding testing errors of
6.1767% and 9.2912% MAPE. Non-consistent performance of MLR, ANN, ARMAX, and SVR is shown,
even though the testing error is less than the validation error.
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Table 6. Prediction result of Shalun (working day).

Validation Error (%) Fall-Winter Spring-Summer

MLR 15.0677 7.1133
ANN 19.9037 7.9612

ARMAX 10.4263 10.6182
SVR 13.5051 6.8966

PSO-DWT-MLR 5.6531 3.4675
WOA-DWT-MLR 5.4697 3.2479

Testing Error (%) Fall-Winter Spring-Summer

MLR 9.3383 13.3464
ANN 10.5189 20.3770

ARMAX 9.6939 13.3079
SVR 8.6685 12.8394

PSO-DWT-MLR 6.1665 5.5546
WOA-DWT-MLR 6.0246 5.5222

Performance of different prediction models is analyzed from the load patterns in Figure 10a,b
for working and non-working days, respectively. In Figure 10a, both the proposed method and
PSO-DWT-MLR outperform the other comparison methods. In Figure 10b, ANN and ARMAX fail to
fit the prediction results to actual load. The MLR-based prediction model fits the actual load, but only
the proposed method has the best performance among the compared methods.
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Table 7. Prediction result of Shalun (non-working day).

Validation Error (%) Fall-Winter Spring-Summer

MLR 9.6415 17.4223
ANN 12.8374 17.6259

ARMAX 21.5325 10.5514
SVR 8.3827 16.0362

PSO-DWT-MLR 6.9836 8.6637
WOA-DWT-MLR 5.3888 3.2748

Testing Error (%) Fall-Winter Spring-Summer

MLR 8.5347 14.1043
ANN 9.8549 14.8972

ARMAX 21.2365 11.5149
SVR 8.0799 10.9618

PSO-DWT-MLR 6.1767 9.2912
WOA-DWT-MLR 6.1767 9.2912
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5. Discussion

To get deeper observation of the prediction results of the proposed method, we extended the
prediction period into several days for each season in the ISO-NE and Shalun data set, as depicted in
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Figures 11 and 12, respectively. It is noted that, due to some missing data, the pattern of some hours of
a day is neglected to avoid greater error in prediction evaluation. From these figures, we can infer that
both the system and end-user data set are non-stationary with weekly seasonality and seasonal trends,
even though we have treated the data based on its season. Especially in the Shalun data set, as seen
in Figure 12, the seasonal trend is distinct because of the combination of seasons in Fall-Winter and
Spring Summer groups, due to lack of data.Energies 2019, 12, x FOR PEER REVIEW 20 of 23 
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To avoid subjective judgement based on visual observation of the prediction pattern results, the
annual averages of MAPE for both the ISO-NE and Shalun data sets are plotted monthly in Figure 13a,b,
respectively. Axis-y represents the average MAPE of the month, while axis-x represents month with
month-1, month-2, . . . , and month-12 being January, February, . . . , and December. For the ISO-NE
data set, as shown in Figure 13a, we can observe that prediction techniques without discrete wavelet
transform do not have better accuracy due to its inability to extract nonstationary part of the load
pattern. Besides, though ARMAX can produce a mostly better performance in January, July, August,
September, and October, the prediction performance is gets worse in the other months, showing an
unsteady prediction performance of ARMAX.

Different from the former prediction techniques, the prediction result of PSO-DWT-MLR and
WOA-DWT-MLR are more stable in magnitude of 1% to 3% MAPE and 1% to 2% of MAPE, respectively.
For the PSO-DWT-MLR, the MAPE in May and August is worse than traditional MLR because
of the PSO trapped at the local minima. Thus, though DWT is already used, the combination of
approximation and detailed component cannot effectively produce accurate prediction. For the
proposed WOA-DWT-MLR, the MAPE is higher in May for about 1.77% but quite stable at 0.98% of
MAPE for the remaining months. As shown in Figure 13b for the Shalun data set, the performance
of WOA-DWT-MLR is better than other comparison methods. Though, in September, the MAPE is
higher, up to 15.21%, in comparison, the comparison method has 33.82%, 39.29%, 37.27%, 35.45%, and
28.01% for SVR, ANN, ARMAX, MLR, and PSO-DWT-MLR, respectively. The main cause of the higher
errors in September comes from the data scarcity due to too many bad data.
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For the end-user data set, the prediction accuracy of all the methods for comparison is worse
than the ISO-NE data set because of its irregular power consumptions. Though relevant weather
information has been selected, the other exogenous factors, like user behavior, still highly affect the
randomness in the load consumption pattern. Further disturbing the load pattern for the tuning stage,
the irregularity is also worsened by the outlier data due to out of order of the communication system
for collecting the load data. Therefore, in further research, a more reliable data preconditioning scheme
is needed to support the prediction modeling.

Related to the length of available data, the proposed method has strong consistency in accuracy,
as proved by the MAPE. The accuracy is not bounced away when facing a lack of data, such as that
happening in the Summer and Fall model, when the other methods lose their accuracy. It reveals that
the proposed method can handle the highly nonlinear end-user data set, while the other methods fail
to maintain their accuracy.

For the computation time, the proposed method constructs the final prediction model by storing
the best information of MLR coefficients, type of DWT, and level of wavelet decomposition in each
iteration. Without the WOA-DWT, MLR needs less than 1 min to build a load forecasting model, while
ANN and ARMAX require more computation time. After the WOA-DWT strategy applied in MLR by
the proposed method, the computation time increases to several minutes and up to ten minutes. Once
the testing stage begins, the algorithm needs to manage the process of wavelet decomposition and
requires more time than the other methods to produce prediction but fits the application requirement.

6. Conclusions

This paper has proposed an open-ended STLF algorithm that works in both system- and end-user
data sets. The algorithm uses WOA to find the optimal level of decomposition, type of wavelet,
and reconstruction of detail and approximation components in an MLR-based prediction model.
WOA is proved to be more efficient in finding global optimum in wavelet decomposition. From
results of validation and testing stages, the proposed WOA-DWT-MLR method has been proved to
predict with better accuracy as compared to the MLR, ANN, ARMAX, SVR, and PSO-DWT-MLR
approaches. Especially for the end-user data set, the proposed method outperforms the compared



Energies 2019, 12, 4654 22 of 23

methods significantly in the prediction consistency. However, the computation time can be further
addressed due to the usage of WOA-DWT in the reconstruction process at the training stage, though
it is still manageable to be performed for day-ahead load forecasting. Nevertheless, the proposed
method has shown promising results for further use in an offline system, such as the planning of
demand response or in an energy management system. Furthermore, the proposed method can be
extended as the base prediction model for probabilistic load forecasting, due to its ability in providing
consistent and accurate prediction results.
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