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Abstract: This paper presents a power loss decrease method based on finite set model predictive
control (FSMPC) with delay compensation for a motor emulator with reduced switch count.
Specifically, the topology and mathematical model of the proposed motor emulator with reduced
switch count are firstly built. Secondly, in light of given instructions, the normal or fault reference
current of the motor emulator is set by a reference current setter. Then delay compensation is applied
for the predictive current model to calculate the current residual generated by each switch control
signal, and the current tracking performance under actions of two adjacent switch control signals
is evaluated for each sector. Finally, a switch power loss objective function is defined, then the two
adjacent switch control signals that generate the lowest switch power loss are selected for the next
second instant, which minimizes the power loss of the motor emulator with ensuring satisfied current
tracking performance. Simulation and experimental results show the feasibility and effectiveness of
the proposed method.
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1. Introduction

As key power equipment, motors are widely used in various applications such as defense military,
industrial production, and rail transit [1–3]. In the past few decades, the research about motor operating
on fault state and condition suddenly alteration have become hot topics in high voltage and power
applications [4,5]. The physical motors in the experiments of motor faults are usually damaged,
which are not beneficial for performing experiments repeatedly and the cost of the experiments is
high. Moreover, the drive shafts of the two physical motors in the experiments of speed with sudden
alteration are connected together by adopting the output torque of one motor drive system as the load
torque of another motor drive system. The speed of physical motors in the experiments is difficult to
sudden change. Stator current of a motor is one of the most reliable electrical signals that reflecting
specific features of motor operating on fault state and condition suddenly alteration [6,7]. Motor
emulator was proposed by the British scholar H.J. Slater for the first time [8,9], in which the port
characteristics of load current are the same as that of stator current of physical motor by controlling
power electronic components. So various experiments that motor operating on fault state and condition
sudden alteration could be conducted by motor emulator instead of physical motor. It is more secure
and economical to perform these experiments by motor emulator compared with a physical motor.

The core of the motor emulator is the load current tracking stator current of motor [10,11].
During several years, motor emulators with plenty of electronic components are employed to simulate
port characteristics of stator current [12,13]. In [14,15], the three-level converter of motor emulator
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is constituted by twelve Insulated Gate Bipolar Translators (IGBTs) and eighteen antiparallel diodes.
Other motor emulators can be found in [16,17], in which the two-level converter is composed of six
IGBTs and six antiparallel diodes. In [18], linear inverter structure is applied to reduce the harmonics
of load current in the motor emulator, but the cost is double the number of electronic components
compare with traditional two-level inverter. The load model of motor emulator proposed in [19] is an
inductor-capacitor-inductor (LCL) filter, which improves current ripple induced by high-frequency
switch, but increase reactive power consumption. There are many electronic components are used in
these above motor emulators, which increase volume, weight, cost and directly incur excessive switch
power loss [20]. Therefore, the power loss of the motor emulator caused by electronic components has
become an important issue to be considered.

The load current tracking control of the motor emulator is mostly realized by PI modulation
in the present motor emulators. In [21], the dynamic mathematical model of asynchronous motor
is established to realize real-time calculation of stator current and tracking control of load current.
A wind generator emulator is proposed in [22], which simulates static characteristics of stator current
at different wind speeds by controlling a converter. But the steady-state error between stator current
and load current is hardly eliminated by PI modulation. A current tracking method based on FSMPC
is presented in [23], which improves the accuracy and rapidity of current tracking when compare to
PI modulation. In [24], an optimized current control method with delay compensation is proposed
to overcome harmonic current in distributed generation converters, and reference current at the next
instant is tracked by controlling one switch control signal to generate one basic space voltage vector
during every sampling period. However, these presented motor emulators only pursuit current
tracking performance as the control object, while power loss of motor emulators is severely neglected.
For motor emulators, especially applying to high voltage and power systems, various crucial factors
such as on-off time and frequency of switch, can affect switch power loss, which directly linked with
service behavior and life of switch. To the best of our knowledge, there is a lack of work about the
power loss control method of motor emulator.

Motivated by the above discussion, a power loss decrease method for a reduced switch count
motor emulator is proposed in this paper, which is realized by FSMPC with delay compensation.
At the first, a topology of the motor emulator is proposed, in which the switch count of converter is
reduced. Secondly, a power loss decrease method based on FSMPC is presented, an objective function
is designed to select two adjacent switch control signals that generating lowest switch power loss on
the premise of ensuring current tracking performance. Finally, the delay compensation is applied
to improve current tracking accuracy, which is realized by calculating the current residual between
predicted load current and reference current at the next second instant.

The rest of the paper is organized as follows. The topology and modeling of the motor emulator
with reduced switch count are illustrated in Section 2. The power loss decrease method based on
FSMPC with delay compensation is elaborated upon in Section 3. Section 4 is dedicated to present
experimental results and discussion of switch power loss and performance of current tracking of motor
emulator. Finally, the conclusions of this paper are reviewed in Section 5.

2. Motor Emulator with Reduced Switch Count

2.1. Topology of Motor Emulator

The topology of the motor emulator with reduced switch count is presented in Figure 1. It consists
of the three-phase four-switch converter, coupled load network, motor model, the reference current
setter and predictive controller. In three-phase four-switch converter, b and c phase are constructed of
four active switches and four antiparallel diodes, and a phase is composed of two dc-link capacitors.
The coupled load network consists of three-phase resistance-inductance load, where each phase
includes a coupled resistance R and a coupled inductance L. The left and right ports of coupled load
networks are connected to three-phase midpoint of three-phase four-switch converter and voltage
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source. The motor model is a squirrel cage asynchronous motor model, which provides a normal
three-phase stator current signal. According to given instruction, reference current is generated by
reference current setter. When normal instruction is given, a three-phase stator current is adopted
directly as reference current signal. When fault instruction is given, fault reference current signal is
generated by conditioning three-phase stator current signal and specific fault signal, which is detailed
in [25]. By calculating the current residual between reference current signal and predictive value of
load current, the best applicable switch control signal is selected by predictive controller as switch
control signal of three-phase four-switch converter for the next second instant.
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Figure 1. The topology of motor emulator with reduced switch count.

2.2. Modeling of Motor Emulator

Three-phase output voltages of three-phase four-switch converter can be expressed by switching
state as:  ua

ub
uc

 = udc

 0.5
Sb
Sc

 (1)

where ua, ub and uc are output voltage values of a, b and c phases of three-phase four-switch converter,
udc is input voltage of three-phase four-switch converter, which is the sum of voltages of split capacitors
udc1 and udc2 at the dc side. Sb and Sc are switching states of b and c phases in the three-phase
four-switch converter, each of them has two logical states 0 and 1 [26,27]. When SX = 0, TX1 is off and
TX2 is on. When SX = 1, TX1 is on and TX2 is off , X = b, c.

In addition, the switch control signal of three-phase four-switch converter can be defined as
Sz, which can be given by Sz = SbSc, and z represents the selected number of Sz. The basic space
voltage vector corresponding to switch control signal Sz is defined as Vz, which is synthesized by
three-phase output voltages ua, ub and uc in three-phase abc static coordinate frame. The basic space
voltage vector Vz is described as (2) and the spatial distribution on the abc static coordinate frame is
shown Figure 2.The relationship of switch control signal Sz, three-phase output voltages ua, ub and uc,
and basic space voltage vectors Vz are listed in Table 1.
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Vz = ua + ub + uc (2)

Table 1. Switch control signals, three-phase output voltages and basic space voltage vectors.

Selected Number Switch Control Signals Three-Phase Output Voltages Basic Space Voltage Vectors

z Sz = SbSc ua ub uc Vz

1 00 1
2 udcej0 0 0 1

2 udcej0

2 01 1
2 udcej0 0 udcej 4π

3

√
3

2 udcej 3π
2

3 11 1
2 udcej0 udcej 2π

3 udcej 4π
3 1

2 udcejπ

4 10 1
2 udcej0 udcej 2π

3 0
√

3
2 udcej π

2

In abc static coordinate frame, every work period of the three-phase four-switch converter is
divided into four sectors by four basic space voltage vectors. The sector formed by two adjacent basic
space voltage vectors Vz and Vz+1 is named as Nz, where (z, z + 1) can be (1, 2), (2, 3), (3, 4) and (4, 1),
as shown in Figure 2.

Figure 2. Spatial distribution diagram of basic space voltage vectors and sectors.

The voltage state equation of the motor emulator can be expressed as:

ux = ux′ + Rix + L dix
dt , x = a, b, c; x′ = a′, b′, c′. (3)

where ux is output voltage of x phase of three-phase four-switch converter, ux′ is output voltage of
x′ phase of voltage source. ix is load current of x phase of coupled load network. R and L are the
resistance and inductance of coupled load network respectively.

Then, predictive current at the (k + 1)-th instant can be obtained by discretizing Equation (3):

ik+1
x = (1− RTs

L )ik
x +

Ts
L (uk

x − uk
x′) (4)

where k is sampling instant and k = 1, 2, 3 · · · . Ts is the sampling period. ik+1
x is predictive current at

the (k + 1)-th instant. ik
x is sampling of ix at the k-th instant. uk

x and uk
x′ are samplings of ux and ux′ at

the k-th instant respectively.

3. Power Loss Decrease Method Based on FSMPC with Delay Compensation

3.1. Current Tracking Performance

The theory of ideal FSMPC is shown in Figure 3a. Reference stator current i∗x is obtained and actual
load current ik

x are sampled at the k-th instant, and the optimal switch control signal is determined
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during the k-th sampling period and applied to the system at the k-th instant, then load current will
reach the expected value at the (k + 1)-th instant. However, digital process system needs time to
perform algorithm, as shown in Figure 3b. The sampling is accomplished at the k-th instant, but the
optimal switch control signal is applied to system after td delay, which results in error between actual
load current and expected value at the (k + 1)-th instant. Thus, the accuracy and rapidity of current
tracking is partly decreased, especially for motor operating on fault state and condition suddenly
alteration. Therefore, the delay compensation is adopted to regulate action time of the optimal switch
control signal, as shown in Figure 3c. Sampling is completed at the k-th instant and calculating the
optimal switch control signal during the the k-th sampling period, and applied to the system at the
(k + 1)-th instant, then load current will reach the expected value at the (k + 2)-th instant. The delay
compensation not only makes up for computation time of the algorithm, but also effectively raises the
performance of current tracking for motor operating on fault state and condition suddenly alteration.
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(c)FSMPC with delay compensation

Figure 3. Principle of delay compensation.

According to principle of delay compensation [24], all switch control signals are used to calculate
the predictive current at the (k + 2)-th instant:

ik+2
Szx = (1− RTs

L )ik+1
x + Ts

L (uk+1
Szx − uk

x′), z = 1, 2, 3, 4. (5)

where ik+2
Szx is predictive current at the (k + 2)-th instant corresponding to switch control signal Sz. uk+1

Szx
predictive voltage at the (k + 1)-th instant corresponding to switch control signal Sz. Considering that
the change of voltage source during one sampling period is not obvious, the sampling of ux′ at the
(k + 1)th instant is approximatively equal to uk

x′ .
After Clark coordinate transformation, ik+2

Szx can be converted as:

[
ik+2
Szα

ik+2
Sz β

]
=

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] 
ik+2
Sza

ik+2
Szb

ik+2
Szc

 (6)

where ik+2
Szα and ik+2

Sz β are the values of predictive current ik+2
Szx in αβ stationary frame.

Then, the current residual function at the (k + 2)-th instant can be defined as:

ek+2
Sz

= |ik+2
Szα − i∗(k+2)

α |2 + |ik+2
Sz β − i∗(k+2)

β |2 (7)

where ek+2
Sz

is current residual at the (k + 2)-th instant corresponding to switch control signal Sz. i∗(k+2)
α

and i∗(k+2)
β are the reference currents at the (k + 2)-th instant in αβ stationary frame. The i∗(k+2)

α and

i∗(k+2)
β can be constructed by the reference currents at the (k − 1)-th, the k-th and the (k + 1)-th instants

according to linear interpolation theorem:{
i∗(k+2)
α = 3i∗(k+1)

α − 3i∗(k)α + i∗(k−1)
α

i∗(k+2)
β = 3i∗(k+1)

β − 3i∗(k)β + i∗(k−1)
β

(8)
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where, when k is equal to 1, the values of i∗(0)α and i∗(0)β are set to equal the values of i∗(1)α and

i∗(1)β respectively.
In the traditional method of current tracking, only one basic space voltage vector Vz is generated

by controlling a switch control signal Sz during every sampling period. When the traditional strategy
is adopted for the current tracking control of the motor emulator, the error between load current and
stator current is larger and current tracking accuracy is lower because of the finiteness and space
distribution fixity of basic space voltage vectors. In the method of current tracking in this paper,
there are two adjacent basic space voltage vectors Vz and Vz+1 are generated by controlling two
adjacent switch control signals Sz and Sz+1 during every sampling period. By allocating the action
time proportion of the two space voltage vectors during one period, the error between load current
and stator current can be minimized.

Since the sum of action time of two adjacent switch control signals Sz and Sz+1 is constant Ts,
and the action time of each switch control signal is inversely proportional to the current residual
generated by it, larger current residual leads to smaller action time. Thus the action time of two
adjacent switch control signals Sz and Sz+1 for the sector Nz are derived as:

dk+2
NzSz

=
ek+2

Sz+1

ek+2
Sz +ek+2

Sz+1

Ts

dk+2
NzSz+1

=
ek+2

Sz
ek+2

Sz +ek+2
Sz+1

Ts

Ts = dk+2
NzSz

+ dk+2
NzSz+1

(9)

where dk+2
NzSz

and dk+2
NzSz+1

are action times two switch control signals Sz and Sz+1 of sector Nz for the
(k + 2)-th instant.

The current tracking performance function for the sector Nz at the (k + 2)-th instant can be
designed as:

ξk+2
Nz

= 1− Ts
4I∗mx

(
ek+2

Sz+1

dk+2
NzSz

+
ek+2

Sz
dk+2

NzSz+1

) (10)

where ξk+2
Nz

expresses current tracking performance at the (k + 2)-th instant under the action of the two
switch control signals Sz and Sz+1 for sector Nz. I∗mx is peak value of three-phase reference current i∗x.
The value of ξk+2

Nz
is between 0 to 1. When ξk+2

Nz
= 1, current tracking performance is optimal, ξk+2

Nz
is

dropping gradually as the current tracking performance decreases.

3.2. Power Loss Minimization

The switch power loss generated by switch control signal Sz at the (k + 2)-th instant is defined as
Pk+2

Sz
, which can be given by:

Pk+2
Sz

= Pk+2
Szb1

+ Pk+2
Szb2

+ Pk+2
Szc1

+ Pk+2
Szc2

(11)

where, Pk+2
Szb1

, Pk+2
Szb2

, Pk+2
Szc1

and Pk+2
Szc2

are switch power losses of switches Tb1 , Tb2 , Tc1 and Tc2 at the
(k + 2)-th instant under the action of switch control signal Sz, they can be expressed as follows:{

Pk+2
SzX1

= δ̄k
X [S

k
X1
(|ik

X | × uk+1
SzX1
× Ts) + Lk+1

SzX1
]

Pk+2
SzX2

= δk
X [S

k
X2
(|ik

X | × uk+1
SzX2
× Ts) + Lk+1

SzX2
]

, X = b, c. (12)

where, ik
X is sampling of iX at the k-th instant. δk

X is flag of ik
X , if ik

X > 0, δk
X = 1; if ik

X < 0, δk
X = 0. Sk

X1

and Sk
X2

are pulse signals of TX1 and TX2 at the k-th instant, Sk
X1

= 1 when TX1 on, and Sk
X1

= 0 when

TX1 off, which also beseem to Sk
X2

and TX2 . uk+1
SzX1

and uk+1
SzX2

are on-state voltage drops of TX1 and TX2
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at the (k + 1)-th instant corresponding to switch control signal Sz, they are assumed to be constant
values, which can be found in [25]. Lk+1

SzX1
and Lk+1

SzX2
are on-off losses of TX1 and TX2 at the (k + 1)-th

instant corresponding to switch control signal Sz, they can be given by:

Lk+1
SzXm

=


Eon, Sk+1

zXm
− Sk

Xm
= 1

0, Sk+1
zXm
− Sk

Xm
= 0

Eo f f , Sk+1
zXm
− Sk

Xm
= −1

, X = b, c; m = 1, 2. (13)

where, Eon and Eo f f are on and off power loss of switch, they are assumed to be constant values,
which can be found in [25]. Sk+1

zXm
is pulse signal of TXm at the (k + 1)-th instant corresponding to switch

control signal Sz.
The switch power loss objective function is designed as:

gk+2
Nz

=
Pk+2

Sz +Pk+2
Sz+1

8
(14)

where, gk+2
Nz

is average switch power loss at the (k + 2)-th instant under the action of the two adjacent
switch control signals Sz and Sz+1 for sector Nz. During the the k-th sampling period, two adjacent
switch control signals of each sectors are orderly used to calculate value of switch power loss objective
function gk+2

Nz
.

The switching states of b and c phases can be obtained according to Equation (15):

g[Sk+1
b , Sk+1

c ] = min
ξk+2

Nz
∈ (0.95, 1]

z = 1, 2, 3, 4

{gk+2
Nz
}

(15)

where, Sk+1
b and Sk+1

c are switching states of b and c phases in the three-phase four-switch converter at
the (k + 1)-th instant. On the condition that current tracking performance greater than 95%, the switches
that generating lowest switch power loss are selected to operate during every sampling period, then
switch power loss can be reduced.

The flowchart of proposed power loss decrease method based on FSMPC with delay compensation
is shown in Figure 4.
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Figure 4. Flowchart of the FSMPC with delay compensation.

4. Experimental Results

In this section, the power loss decrease method for motor emulator based on reducing switch
count and FSMPC with delay compensation is verified on a hardware-in-the-loop platform as shown
in Figure 5. The corresponding component parameters are indicated in Table 2. The platform consists
of a physical controller, real-time simulator, and PC. Physical controller adopts TMS320F28335 control
chip with high processing capacity and rich interface resources to realize real-time control of voltage
source. The real-time simulator includes DS1007CPU board and DS5203FPGA board, the former is
used for real-time calculation of reference current setter and predictive controller, and the latter is used
for real-time simulation of motor model, coupled load network and three-phase four-switch converter.
The PC collects real-time data from model by real-time simulation software, and monitors running
state of observation point.
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Figure 5. Experimental platform.

Table 2. Parameters of the experimental platform.

Parameters High Power Motor Low Power Motor

Motor model

Rated power 300 kW 100 W
Stator inductance 0.142 H 0.021 H
Rotor inductance 0.130 H 0.018 H

Stator resistor 0.144 Ω 0.014 Ω
Rotor resistor 0.142 HΩ 0.012 Ω

Coupled load network Load resistor 1 Ω 0.05 Ω
Load inductance 0.004 H 0.00013 H

Frequency Sampling frequency 20 kHz 20 kHz
Switching frequency 10 kHz 10 kHz

4.1. Motor Emulators with Different Switch Counts

On the condition that high power motor is operating with reference load current set 60 A/20 Hz
and low power motor is operating with reference load current set 7 A/30 Hz, respectively.
The comparison of current tracking performance and switch power loss for traditional six-switch
motor emulator and proposed four-switch motor emulator without power loss minimization control
are displayed in this section.

For the high power motor, the experimental waveforms of a-phase reference current, a-phase load
current of six-switch motor emulator, and a-phase load current of four-switch motor emulator are
shown in Figure 6a. Based on these conditions, the experimental waveforms of average three-phase
current residual of between reference current and load current of six-switch and four-switch motor
emulator are shown in Figure 6b, respectively. The experimental waveforms of average three-phase
current THD (total harmonic distortion) of reference current, load current of six-switch and four-switch
motor emulator are shown in Figure 6c, respectively. The switch power loss during entire simulation
period of six-switch and four-switch motor emulator are shown in Table 3. Similarly, the experimental
waveforms for the low power motor are shown in Figure 7a–c and Table 4.
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Table 3. Switch power losses of traditional six-switch and proposed four-switch motor emulator for
high power motor.

Switch Power Loss (KJ) σ (%)

pa1 pa2 pb1 pb2 pc1 pc2 psum pave

Traditional
six-switch 21.09 18.62 19.16 20.43 20.27 19.75 119.32 19.89 23.8

Proposed
four-switch — — 22.40 23.36 23.25 21.83 90.84 22.71

Table 4. Switch power losses of traditional six-switch and proposed four-switch motor emulator for
low power motor.

Switch Power Loss (J) σ (%)

pa1 pa2 pb1 pb2 pc1 pc2 psum pave

Traditional
six-switch 34.74 35.22 35.46 34.87 35.91 34.05 210.25 35.04 20.7

Proposed
four-switch — — 41.75 42.16 41.84 40.97 166.72 41.68

As shown in Figure 6a, comparing to the zero-crossing time of reference current, the zero-crossing
time of six-switch motor emulator is delayed by about 30 us, which is expressed as tT

n , and the
zero-crossing time of four-switch motor emulator is delayed by about 35 us, which is denoted as
tP
n . From Figure 6b, average three-phase current residual of six-switch motor emulator is about

1.1A, current tracking accuracy is 98.2% according to (16). Average three-phase current residual of
four-switch motor emulator is about 1.3 A, current tracking accuracy is 97.8% according to (17).
In Figure 6c, the average THD of three-phase reference current is 1.30%, and average THD of
three-phase load current of six-switch and four-switch motor emulator are about 1.7% and 1.80%,
respectively. From Table 3, comparing to a traditional six-switch motor emulator, although the average
switch power loss has increased, the sum of switch power loss decreases 23.81%, according to (18).

εT = iR−∆iRT

iR × 100% (16)

where εT is current tracking accuracy of traditional six-switch motor emulator, iR is reference current,
∆iRT is average three-phase current residual between reference current and load current of traditional
six-switch motor emulator.

εP = iR−∆iRP

iR × 100% (17)

where εP is current tracking accuracy of proposed four-switch motor emulator, iR is reference current,
∆iRP is average three-phase current residual between reference current and load current of proposed
four-switch motor emulator.

σ = PT
sum−PP

sum
PT

sum
× 100% (18)

where σ is decrease percent of total switch power loss, PT
sum is sum of switch power loss of traditional

six-switch motor emulator, PP
sum is sum of switch power loss of proposed four-switch motor emulator.
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As shown in Figure 7a, comparing to the zero-crossing time of reference current, the zero-crossing
time of six-switch motor emulator is delayed by about 30 us, which is expressed as tT

n , and the
zero-crossing time of four-switch motor emulator is delayed by about 35 us, which is denoted as tP

n .
From Figure 7b, average three-phase current residual of six-switch motor emulator is about 0.1 A,
current tracking accuracy is 98.6%. Average three-phase current residual of four-switch motor emulator
is about 0.12 A, current tracking accuracy is 98.3%. In Figure 7c, the average THD of three-phase
reference current is 2.1%, and average THD of three-phase load current of six-switch and four-switch
motor emulator are about 2.9% and 3.3%, respectively. From Table 4, comparing to traditional six-switch
motor emulator, although the average switch power loss has increased, the sum of switch power loss
decreases 20.7%. The experimental results have shown that the proposed four-switch motor emulator
decrease effectively switch power loss on the premise of ensuring current tracking effect of motor
emulator for the high and low power motor.

4.2. Current Tracking Performance Based on FSMPC and FSMPC with Delay Compensation

On the condition that high power motor is operating with reference load current set 60 A/20 Hz
and low power motor is operating with reference load current set 7 A/30 Hz, respectively.
The comparison of current tracking performance and switch power loss based on FSMPC and FSMPC
with delay compensation on the condition without power loss minimization control are displayed in
this section.

For the high power motor, the experimental waveforms of a-phase reference current, a-phase
load current based on FSMPC, and a-phase load current based on FSMPC with delay compensation
are shown in Figure 8a. With these conditions, the experimental waveforms of average three-phase
current residual of between reference current and load current based on FSMPC and FSMPC with
delay compensation are shown in Figure 8b, respectively. The experimental waveforms of average
three-phase current THD of reference current, load current based on FSMPC and FSMPC with delay
compensation are shown in Figure 8c, respectively. The switch power loss results during entire
simulation period based on FSMPC and FSMPC with delay compensation are shown in Table 5.
Similarly, the experimental waveforms for the low power motor are shown in Figure 9a–c and Table 6.
Comparison of based on FSMPC and FSMPC with delay compensation for high and low power motor
are shown in Table 7.

Table 5. Switch power losses based on FSMPC and FSMPC with delay compensation for high power motor.

Switch Power Loss (KJ) σ (%)

pb1 pb2 pc1 pc2 psum pave

FSMPC 22.40 23.36 23.25 21.83 90.84 22.71 0.13
FSMPC with delay

compensation 21.84 23.47 23.69 21.72 90.72 22.68
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Figure 9. Waveforms based on FSMPC and FSMPC with delay compensation for low power motor.
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As shown in Figure 8a, comparing to the zero-crossing time of reference current, the zero-crossing
time of load current based on FSMPC is delayed by about 45 us, which is expressed as tT

n , and the
zero-crossing time of load current based on FSMPC with delay compensation is delayed by about
35 us, which is denoted as tP

n . From Figure 8b, average three-phase current residual based on FSMPC is
about 1.9 A, current tracking accuracy is 96.8%. Average three-phase current residual based on FSMPC
with delay compensation is about 1.3 A, current tracking accuracy is 97.8%. In Figure 8c, the average
THD of three-phase reference current is 1.30%, and average THD of three-phase load current based on
FSMPC and FSMPC with delay compensation are about 2.4% and 1.80%, respectively. From the Table 5,
the sum and average switch power loss based on FSMPC and FSMPC with delay compensation are
almost equal.

Table 6. Switch power losses based on FSMPC and FSMPC with delay compensation for low power motor.

Switch Power Loss (J) σ (%)

pb1 pb2 pc1 pc2 psum pave

FSMPC 41.75 42.16 41.84 40.97 166.72 41.68 0.22
FSMPC with delay

compensation 41.80 41.94 41.57 41.06 163.37 41.59

As shown in Figure 9a, comparing to the zero-crossing time of reference current, the zero-crossing
time of load current based on FSMPC is delayed by about 45 us, which is expressed as tT

n , and the
zero-crossing time of load current based on FSMPC with delay compensation is delayed by about 35 us,
which is denoted as tP

n . From Figure 9b, average three-phase current residual based on FSMPC is about
0.17 A, current tracking accuracy is 97.5%. Average three-phase current residual based on FSMPC with
delay compensation is about 0.12 A, current tracking accuracy is 98.3%. In Figure 9c, the average THD
of three-phase reference current is 2.1%, and average THD of three-phase load current based on FSMPC
and FSMPC with delay compensation are about 3.2% and 4.3%, respectively. From the Table 6, the sum
and average switch power loss based on FSMPC and FSMPC with delay compensation are almost
equal. The experimental results have shown that, for the high and low power motor, the residual
between load current and reference current is reduced and current tracking accuracy is improved by
applying FSMPC with delay compensation, when compared with FSMPC.

Table 7. Comparison of based on FSMPC and FSMPC with delay compensation for high and low
power motor.

High Power Motor Low Power Motor

FSMPC FSMPC with Delay
Compensation

FSMPC FSMPC with Delay
Compensation

Tracking accuracy of
load current

96.8% 97.8% 97.5% 98.3%

Zero-crossing delay time 45 us 35 us 45 us 35 us

THD 2.4% 1.8% 4.3% 3.2%

Decrease percent of
switch power loss

0.13% 0.22%

Load inductance 4 mH 0.13 mH

Switching frequency 10 kHz

Sampling frequency 20 kHz
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4.3. Motor Rotor Broken Bar Fault

When the motor is operating under rotor broken bar fault with the reference current for high
power motor set 60 A/20 Hz and low power motor set 7 A/30 Hz respectively, and fault level set 20%.
The comparison of current tracking performance and switch power loss for proposed motor emulator
without and with power loss minimum control are displayed in this section.

For the high power motor, the experimental waveforms of a-phase reference current, a-phase load
current of proposed motor emulator without and with power loss minimization control are shown in
Figure 10a. Based on these conditions, the experimental waveforms of average three-phase current
residual of between reference current and load current of without and with power loss minimization
control are shown in Figure 10b, respectively. The experimental waveforms of average three-phase
current THD of reference current, load current with or without power loss minimization control are
shown in Figure 10c, respectively. The switch power loss results during entire simulation period of
proposed motor emulator without and with power loss minimization control are shown in Table 8.
Similarly, the experimental waveforms for the low power motor are shown in Figure 11a–c and Table 9.

Table 8. Switch power losses of motor rotor broken bar fault for high power motor.

Switch Power Loss (KJ) σ (%)

pb1 pb2 pc1 pc2 psum pave

Without 22.91 23.84 23.75 22.36 92.86 23.22 22.74
With 17.52 18.37 18.65 17.22 71.76 17.94

As shown in Figure 10a, when the motor is operating under rotor broken bar fault, comparing to
the zero-crossing time of reference current, the zero-crossing time of load current without power loss
minimization control is delayed by about 40 us, which is expressed as tP

n , and the zero-crossing time of
load current with power loss minimization control is delayed by about 50 us, which is denoted as tP

y .
From Figure 10b, average three-phase current residual of without and with power loss minimization
control are about 2.0 A and 2.2 A, and current tracking accuracy are 96.6% and 96.3%. In Figure 10c,
the average THD of three-phase reference current is 19%, and average THD of three-phase load current
of without and with power loss minimization control is 22% and 24%, respectively. From Table 8,
consideration of power loss, the sum and average switch power loss of the latter have both decreased
by 22.74% than the former.

Table 9. Switch power losses of motor rotor broken bar fault for low power motor.

Switch Power Loss (J) σ (%)

pb1 pb2 pc1 pc2 psum pave

Without 42.29 42.61 41.77 42.85 169.52 42.38 21.47
With 32.96 33.72 33.36 33.04 133.08 33.27
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As shown in Figure 11a, when the motor is operating under rotor broken bar fault, comparing to
the zero-crossing time of reference current, the zero-crossing time of load current without power loss
minimization control is delayed by about 40 us, which is expressed as tP

n , and the zero-crossing time of
load current with power loss minimization control is delayed by about 50 us, which is denoted as tP

y .
From Figure 11b, average three-phase current residual of without and with power loss minimization
control are about 0.15 A and 0.18 A, and current tracking accuracy are 97.8% and 97.4%. In Figure 11c,
the average THD of three-phase reference current is 25%, and average THD of three-phase load current
of without and with power loss minimization control is 30% and 35%, respectively. From Table 9,
consideration of power loss, the sum and average switch power loss of the latter have both decreased
by 21.47% than the former, respectively. The experimental results have shown that, for the high and
low power motor, the proposed power loss decrease method can reduce effectively switch power
loss on the premise of ensuring the current tracking effect of the motor emulator when the motor is
operating under rotor broken bar fault.

4.4. Motor Speed Suddenly Alteration

When the motor is operating under speed suddenly alteration with speed set 1250 rpm to 2500 rpm
for high power motor and speed set 1000 rpm to 1800 rpm for low power motor respectively, as show
in Figures 12a and 13a. The comparison of current tracking performance and switch power loss
for proposed motor emulator without and with power loss minimization control are displayed in
this section.

For the high power motor, the experimental waveforms of a-phase reference current, a-phase load
current of proposed motor emulator without and with power loss minimization control are shown in
Figure 12b. Based on these conditions, the experimental waveforms of average three-phase current
residual of between reference current and load current of without and with power loss minimization
control are shown in Figure 12c, respectively. The experimental waveforms of average three-phase
current THD of reference current, load current of proposed motor emulator without and with power
loss minimization control are shown in Figure 12d, respectively. The switch power loss results during
the entire simulation period of the proposed motor emulator without and with power loss minimization
control are shown in Table 10. Similarly, the experimental waveforms for the low power motor are
shown in Figure 13b–d and Table 11.

Table 10. Switch power losses of speed suddenly alteration for high power motor.

Switch Power Loss (KJ) σ (%)

pb1 pb2 pc1 pc2 psum pave

Without 22.76 23.95 23.47 22.36 92.54 23.13 20.83
With 17.72 18.96 18.75 17.83 73.26 18.32

As shown in Figure 12b, when the motor is operating under speed sudden alteration, comparing
to the zero-crossing time of reference current, the zero-crossing time of load current without power loss
minimization control is delayed by about 40 us, which is expressed as tP

n , and the zero-crossing time of
load current with power loss minimization control is delayed by about 60 us, which is denoted as tP

y .
From Figure 12c, average three-phase current residual of without and with power loss minimization
control are about 2.0 A and 2.2 A, and current tracking accuracy are 96.6% and 96.3%. In Figure 12d,
the average THD of three-phase reference current is 1.7%, and average THD of three-phase load current
of without and with power loss minimization control is 1.9% and 2.0%, respectively. From Table 10,
consideration of power loss, the sum and average switch power loss of the latter have both decreased
by 20.83% than the former.



Energies 2019, 12, 4647 21 of 25

S
p
e
e
d
 (

r
p

m
)

1250(rpm) 2500(rpm)
Speed

 rising

(a)Speed

A
-p

h
a

se
 c

u
rr

en
t 

(A
)

P

n
t

1250(rpm) 2500(rpm)
Speed

 rising

P

y
t

(b)A-phase currents

A
ve

ra
g

e
 r

es
id

u
a

l 
(A

)

1250(rpm) 2500(rpm)
Speed

 rising

(c)Average residual of three-phase currents

A
ve

ra
g

e
 T

H
D

 (
%

)

1250(rpm) 2500(rpm)
THD is fluctuant 

cased by speed rising

Reference current

Load current of the proposed motor emulator without power loss minimization control

Load current of the proposed motor emulator with power loss minimization control

(d)Average THD of three-phase currents

Figure 12. Waveforms of speed suddenly alteration for high power motor.



Energies 2019, 12, 4647 22 of 25

S
pe

ed
 (

rp
m

)

1000(rpm) 1800(rpm)
Speed
 rising

(a)Speed

0 0.2 0.4 0.6 0.8 1.0
Times(s)

-10

-5

0

5

10

15

20

25

30

0.39 0.41 0.43 0.45
-10

0

10

0.4248 0.4249 0.4250 0.4251
-1

0

1

A
-p

h
as

e 
cu

rr
en

t (
A

)

P
nt

1000(rpm) 1800(rpm)
Speed
 rising

P
yt

(b)A-phase currents

0 0.2 0.4 0.6 0.8 1.0
Times(s)

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

A
ve

ra
ge

 r
es

id
u

al
 (

A
)

1000(rpm) 1800(rpm)
Speed
 rising

(c)Average residual of three-phase currents

A
ve

ra
ge

 T
H

D
 (

%
)

1000(rpm) 1800(rpm)
THD is fluctuant 

cased by speed rising

Reference current
Load current of the proposed motor emulator without power loss minimization control
Load current of the proposed motor emulator with power loss minimization control

(d)Average THD of three-phase currents
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Table 11. Switch power losses of speed suddenly alteration for low power motor.

Switch Power Loss (J) σ (%)

pb1 pb2 pc1 pc2 psum pave

Without 45.64 46.32 45.27 45.70 182.94 45.73 20.88
With 36.31 35.97 35.86 36.58 144.72 36.18

As shown in Figure 13b, when the motor is operating under speed suddenly alteration, comparing
to the zero-crossing time of reference current, the zero-crossing time of load current without power loss
minimization control is delayed by about 40 us, which is expressed as tP

n , and the zero-crossing time of
load current with power loss minimization control is delayed by about 60 us, which is denoted as tP

y .
From Figure 13c, average three-phase current residual of without and with power loss minimization
control are about 0.16 A and 0.19 A, and current tracking accuracy are 97.7% and 97.3%. In Figure 13d,
the average THD of three-phase reference current is 2.0%, and average THD of three-phase load current
of without and with power loss minimization control is 3.2% and 4.0%, respectively. From Table 11,
consideration of power loss, the sum and average switch power loss of the latter have both decreased
by 20.88% than the former, respectively. The experimental results show that, for the high and low
power motor, the proposed power loss decrease method can reduce effectively switch power loss on
the premise of ensuring the current tracking effect of the motor emulator, when the motor is operating
under speed suddenly alteration.

5. Conclusions

A power loss decrease method based on FSMPC with delay compensation for a reduced
switch count motor emulator is proposed in this paper. In the proposed motor emulator topology,
converter consists of four active switches and two capacitors. Within the power loss decrease method
based on FSMPC with delay compensation, an objective function is designed to select the two adjacent
switch control signals that generating lowest switch power loss while keeping satisfied current tracking
performance. The simulation and experiment results show the feasibility and effectiveness of the
proposed method which achieving minimum power loss and ensuring current tracking performance
greater than 95%. Besides, they also testify that the current can track stator current accurately and
rapidly when the motor operating on the cases, namely in the normal state, or the fault state or the
speed suddenly alteration. A real-time platform of a motor emulator for the presented method has
been built to provide a reliable environment and offers more authentic data for motor fault injection,
diagnosis, and tolerance research.
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